1
|
Wu L, Morrow B, Hong L, Rajasingh J. Preparation of Monodispersed Nanofibrous Gelatin Microspheres Using Homebuilt Microfluidics. Methods Mol Biol 2024; 2835:325-337. [PMID: 39105928 DOI: 10.1007/978-1-0716-3995-5_28] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
Gelatin, a protein derivative from collagen, is a versatile material with promising applications in tissue engineering. Among the various forms of gelatin scaffolds, nanofibrous gelatin microspheres (NFGMs) are attracting research efforts due to their fibrous nature and injectability. However, current methods for synthesizing nanofibrous gelatin microspheres (NFGMs) have limitations, such as wide size distributions and the use of toxic solvents. To address these challenges, the article introduces a novel approach. First, it describes the creation of a microfluidic device using readily available supplies. Subsequently, it outlines a unique process for producing monodispersed NFGMs through a combination of the microfluidic device and thermally induced phase separation (TIPS). This innovative method eliminates the need for sieving and the use of toxic solvents, making it a more ecofriendly and efficient alternative.
Collapse
Affiliation(s)
- Linfeng Wu
- Department of Pediatric Dentistry & Community Oral Health, College of Dentistry, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Brian Morrow
- Department of Bioscience Research, College of Dentistry, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Liang Hong
- Department of Pediatric Dentistry & Community Oral Health, College of Dentistry, University of Tennessee Health Science Center, Memphis, TN, USA
- Department of Bioscience Research, College of Dentistry, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Johnson Rajasingh
- Department of Bioscience Research, College of Dentistry, University of Tennessee Health Science Center, Memphis, TN, USA.
- Department of Medicine-Cardiology, University of Tennessee Health Science Center, Memphis, TN, USA.
- Department of Microbiology, Immunology, and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, USA.
| |
Collapse
|
2
|
Gu Y, Miao F, Liu K, Su Y, Wei Y, Hu Y, Lian X, Han W, Chen W, Huang D. Fabrication of gelatin methacryloyl/graphene oxide conductive hydrogel for bone repair. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2023; 34:2076-2090. [PMID: 37212466 DOI: 10.1080/09205063.2023.2217063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 05/15/2023] [Accepted: 05/19/2023] [Indexed: 05/23/2023]
Abstract
The ideal bone repair materials possess a series of properties, such as injectability, good mechanical properties and bone inducibility. In the present study, gelatin methacryloyl (GelMA) and graphene oxide (GO) were selected to prepare conductive hydrogel by changing the concentration of GelMA and GO during the cross-link process. The effects of different contents of GelMA and GO to the hydrogel performance were investigated. The results showed that the mechanical properties of the hydrogel kept 16.37 ± 1.89 KPa after adding 0.1% GO, while the conductivity was improved to 1.36 ± 0.09 μS/cm. The porosity of hydrogel before and after mineralization could reach more than 90%. The mechanical properties of mineralized hydrogel was improved significantly, could reach 26.38 ± 2.29 KPa. Cell experiments indicated that the mineralized hydrogel with electrical stimulation obviously improve the alkaline phosphatase activity of the cells. GelMA/GO conductive hydrogel could be a promising candidate for bone repair and bone tissue engineering.
