1
|
Zhuang M, Zhang X, Cai J. Microbiota-gut-brain axis: interplay between microbiota, barrier function and lymphatic system. Gut Microbes 2024; 16:2387800. [PMID: 39182226 PMCID: PMC11346530 DOI: 10.1080/19490976.2024.2387800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/16/2024] [Accepted: 07/30/2024] [Indexed: 08/27/2024] Open
Abstract
The human gastrointestinal tract, boasting the most diverse microbial community, harbors approximately 100 trillion microorganisms comprising viruses, bacteria, fungi, and archaea. The profound genetic and metabolic capabilities of the gut microbiome underlie its involvement in nearly every facet of human biology, from health maintenance and development to aging and disease. Recent recognition of microbiota - gut - brain axis, referring to the bidirectional communication network between gut microbes and their host, has led to a surge in interdisciplinary research. This review begins with an overview of the current understandings regarding the influence of gut microbes on intestinal and blood-brain barrier integrity. Subsequently, we discuss the mechanisms of the microbiota - gut - brain axis, examining the role of gut microbiota-related neural transmission, metabolites, gut hormones and immunity. We propose the concept of microbiota-mediated multi-barrier modulation in the potential treatment in gastrointestinal and neurological disorders. Furthermore, the role of lymphatic network in the development and maintenance of barrier function is discussed, providing insights into lesser-known conduits of communication between the microbial ecosystem within the gut and the brain. In the final section, we conclude by describing the ongoing frontiers in understanding of the microbiota - gut - brain axis's impact on human health and disease.
Collapse
Affiliation(s)
- Miaomiao Zhuang
- Hypertension Center, Fuwai Hospital, State Key Laboratory of Cardiovascular Disease of China, National Center for Cardiovascular Diseases of China, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xun Zhang
- Institute of Microbiology, Chinese Academy of Sciences, IMCAS, Beijing, China
| | - Jun Cai
- Hypertension Center, Fuwai Hospital, State Key Laboratory of Cardiovascular Disease of China, National Center for Cardiovascular Diseases of China, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, China
| |
Collapse
|
2
|
Gao L, Liu G, Wu X, Liu C, Wang Y, Ma M, Ma Y, Hao Z. Osteocytes autophagy mediated by mTORC2 activation controls osteoblasts differentiation and osteoclasts activities under mechanical loading. Arch Biochem Biophys 2023; 742:109634. [PMID: 37164247 DOI: 10.1016/j.abb.2023.109634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 04/01/2023] [Accepted: 05/07/2023] [Indexed: 05/12/2023]
Abstract
Autophagy is an important mechanosensitive response for cellular homeostasis and survival in osteocytes. However, the mechanism and its effect on bone metabolism have not yet clarified. The objective of this study was to evaluate how compressive cyclic force (CCF) induced autophagic response in osteocytes and to determine the effect of mechanically induced-autophagy on bone cells including osteocytes, osteoblasts, and osteoclasts. Autophagic puncta observed in MLO-Y4 cells increased after exposure to CCF. The upregulated levels of the LC3-II isoform and the degradation of p62 further confirmed the increased autophagic flux. Additionally, ATP synthesis and release, osteocalcin (OCN) expression, and cell survival increased in osteocytes as well. The Murine osteoblasts MC3T3-E1 cells and RAW 264.7 macrophage cells were cultured in conditioned medium collected from MLO-Y4 cells subjected to CCF. The concentration of FGF23 increased and the concentrations of SOST and M-CSF and RANKL/OPG ratio decreased significantly in the conditioned medium. Moreover, the promotion of osteogenic differentiation in MC3T3-E1 cells and inhibition of osteoclastogenesis and function in RAW 264.7 cells were significantly attenuated when osteocytes autophagy was inhibited by siAtg7. Our findings suggested that CCF induced protective autophagy in osteocytes and subsequently enhanced osteocytes survival and osteoblasts differentiation and downregulated osteoclasts activities. Further study revealed that CCF induced autophagic response in osteocytes through mechanistic target of rapamycin complex 2 (mTORC2) activation. In conclusion, CCF-induced osteocytes autophagy upon mTORC2 activation promoted osteocytes survival and osteogenic response and decreased osteoclastic function. Thus, osteocytes autophagy will provide a promising target for better understanding of bone physiology and treatment of bone diseases.
