1
|
Wu E, Huang L, Shen Y, Wei Z, Li Y, Wang J, Chen Z. Application of gelatin-based composites in bone tissue engineering. Heliyon 2024; 10:e36258. [PMID: 39224337 PMCID: PMC11367464 DOI: 10.1016/j.heliyon.2024.e36258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/25/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024] Open
Abstract
Natural bone tissue has the certain function of self-regeneration and repair, but it is difficult to repair large bone damage. Recently, although autologous bone grafting is the "gold standard" for improving bone repair, it has high cost, few donor sources. Besides, allogeneic bone grafting causes greater immune reactions, which hardly meet clinical needs. The bone tissue engineering (BTE) has been developed to promote bone repair. Gelatin, due to its biocompatibility, receives a great deal of attention in the BTE research field. However, the disadvantages of natural gelatin are poor mechanical properties and single structural property. With the development of BTE, gelatin is often used in combination with a range of natural, synthetic polymers, and inorganic materials to achieve synergistic effects for the complex physiological process of bone repair. The review delves into the fundamental structure and unique properties of gelatin, as well as the excellent properties necessary for bone scaffold materials. Then this review explores the application of modified gelatin three-dimensional (3D) scaffolds with various structures in bone repair, including 3D fiber scaffolds, hydrogels, and nanoparticles. In addition, the review focuses on the excellent efficacy of composite bone tissue scaffolds consisting of modified gelatin, various natural or synthetic polymeric materials, as well as bioactive ceramics and inorganic metallic/non-metallic materials in the repair of bone defects. The combination of these gelatin-based composite scaffolds provides new ideas for the design of scaffold materials for bone repair with good biosafety.
Collapse
Affiliation(s)
- Enguang Wu
- Jiangxi Province Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science and Technology Normal University, Nanchang, 330013, China
| | - Lianghui Huang
- Jiangxi Province Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science and Technology Normal University, Nanchang, 330013, China
| | - Yao Shen
- Jiangxi Province Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science and Technology Normal University, Nanchang, 330013, China
| | - Zongyi Wei
- Jiangxi Province Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science and Technology Normal University, Nanchang, 330013, China
| | - Yangbiao Li
- Jiangxi Province Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science and Technology Normal University, Nanchang, 330013, China
| | - Jin Wang
- Jiangxi Province Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science and Technology Normal University, Nanchang, 330013, China
| | - Zhenhua Chen
- Jiangxi Province Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science and Technology Normal University, Nanchang, 330013, China
| |
Collapse
|
2
|
Huniadi M, Nosálová N, Almášiová V, Horňáková Ľ, Valenčáková A, Hudáková N, Cizkova D. Three-Dimensional Cultivation a Valuable Tool for Modelling Canine Mammary Gland Tumour Behaviour In Vitro. Cells 2024; 13:695. [PMID: 38667310 PMCID: PMC11049302 DOI: 10.3390/cells13080695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/11/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
Cell cultivation has been one of the most popular methods in research for decades. Currently, scientists routinely use two-dimensional (2D) and three-dimensional (3D) cell cultures of commercially available cell lines and primary cultures to study cellular behaviour, responses to stimuli, and interactions with their environment in a controlled laboratory setting. In recent years, 3D cultivation has gained more attention in modern biomedical research, mainly due to its numerous advantages compared to 2D cultures. One of the main goals where 3D culture models are used is the investigation of tumour diseases, in both animals and humans. The ability to simulate the tumour microenvironment and design 3D masses allows us to monitor all the processes that take place in tumour tissue created not only from cell lines but directly from the patient's tumour cells. One of the tumour types for which 3D culture methods are often used in research is the canine mammary gland tumour (CMT). The clinically similar profile of the CMT and breast tumours in humans makes the CMT a suitable model for studying the issue not only in animals but also in women.
Collapse
Affiliation(s)
- Mykhailo Huniadi
- Small Animal Clinic, University of Veterinary Medicine and Pharmacy, Komenskeho 73, 041 81 Kosice, Slovakia; (M.H.); (N.N.); (Ľ.H.); (A.V.); (N.H.)
| | - Natália Nosálová
- Small Animal Clinic, University of Veterinary Medicine and Pharmacy, Komenskeho 73, 041 81 Kosice, Slovakia; (M.H.); (N.N.); (Ľ.H.); (A.V.); (N.H.)