Collapse
Affiliation(s)
- Yu Gu
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, PR China
| | - Fenyan Miao
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, PR China
| | - Kejun Liu
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, PR China
| | - Yimeng Su
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, PR China
| | - Yan Wei
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, PR China
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan, PR China
| | - Yinchun Hu
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, PR China
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan, PR China
| | - Xiaojie Lian
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, PR China
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan, PR China
| | - Weimo Han
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, PR China
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan, PR China
| | - Weiyi Chen
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, PR China
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan, PR China
| | - Di Huang
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, PR China
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan, PR China
| |
Collapse
|
3
|
Dvorakova J, Wiesnerova L, Chocholata P, Kulda V, Landsmann L, Cedikova M, Kripnerova M, Eberlova L, Babuska V. Human cells with osteogenic potential in bone tissue research. Biomed Eng Online 2023; 22:33. [PMID: 37013601 PMCID: PMC10069154 DOI: 10.1186/s12938-023-01096-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 03/24/2023] [Indexed: 04/05/2023] Open
Abstract
Bone regeneration after injury or after surgical bone removal due to disease is a serious medical challenge. A variety of materials are being tested to replace a missing bone or tooth. Regeneration requires cells capable of proliferation and differentiation in bone tissue. Although there are many possible human cell types available for use as a model for each phase of this process, no cell type is ideal for each phase. Osteosarcoma cells are preferred for initial adhesion assays due to their easy cultivation and fast proliferation, but they are not suitable for subsequent differentiation testing due to their cancer origin and genetic differences from normal bone tissue. Mesenchymal stem cells are more suitable for biocompatibility testing, because they mimic natural conditions in healthy bone, but they proliferate more slowly, soon undergo senescence, and some subpopulations may exhibit weak osteodifferentiation. Primary human osteoblasts provide relevant results in evaluating the effect of biomaterials on cellular activity; however, their resources are limited for the same reasons, like for mesenchymal stem cells. This review article provides an overview of cell models for biocompatibility testing of materials used in bone tissue research.
Collapse
Affiliation(s)
- Jana Dvorakova
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1655/76, 323 00, Plzen, Czech Republic
| | - Lucie Wiesnerova
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1655/76, 323 00, Plzen, Czech Republic
| | - Petra Chocholata
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1655/76, 323 00, Plzen, Czech Republic
| | - Vlastimil Kulda
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1655/76, 323 00, Plzen, Czech Republic
| | - Lukas Landsmann
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1655/76, 323 00, Plzen, Czech Republic
| | - Miroslava Cedikova
- Biomedical Center, Laboratory of Tumor Biology and Immunotherapy, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1655/76, 323 00, Plzen, Czech Republic
| | - Michaela Kripnerova
- Department of Biology, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1655/76, 323 00, Plzen, Czech Republic
| | - Lada Eberlova
- Department of Anatomy, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1655/76, 323 00, Plzen, Czech Republic
| | - Vaclav Babuska
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1655/76, 323 00, Plzen, Czech Republic.
| |
Collapse
|
4
|
Zhao Z, Wang Y, Yin B, Li X, Hao R, Li Z, Li P, Han M, Ding L, Li Z, Zhu H. Defect-adaptive Stem-cell-microcarrier Construct Promotes Tissue Repair in Rabbits with Knee Cartilage Defects. Stem Cell Rev Rep 2023; 19:201-212. [PMID: 35900693 DOI: 10.1007/s12015-022-10421-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/23/2022] [Indexed: 01/29/2023]
Abstract
Although various reconstruction techniques are available for cartilage defects, the repair effects and conveniences remain to be further improved due to the limited regenerative capacity of cartilaginous tissues and difficulties in seamlessly fulfilling irregularly shaped defects. In the current study, we explored the repair efficacy of stem cell microcarrier construct (microcarriers loaded with human chondrogenic progenitor cells or bone marrow mesenchymal stem cells) in cartilage defect models. A total of 39 healthy New Zealand white rabbits were included, and femoral trochlear cartilage defect models were established (n = 33). Stem cell microcarrier constructs were implanted into cartilage defects (n = 6), the maintenance conditions of the implanted constructs were observed on days 4, 8, and 30 post implantation (n = 3). Gross observation and pathological analysis were performed to assay the reconstitution of cartilage defects at 12 weeks post-cartilage defect repair(n = 6). The microcarriers could fill the defect model with good plasticity to integrate well with the boundary native normal cartilage. At 3 months after implantation, the defects were filled with fibrous cartilage tissues in the microcarrier without stem cells group. In the microcarrier loaded with BMSCs group, newly formed tissue with a similar appearance of boundary cartilage fulfilled the defects, but the surface was not completely smooth. Promisingly, the defects were almost completely filled with newly regenerated cartilaginous tissues, which had a smooth appearance similar to that of normal cartilage in the microcarrier loaded with CPCs group. These results suggest the feasibility of stem cell microcarrier construct in repairing cartilage defects, indicating promising clinical application prospects.