Collapse
Affiliation(s)
- Li Gao
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055, China
| | - Gen Liu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055, China
| | - Xiangnan Wu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055, China
| | - Chuanzi Liu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055, China
| | - Yiqiao Wang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055, China
| | - Meirui Ma
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055, China
| | - Yuanyuan Ma
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055, China.
| | - Zhichao Hao
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055, China.
| |
Collapse
|
3
|
Kim HJ, Lee DK, Choi JY. Functional Role of Phospholipase D in Bone Metabolism. J Bone Metab 2023; 30:117-125. [PMID: 37449345 PMCID: PMC10346002 DOI: 10.11005/jbm.2023.30.2.117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/14/2023] [Accepted: 05/27/2023] [Indexed: 07/18/2023] Open
Abstract
Phospholipase D (PLD) proteins are major enzymes that regulate various cellular functions, such as cell growth, cell migration, membrane trafficking, and cytoskeletal dynamics. As they are responsible for such important biological functions, PLD proteins have been considered promising therapeutic targets for various diseases, including cancer and vascular and neurological diseases. Intriguingly, emerging evidence indicates that PLD1 and PLD2, 2 major mammalian PLD isoenzymes, are the key regulators of bone remodeling; this suggests that these isozymes could be used as potential therapeutic targets for bone diseases, such as osteoporosis and rheumatoid arthritis. PLD1 or PLD2 deficiency in mice can lead to decreased bone mass and dysregulated bone homeostasis. Although both mutant mice exhibit similar skeletal phenotypes, PLD1 and PLD2 play distinct and nonredundant roles in bone cell function. This review summarizes the physiological roles of PLD1 and PLD2 in bone metabolism, focusing on recent findings of the biological functions and action mechanisms of PLD1 and PLD2 in bone cells.
Collapse
|
4
|
Mitra S, Munni YA, Dash R, Sadhu T, Barua L, Islam MA, Chowdhury D, Bhattacharjee D, Mazumder K, Moon IS. Gut Microbiota in Autophagy Regulation: New Therapeutic Perspective in Neurodegeneration. Life (Basel) 2023; 13:life13040957. [PMID: 37109487 PMCID: PMC10144697 DOI: 10.3390/life13040957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/18/2023] [Accepted: 03/31/2023] [Indexed: 04/09/2023] Open
Abstract
Gut microbiota and the brain are related via a complex bidirectional interconnective network. Thus, intestinal homeostasis is a crucial factor for the brain, as it can control the environment of the central nervous system and play a significant role in disease progression. The link between neuropsychological behavior or neurodegeneration and gut dysbiosis is well established, but many involved pathways remain unknown. Accumulating studies showed that metabolites derived from gut microbiota are involved in the autophagy activation of various organs, including the brain, one of the major pathways of the protein clearance system that is essential for protein aggregate clearance. On the other hand, some metabolites are evidenced to disrupt the autophagy process, which can be a modulator of neurodegeneration. However, the detailed mechanism of autophagy regulation by gut microbiota remains elusive, and little research only focused on that. Here we tried to evaluate the crosstalk between gut microbiota metabolites and impaired autophagy of the central nervous system in neurodegeneration and the key to future research regarding gut dysbiosis and compromised autophagy in neurodegenerative diseases.