| | - Viera Almášiová
- Department of Anatomy, Histology and Physiology, University of Veterinary Medicine and Pharmacy, Komenskeho 73, 041 81 Kosice, Slovakia;
| | - Ľubica Horňáková
- Small Animal Clinic, University of Veterinary Medicine and Pharmacy, Komenskeho 73, 041 81 Kosice, Slovakia; (M.H.); (N.N.); (Ľ.H.); (A.V.); (N.H.)
| | - Alexandra Valenčáková
- Small Animal Clinic, University of Veterinary Medicine and Pharmacy, Komenskeho 73, 041 81 Kosice, Slovakia; (M.H.); (N.N.); (Ľ.H.); (A.V.); (N.H.)
| | - Nikola Hudáková
- Small Animal Clinic, University of Veterinary Medicine and Pharmacy, Komenskeho 73, 041 81 Kosice, Slovakia; (M.H.); (N.N.); (Ľ.H.); (A.V.); (N.H.)
| | - Dasa Cizkova
- Small Animal Clinic, University of Veterinary Medicine and Pharmacy, Komenskeho 73, 041 81 Kosice, Slovakia; (M.H.); (N.N.); (Ľ.H.); (A.V.); (N.H.)
| |
Collapse
|
3
|
Chang CT, Huang CH. Effects of various cross-linked collagen scaffolds on wound healing in rats model by deep-learning CNN. Comput Methods Biomech Biomed Engin 2024:1-17. [PMID: 38357717 DOI: 10.1080/10255842.2024.2315141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 01/27/2024] [Indexed: 02/16/2024]
Abstract
Scar tissue is connective tissue formed on the wound during the wound-healing process. The most significant distinction between scar tissue and normal tissue is the appearance of covalent cross-linking and the amount of collagen fibers in the tissue. This study investigates the efficacy of four types of collagen scaffolds in promoting wound healing and regeneration in a Sprague-Dawley murine model-the histomorphology analysis of collagen scaffolds and developing a deep learning model for accurate tissue classification. Four female rats (n = 24) groups received collagen scaffolds prepared through physical and chemical crosslinking. Wound healing progress was evaluated by monitoring granulation tissue formation, collagen matrix organization, and collagen fiber deposition, with histological scoring for quantification-the EDC and HA groups demonstrated enhanced tissue regeneration. The EDC and HA groups observed significant differences in wound regeneration outcomes. Deep-learning CNN models with data augmentation techniques were used for image analysis to enhance objectivity. The CNN architecture featured pre-trained VGG16 layers and global average pooling (GAP) layers. Feature visualization using Grad-CAM heatmaps provided insights into the neural network's focus on specific wound features. The model's AUC score of 0.982 attests to its precision. In summary, collagen scaffolds can promote wound healing in mice, and the deep learning image analysis method we proposed may be a new method for wound healing assessment.
Collapse
Affiliation(s)
- Chih-Tsung Chang
- Department of Electronic Engineering, Lunghwa University of Science and Technology, Guishan, Taoyuan County, Taiwan
| | - Chun-Hui Huang
- Department of Biomedical Engineering, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
4
|
Bone Sialoprotein Immobilized in Collagen Type I Enhances Angiogenesis In Vitro and In Ovo. Polymers (Basel) 2023; 15:polym15041007. [PMID: 36850289 PMCID: PMC9968013 DOI: 10.3390/polym15041007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/24/2023] [Accepted: 02/14/2023] [Indexed: 02/22/2023] Open
Abstract
Bone fracture healing is a multistep process, including early immunological reactions, osteogenesis, and as a key factor, angiogenesis. Molecules inducing osteogenesis as well as angiogenesis are rare, but hold promise to be employed in bone tissue engineering. It has been demonstrated that the bone sialoprotein (BSP) can induce bone formation when immobilized in collagen type I, but its effect on angiogenesis still has to be characterized in detail. Therefore, the aim of this study was to analyse the effects of BSP immobilized in a collagen type I gel on angiogenesis. First, in vitro analyses with endothelial cells (HUVECs) were performed detecting enhancing effects of BSP on proliferation and gene expression of endothelial markers. A spheroid model was employed confirming these results. Finally, the inducing impact of BSP-collagen on vascular density was proved in a yolk sac membrane assay. Our results demonstrate that BSP is capable of inducing angiogenesis and confirm that collagen type I is the optimal carrier for this protein. Taking into account former results, and literature showing that BSP also induces osteogenesis, one can hypothesize that BSP couples angiogenesis and osteogenesis, making it a promising molecule to be used in bone tissue regeneration.
Collapse
|