Collapse
Affiliation(s)
- Zhidong Zhao
- Beijing Institute of Radiation Medicine, No. 27 Taiping Road, Haidian District, Beijing, 100850, China.,Chinese People's Liberation Army (PLA) General Hospital, Chinese PLA Medical School, No. 28 Fuxing Road, Haidian District, Beijing, 100853, China
| | - Yuxing Wang
- Beijing Institute of Radiation Medicine, No. 27 Taiping Road, Haidian District, Beijing, 100850, China.,Chinese People's Liberation Army (PLA) General Hospital, Chinese PLA Medical School, No. 28 Fuxing Road, Haidian District, Beijing, 100853, China
| | - Bofeng Yin
- Beijing Institute of Radiation Medicine, No. 27 Taiping Road, Haidian District, Beijing, 100850, China
| | - Xiaotong Li
- Beijing Institute of Radiation Medicine, No. 27 Taiping Road, Haidian District, Beijing, 100850, China
| | - Ruicong Hao
- Beijing Institute of Radiation Medicine, No. 27 Taiping Road, Haidian District, Beijing, 100850, China.,Graduate School of Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Zhiling Li
- Beijing Institute of Radiation Medicine, No. 27 Taiping Road, Haidian District, Beijing, 100850, China
| | - Peilin Li
- Beijing Institute of Radiation Medicine, No. 27 Taiping Road, Haidian District, Beijing, 100850, China
| | - Mengyue Han
- Beijing Institute of Radiation Medicine, No. 27 Taiping Road, Haidian District, Beijing, 100850, China.,Graduate School of Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Li Ding
- Beijing Institute of Radiation Medicine, No. 27 Taiping Road, Haidian District, Beijing, 100850, China. .,Air Force Medical Center, PLA, No.30 Fucheng Road, Beijing, 100142, China.
| | - Zhongli Li
- Chinese People's Liberation Army (PLA) General Hospital, Chinese PLA Medical School, No. 28 Fuxing Road, Haidian District, Beijing, 100853, China.
| | - Heng Zhu
- Beijing Institute of Radiation Medicine, No. 27 Taiping Road, Haidian District, Beijing, 100850, China. .,Graduate School of Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China.
| |
Collapse
|
5
|
Barreto MEV, Medeiros RP, Shearer A, Fook MVL, Montazerian M, Mauro JC. Gelatin and Bioactive Glass Composites for Tissue Engineering: A Review. J Funct Biomater 2022; 14:23. [PMID: 36662070 PMCID: PMC9861949 DOI: 10.3390/jfb14010023] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/28/2022] [Accepted: 12/28/2022] [Indexed: 01/03/2023] Open
Abstract
Nano-/micron-sized bioactive glass (BG) particles are attractive candidates for both soft and hard tissue engineering. They can chemically bond to the host tissues, enhance new tissue formation, activate cell proliferation, stimulate the genetic expression of proteins, and trigger unique anti-bacterial, anti-inflammatory, and anti-cancer functionalities. Recently, composites based on biopolymers and BG particles have been developed with various state-of-the-art techniques for tissue engineering. Gelatin, a semi-synthetic biopolymer, has attracted the attention of researchers because it is derived from the most abundant protein in the body, viz., collagen. It is a polymer that can be dissolved in water and processed to acquire different configurations, such as hydrogels, fibers, films, and scaffolds. Searching "bioactive glass gelatin" in the tile on Scopus renders 80 highly relevant articles published in the last ~10 years, which signifies the importance of such composites. First, this review addresses the basic concepts of soft and hard tissue engineering, including the healing mechanisms and limitations ahead. Then, current knowledge on gelatin/BG composites including composition, processing and properties is summarized and discussed both for soft and hard tissue applications. This review explores physical, chemical and mechanical features and ion-release effects of such composites concerning osteogenic and angiogenic responses in vivo and in vitro. Additionally, recent developments of BG/gelatin composites using 3D/4D printing for tissue engineering are presented. Finally, the perspectives and current challenges in developing desirable composites for the regeneration of different tissues are outlined.