Collapse
Affiliation(s)
- Sarmistha Mitra
- Department of Anatomy, College of Medicine, Dongguk University, Gyeongju 38066, Republic of Korea
| | - Yeasmin Akter Munni
- Department of Anatomy, College of Medicine, Dongguk University, Gyeongju 38066, Republic of Korea
| | - Raju Dash
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology, Daegu 42988, Republic of Korea
| | - Toma Sadhu
- Department of Bioinformatics and Biotechnology, Asian University for Women, Chittagong 4000, Bangladesh
| | - Largess Barua
- Department of Anatomy and Neurobiology, School of Dentistry, Kyungpook National University, Daegu 41940, Republic of Korea
| | - Md. Ariful Islam
- Department of Pharmaceutical Sciences, North South University, Dhaka 1229, Bangladesh
| | - Dipannita Chowdhury
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh
| | - Debpriya Bhattacharjee
- Faculty of Environment and Natural Sciences, Brandenburg Technical University Cottbus Senftenberg, D-03013 Cottbus, Germany
| | - Kishor Mazumder
- Department of Pharmacy, Jashore University of Science and Technology, Jashore 7408, Bangladesh
- School of Optometry and Vision Science, UNSW Medicine, University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| | - Il Soo Moon
- Department of Anatomy, College of Medicine, Dongguk University, Gyeongju 38066, Republic of Korea
| |
Collapse
|
5
|
Kim SY, Park GI, Park SY, Lee EH, Choi H, Koh JT, Han S, Choi MH, Park EK, Kim IS, Kim JE. Gulp1 deficiency augments bone mass in male mice by affecting osteoclasts due to elevated 17β-estradiol levels. J Cell Physiol 2023; 238:1006-1019. [PMID: 36870066 DOI: 10.1002/jcp.30987] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 01/19/2023] [Accepted: 02/14/2023] [Indexed: 03/05/2023]
Abstract
The engulfment adaptor phosphotyrosine-binding domain containing 1 (GULP1) is an adaptor protein involved in the engulfment of apoptotic cells via phagocytosis. Gulp1 was first found to promote the phagocytosis of apoptotic cells by macrophages, and its role in various tissues, including neurons and ovaries, has been well studied. However, the expression and function of GULP1 in bone tissue are poorly understood. Consequently, to determine whether GULP1 plays a role in the regulation of bone remodeling in vitro and in vivo, we generated Gulp1 knockout (KO) mice. Gulp1 was expressed in bone tissue, mainly in osteoblasts, while its expression is very low in osteoclasts. Microcomputed tomography and histomorphometry analysis in 8-week-old male Gulp1 KO mice revealed a high bone mass in comparison with male wild-type (WT) mice. This was a result of decreased osteoclast differentiation and function in vivo and in vitro as confirmed by a reduced actin ring and microtubule formation in osteoclasts. Gas chromatography-mass spectrometry analysis further showed that both 17β-estradiol (E2) and 2-hydroxyestradiol levels, and the E2/testosterone metabolic ratio, reflecting aromatase activity, were also higher in the bone marrow of male Gulp1 KO mice than in male WT mice. Consistent with mass spectrometry analysis, aromatase enzymatic activity was significantly higher in the bone marrow of male Gulp1 KO mice. Altogether, our results suggest that GULP1 deficiency decreases the differentiation and function of osteoclasts themselves and increases sex steroid hormone-mediated inhibition of osteoclast differentiation and function, rather than affecting osteoblasts, resulting in a high bone mass in male mice. To the best of our knowledge, this is the first study to explore the direct and indirect roles of GULP1 in bone remodeling, providing new insights into its regulation.