Collapse
Affiliation(s)
- Maria E. V. Barreto
- Northeastern Laboratory for Evaluation and Development of Biomaterials (CERTBIO), Department of Materials Engineering, Federal University of Campina Grande, Campina Grande 58429-900, PB, Brazil
| | - Rebeca P. Medeiros
- Northeastern Laboratory for Evaluation and Development of Biomaterials (CERTBIO), Department of Materials Engineering, Federal University of Campina Grande, Campina Grande 58429-900, PB, Brazil
| | - Adam Shearer
- Department of Materials Science and Engineering, The Pennsylvania State University, State College, PA 16802, USA
| | - Marcus V. L. Fook
- Northeastern Laboratory for Evaluation and Development of Biomaterials (CERTBIO), Department of Materials Engineering, Federal University of Campina Grande, Campina Grande 58429-900, PB, Brazil
| | - Maziar Montazerian
- Northeastern Laboratory for Evaluation and Development of Biomaterials (CERTBIO), Department of Materials Engineering, Federal University of Campina Grande, Campina Grande 58429-900, PB, Brazil
| | - John C. Mauro
- Department of Materials Science and Engineering, The Pennsylvania State University, State College, PA 16802, USA
| |
Collapse
|
6
|
Tan X, Gerhard E, Wang Y, Tran RT, Xu H, Yan S, Rizk EB, Armstrong AD, Zhou Y, Du J, Bai X, Yang J. Development of Biodegradable Osteopromotive Citrate-Based Bone Putty. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2203003. [PMID: 35717669 PMCID: PMC9463100 DOI: 10.1002/smll.202203003] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Indexed: 05/30/2023]
Abstract
The burden of bone fractures demands development of effective biomaterial solutions, while additional acute events such as noncompressible bleeding further motivate the search for multi-functional implants to avoid complications including osseous hemorrhage, infection, and nonunion. Bone wax has been widely used in orthopedic bleeding control due to its simplicity of use and conformation to irregular defects; however, its nondegradability results in impaired bone healing, risk of infection, and significant inflammatory responses. Herein, a class of intrinsically fluorescent, osteopromotive citrate-based polymer/hydroxyapatite (HA) composites (BPLP-Ser/HA) as a highly malleable press-fit putty is designed. BPLP-Ser/HA putty displays mechanics replicating early nonmineralized bone (initial moduli from ≈2-500 kPa), hydration induced mechanical strengthening in physiological conditions, tunable degradation rates (over 2 months), low swelling ratios (<10%), clotting and hemostatic sealing potential (resistant to blood pressure for >24 h) and significant adhesion to bone (≈350-550 kPa). Simultaneously, citrate's bioactive properties result in antimicrobial (≈100% and 55% inhibition of S. aureus and E. coli) and osteopromotive effects. Finally, BPLP-Ser/HA putty demonstrates in vivo regeneration in a critical-sized rat calvaria model equivalent to gold standard autograft. BPLP-Ser/HA putty represents a simple, off-the-shelf solution to the combined challenges of acute wound management and subsequent bone regeneration.
Collapse
Affiliation(s)
- Xinyu Tan
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong Province, 510515, China
- Department of Biomedical Engineering, Materials Research Institute, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
- Academy of Orthopedics, Provincial Key Laboratory of Bone and Joint Degenerative Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong Province, 510280, China
| | - Ethan Gerhard
- Department of Biomedical Engineering, Materials Research Institute, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Yuqi Wang
- Department of Biomedical Engineering, Materials Research Institute, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Richard T. Tran
- Department of Biomedical Engineering, Materials Research Institute, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Hui Xu
- Department of Biomedical Engineering, Materials Research Institute, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Su Yan
- Department of Biomedical Engineering, Materials Research Institute, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Elias B. Rizk
- Department of Neurosurgery, College of Medicine, The Pennsylvania State University, Hershey, PA 17033, USA
| | - April D. Armstrong
- Department of Orthopaedics and Rehabilitation, College of Medicine, The Pennsylvania State University, Hershey, PA 17033, USA
| | - Yuxiao Zhou
- Department of Mechanical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Jing Du
- Department of Mechanical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Xiaochun Bai
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong Province, 510515, China
- Academy of Orthopedics, Provincial Key Laboratory of Bone and Joint Degenerative Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong Province, 510280, China
| | - Jian Yang
- Department of Biomedical Engineering, Materials Research Institute, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
7
|
Bohner M, Maazouz Y, Ginebra MP, Habibovic P, Schoenecker JG, Seeherman H, van den Beucken JJ, Witte F. Sustained local ionic homeostatic imbalance caused by calcification modulates inflammation to trigger heterotopic ossification. Acta Biomater 2022; 145:1-24. [PMID: 35398267 DOI: 10.1016/j.actbio.2022.03.057] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 03/30/2022] [Accepted: 03/31/2022] [Indexed: 12/15/2022]
Abstract
Heterotopic ossification (HO) is a condition triggered by an injury leading to the formation of mature lamellar bone in extraskeletal soft tissues. Despite being a frequent complication of orthopedic and trauma surgery, brain and spinal injury, the etiology of HO is poorly understood. The aim of this study is to evaluate the hypothesis that a sustained local ionic homeostatic imbalance (SLIHI) created by mineral formation during tissue calcification modulates inflammation to trigger HO. This evaluation also considers the role SLIHI could play for the design of cell-free, drug-free osteoinductive bone graft substitutes. The evaluation contains five main sections. The first section defines relevant concepts in the context of HO and provides a summary of proposed causes of HO. The second section starts with a detailed analysis of the occurrence and involvement of calcification in HO. It is followed by an explanation of the causes of calcification and its consequences. This allows to speculate on the potential chemical modulators of inflammation and triggers of HO. The end of this second section is devoted to in vitro mineralization tests used to predict the ectopic potential of materials. The third section reviews the biological cascade of events occurring during pathological and material-induced HO, and attempts to propose a quantitative timeline of HO formation. The fourth section looks at potential ways to control HO formation, either acting on SLIHI or on inflammation. Chemical, physical, and drug-based approaches are considered. Finally, the evaluation finishes with a critical assessment of the definition of osteoinduction. STATEMENT OF SIGNIFICANCE: The ability to regenerate bone in a spatially controlled and reproducible manner is an essential prerequisite for the treatment of large bone defects. As such, understanding the mechanism leading to heterotopic ossification (HO), a condition triggered by an injury leading to the formation of mature lamellar bone in extraskeletal soft tissues, would be very useful. Unfortunately, the mechanism(s) behind HO is(are) poorly understood. The present study reviews the literature on HO and based on it, proposes that HO can be caused by a combination of inflammation and calcification. This mechanism helps to better understand current strategies to prevent and treat HO. It also shows new opportunities to improve the treatment of bone defects in orthopedic and dental procedures.
Collapse
|
8
|
Bakhtiarimoghadam B, Shirian S, Mirzaei E, Sharifi S, Karimi I, Gharati G, Takallu S, Nazari H. Comparison capacity of collagen hydrogel, mix-powder and in situ hydroxyapatite/collagen hydrogelscaffolds with and without mesenchymal stem cells and platelet-rich plasma in regeneration of critical sized bone defect in a rabbit animal model. J Biomed Mater Res B Appl Biomater 2021; 109:2199-2212. [PMID: 34008330 DOI: 10.1002/jbm.b.34867] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 04/30/2021] [Accepted: 05/03/2021] [Indexed: 12/18/2022]
Abstract
The aim of this study was to investigate the effect of developed collagen (Co) hydrogel (CH), powder-mixed hydroxyapatite/collagen (HA/Co) hydrogel and in situ synthesized HA/Co (In/HA/Co) hydrogel with or without mesenchymal stem cell (MSC) and platelet-rich plasma (PRP) on the regeneration of full-thickness critical size bone defect in the rabbit animal model. In the first step of this study, the scaffolds were synthesized and characterized using FTIR spectroscopy, X-ray diffraction, and scanning electron microcopy. In the second step or animal study, the radial bone defects were filled with the synthesized scaffolds with and without MSC and PRP. One hundred sixty one year-old New Zealand white male rabbits were randomly divided in 16 groups of 10 rabbits including control with bone defect without treatment, In/HA/Co, HA/Co, CH, PRP, MSC, CH + PRP, HA/Co, In/HA/Co + PRP, HA/Co + PRP, CH + MSC, In/HA/Co + MSC, HA/Co + MSC, CH + PRP + MSC, In/HA/Co + PRP + MSC, and HA/Co + PRP + MSC. The created defects were filled using the constructed scaffolds alone or seeded with MSCs, with and without PRP injection. The treatments were assessed using histopathological, immunohistochemical and rediographical analysis on days 14, 28, 42, 56 post-treatment. The plate-like HA particles were distributed homogeneously in the in situ HA/Co scaffold compared to the HA/Co scaffold and had a similar structure to bone with carbonated plate-like HA particles and nanofibrilated Co matrix. In situ HA/Co nanocomposite seeded with MSC and enriched by PRP can accelerate bone regeneration resulted from osteoblastic production of osteocalcin protein. Therefore, in situ HA/Co hydrogel seeded with MSC and PRP can be a new approach for bone tissue engineering.