Collapse
Affiliation(s)
- Soon-Young Kim
- Department of Molecular Medicine, Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu, Republic of Korea.,BK21 Four KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Science, Kyungpook National University, Daegu, Republic of Korea
| | - Gun-Il Park
- Department of Molecular Medicine, Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Seung-Yoon Park
- Department of Biochemistry, School of Medicine, Dongguk University, Gyeongju, Republic of Korea
| | - Eun-Hye Lee
- Department of Molecular Medicine, Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Hyuck Choi
- Department of Pharmacology and Dental Therapeutics, School of Dentistry, Chonnam National University, Gwangju, Republic of Korea
| | - Jeong-Tae Koh
- Department of Pharmacology and Dental Therapeutics, School of Dentistry, Chonnam National University, Gwangju, Republic of Korea
| | - Soyun Han
- Molecular Recognition Research Center, Korea Institute of Science and Technology, Seoul, Republic of Korea
| | - Man Ho Choi
- Molecular Recognition Research Center, Korea Institute of Science and Technology, Seoul, Republic of Korea
| | - Eui Kyun Park
- Department of Oral Pathology and Regenerative Medicine, School of Dentistry, Kyungpook National University, Daegu, Republic of Korea
| | - In-San Kim
- Center for Theragnosis, Biomedical Research Institute, Korea Institute Science and Technology, Seoul, Republic of Korea.,KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, Republic of Korea
| | - Jung-Eun Kim
- Department of Molecular Medicine, Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu, Republic of Korea.,BK21 Four KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Science, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
6
|
Bone regeneration in osteoporosis: opportunities and challenges. Drug Deliv Transl Res 2023; 13:419-432. [PMID: 35994158 DOI: 10.1007/s13346-022-01222-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/03/2022] [Indexed: 12/30/2022]
Abstract
Osteoporosis is a bone disorder characterised by low bone mineral density, reduced bone strength, increased bone fragility, and impaired mineralisation of bones causing an increased risk of bone fracture. Several therapies are available for treating osteoporosis which include bisphosphonates, anti-resorptive agents, oestrogen modulators, etc. These therapies primarily focus on decreasing bone resorption and do not assist in bone regeneration or offering permanent curative solutions. Additionally, these therapies are associated with severe adverse events like thromboembolism, increased risk of stroke, and hypocalcaemia. To overcome these limitations, bone regenerative pathways and approaches are now considered to manage osteoporosis. The bone regenerative pathways involved in bone regeneration include wingless-related integration site/β-catenin signalling pathway, notch signalling pathway, calcium signalling, etc. The various regenerative approaches which possess potential to heal and replace the bone defect site include scaffolds, cements, cell therapy, and other alternative medicines. The review focuses on describing the challenges and opportunities in bone regeneration for osteoporosis.
Collapse
|
7
|
Kim HJ, Lee DK, Jin X, Che X, Ryu SH, Choi JY. Phospholipase D2 controls bone homeostasis by modulating M-CSF-dependent osteoclastic cell migration and microtubule stability. EXPERIMENTAL & MOLECULAR MEDICINE 2022; 54:1146-1155. [PMID: 35945449 PMCID: PMC9440116 DOI: 10.1038/s12276-022-00820-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 05/17/2022] [Accepted: 06/13/2022] [Indexed: 11/09/2022]
Abstract
Phospholipase D2 (PLD2), a signaling protein, plays a central role in cellular communication and various biological processes. Here, we show that PLD2 contributes to bone homeostasis by regulating bone resorption through osteoclastic cell migration and microtubule-dependent cytoskeletal organization. Pld2-deficient mice exhibited a low bone mass attributed to increased osteoclast function without altered osteoblast activity. While Pld2 deficiency did not affect osteoclast differentiation, its absence promoted the migration of osteoclast lineage cells through a mechanism involving M-CSF-induced activation of the PI3K–Akt–GSK3β signaling pathway. The absence of Pld2 also boosted osteoclast spreading and actin ring formation, resulting in elevated bone resorption. Furthermore, Pld2 deletion increased microtubule acetylation and stability, which were later restored by treatment with a specific inhibitor of Akt, an essential molecule for microtubule stabilization and osteoclast bone resorption activity. Interestingly, PLD2 interacted with the M-CSF receptor (c-Fms) and PI3K, and the association between PLD2 and c-Fms was reduced in response to M-CSF. Altogether, our findings indicate that PLD2 regulates bone homeostasis by modulating osteoclastic cell migration and microtubule stability via the M-CSF-dependent PI3K–Akt–GSK3β axis. A signaling protein that regulates bone resorption may prove a useful target in treating skeletal conditions such as osteoporosis and rheumatoid arthritis. Bone is synthesized by cells called osteoblasts, while osteoclasts trigger bone resorption, keeping the skeleton healthy. Imbalances in this recycling process are common in bone disorders. Je-Young Choi and Hyun-Ju Kim at Kyungpook National University in Daegu, South Korea, and co-workers demonstrated that phospholipase D2 (PLD2), a membrane protein, directly regulates bone resorption in mice. Mice without the Pld2 gene had increased osteoclast activity, resulting in low bone mass. The absence of PLD2 promotes the migration of osteoclasts via a particular signaling pathway. This increased the organization of microtubules, polymers that help form the cytoskeleton. The results suggest that regulating PLD2 activity could form the basis of a future treatment method.