Collapse
Affiliation(s)
| | - Sadegh Shirian
- Department of Pathology, School of Veterinary Medicine, Shahrekord University, Shahrekord, Iran
| | - Esmaeil Mirzaei
- Department of Medical Nanotechnology, Shiraz University of Medical Sciences, Shiraz, Iran
- Nanomedicine and Nanobiology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Siavash Sharifi
- Department of Surgery, School of Veterinary Medicine, Shahrekord University, Shahrekord, Iran
| | - Iraj Karimi
- Department of Pathology, School of Veterinary Medicine, Shahrekord University, Shahrekord, Iran
| | - Gelavizh Gharati
- Department of Pathology, School of Veterinary Medicine, Shahrekord University, Shahrekord, Iran
- Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran
| | - Sara Takallu
- Department of Medical Nanotechnology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hassan Nazari
- Research Institute of Animal Embryo Technology, Shahrekord University, Shahrekord, Iran
| |
Collapse
|
9
|
Huang C, Yu M, Li H, Wan X, Ding Z, Zeng W, Zhou Z. Research Progress of Bioactive Glass and Its Application in Orthopedics. ADVANCED MATERIALS INTERFACES 2021. [DOI: 10.1002/admi.202100606] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Chao Huang
- Department of Orthopaedics West China Hospital of Sichuan University No. 37 Guoxue Alley, Wuhou District Chengdu 610041 P. R. China
| | - Min Yu
- Department of Anesthesiology North‐Kuanren General Hospital No. 69 Xingguang Avenue, Yubei District Chongqing 401121 P. R. China
| | - Hao Li
- Department of Orthopaedics West China Hospital of Sichuan University No. 37 Guoxue Alley, Wuhou District Chengdu 610041 P. R. China
| | - Xufeng Wan
- Department of Orthopaedics West China Hospital of Sichuan University No. 37 Guoxue Alley, Wuhou District Chengdu 610041 P. R. China
| | - Zichuan Ding
- Department of Orthopaedics West China Hospital of Sichuan University No. 37 Guoxue Alley, Wuhou District Chengdu 610041 P. R. China
| | - Weinan Zeng
- Department of Orthopaedics West China Hospital of Sichuan University No. 37 Guoxue Alley, Wuhou District Chengdu 610041 P. R. China
| | - Zongke Zhou
- Department of Orthopaedics West China Hospital of Sichuan University No. 37 Guoxue Alley, Wuhou District Chengdu 610041 P. R. China
| |
Collapse
|
10
|
Capuana E, Lopresti F, Carfì Pavia F, Brucato V, La Carrubba V. Solution-Based Processing for Scaffold Fabrication in Tissue Engineering Applications: A Brief Review. Polymers (Basel) 2021; 13:2041. [PMID: 34206515 PMCID: PMC8271609 DOI: 10.3390/polym13132041] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/17/2021] [Accepted: 06/18/2021] [Indexed: 12/13/2022] Open
Abstract
The fabrication of 3D scaffolds is under wide investigation in tissue engineering (TE) because of its incessant development of new advanced technologies and the improvement of traditional processes. Currently, scientific and clinical research focuses on scaffold characterization to restore the function of missing or damaged tissues. A key for suitable scaffold production is the guarantee of an interconnected porous structure that allows the cells to grow as in native tissue. The fabrication techniques should meet the appropriate requirements, including feasible reproducibility and time- and cost-effective assets. This is necessary for easy processability, which is associated with the large range of biomaterials supporting the use of fabrication technologies. This paper presents a review of scaffold fabrication methods starting from polymer solutions that provide highly porous structures under controlled process parameters. In this review, general information of solution-based technologies, including freeze-drying, thermally or diffusion induced phase separation (TIPS or DIPS), and electrospinning, are presented, along with an overview of their technological strategies and applications. Furthermore, the differences in the fabricated constructs in terms of pore size and distribution, porosity, morphology, and mechanical and biological properties, are clarified and critically reviewed. Then, the combination of these techniques for obtaining scaffolds is described, offering the advantages of mimicking the unique architecture of tissues and organs that are intrinsically difficult to design.
Collapse
Affiliation(s)
- Elisa Capuana
- Department of Engineering, University of Palermo, RU INSTM, Viale delle Scienze, 90128 Palermo, Italy; (E.C.); (F.L.); (F.C.P.); (V.B.)
| | - Francesco Lopresti
- Department of Engineering, University of Palermo, RU INSTM, Viale delle Scienze, 90128 Palermo, Italy; (E.C.); (F.L.); (F.C.P.); (V.B.)
| | - Francesco Carfì Pavia
- Department of Engineering, University of Palermo, RU INSTM, Viale delle Scienze, 90128 Palermo, Italy; (E.C.); (F.L.); (F.C.P.); (V.B.)
| | - Valerio Brucato
- Department of Engineering, University of Palermo, RU INSTM, Viale delle Scienze, 90128 Palermo, Italy; (E.C.); (F.L.); (F.C.P.); (V.B.)
| | - Vincenzo La Carrubba
- Department of Engineering, University of Palermo, RU INSTM, Viale delle Scienze, 90128 Palermo, Italy; (E.C.); (F.L.); (F.C.P.); (V.B.)
- ATeN Center, University of Palermo, Viale delle Scienze, 90128 Palermo, Italy
| |
Collapse
|
11
|
Arthur A, Gronthos S. Clinical Application of Bone Marrow Mesenchymal Stem/Stromal Cells to Repair Skeletal Tissue. Int J Mol Sci 2020; 21:E9759. [PMID: 33371306 PMCID: PMC7767389 DOI: 10.3390/ijms21249759] [Citation(s) in RCA: 139] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/14/2020] [Accepted: 12/16/2020] [Indexed: 12/13/2022] Open
Abstract
There has been an escalation in reports over the last decade examining the efficacy of bone marrow derived mesenchymal stem/stromal cells (BMSC) in bone tissue engineering and regenerative medicine-based applications. The multipotent differentiation potential, myelosupportive capacity, anti-inflammatory and immune-modulatory properties of BMSC underpins their versatile nature as therapeutic agents. This review addresses the current limitations and challenges of exogenous autologous and allogeneic BMSC based regenerative skeletal therapies in combination with bioactive molecules, cellular derivatives, genetic manipulation, biocompatible hydrogels, solid and composite scaffolds. The review highlights the current approaches and recent developments in utilizing endogenous BMSC activation or exogenous BMSC for the repair of long bone and vertebrae fractures due to osteoporosis or trauma. Current advances employing BMSC based therapies for bone regeneration of craniofacial defects is also discussed. Moreover, this review discusses the latest developments utilizing BMSC therapies in the preclinical and clinical settings, including the treatment of bone related diseases such as Osteogenesis Imperfecta.
Collapse
Affiliation(s)
- Agnieszka Arthur
- Mesenchymal Stem Cell Laboratory, Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA 5001, Australia;
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA 5001, Australia
| | - Stan Gronthos
- Mesenchymal Stem Cell Laboratory, Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA 5001, Australia;
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA 5001, Australia
| |
Collapse
|