Collapse
Affiliation(s)
- Hyun-Ju Kim
- Department of Biochemistry and Cell Biology, Cell and Matrix Research Institute, BK21 Plus KNU Biomedical Convergence Program, Korea Mouse Phenotyping Center, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea.
| | - Dong-Kyo Lee
- Department of Biochemistry and Cell Biology, Cell and Matrix Research Institute, BK21 Plus KNU Biomedical Convergence Program, Korea Mouse Phenotyping Center, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea
| | - Xian Jin
- Department of Biochemistry and Cell Biology, Cell and Matrix Research Institute, BK21 Plus KNU Biomedical Convergence Program, Korea Mouse Phenotyping Center, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea
| | - Xiangguo Che
- Department of Biochemistry and Cell Biology, Cell and Matrix Research Institute, BK21 Plus KNU Biomedical Convergence Program, Korea Mouse Phenotyping Center, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea
| | - Sung Ho Ryu
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| | - Je-Yong Choi
- Department of Biochemistry and Cell Biology, Cell and Matrix Research Institute, BK21 Plus KNU Biomedical Convergence Program, Korea Mouse Phenotyping Center, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea.
| |
Collapse
|
8
|
Philip R, Fiorino C, Harrison RE. Terminally differentiated osteoclasts organize centrosomes into large clusters for microtubule nucleation and bone resorption. Mol Biol Cell 2022; 33:ar68. [PMID: 35511803 DOI: 10.1091/mbc.e22-03-0098] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Osteoclasts are highly specialized, multinucleated cells responsible for the selective resorption of the dense, calcified bone matrix. Microtubules (MTs) contribute to the polarization and trafficking events involved in bone resorption by osteoclasts, however the origin of these elaborate arrays is less clear. Osteoclasts arise through cell fusion of precursor cells. Previous studies have suggested that centrosome MT nucleation is lost during this process, with the nuclear membrane and its surrounding Golgi serving as the major microtubule organizing centres (MTOCs) in these cells. Here we reveal that precursor cell centrosomes are maintained and functional in the multinucleated osteoclast and interestingly form large MTOC clusters, with the clusters organizing significantly more MTs, compared to individual centrosomes. MTOC cluster formation requires dynamic microtubules and minus-end directed MT motor activity. Inhibition of these centrosome clustering elements had a marked impact on both F-actin ring formation and bone resorption. Together these findings show that multinucleated osteoclasts employ unique centrosomal clusters to organize the extensive microtubules during bone attachment and resorption. [Media: see text].
Collapse
Affiliation(s)
- Reuben Philip
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada, M5S 1A8.,Lunenfeld-Tanenbaum Research Institute, Toronto, Ontario, Canada, M5G 1 × 5
| | - Cara Fiorino
- Department of Cell & Systems Biology and the Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario M1C 1A4
| | - Rene E Harrison
- Department of Cell & Systems Biology and the Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario M1C 1A4
| |
Collapse
|
9
|
Da W, Tao L, Zhu Y. The Role of Osteoclast Energy Metabolism in the Occurrence and Development of Osteoporosis. Front Endocrinol (Lausanne) 2021; 12:675385. [PMID: 34054735 PMCID: PMC8150001 DOI: 10.3389/fendo.2021.675385] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 04/29/2021] [Indexed: 12/14/2022] Open
Abstract
In recent decades, the mechanism underlying bone metabolic disorders based on energy metabolism has been heavily researched. Bone resorption by osteoclasts plays an important role in the occurrence and development of osteoporosis. However, the mechanism underlying the osteoclast energy metabolism disorder that interferes with bone homeostasis has not been determined. Bone resorption by osteoclasts is a process that consumes large amounts of adenosine triphosphate (ATP) produced by glycolysis and oxidative phosphorylation. In addition to glucose, fatty acids and amino acids can also be used as substrates to produce energy through oxidative phosphorylation. In this review, we summarize and analyze the energy-based phenotypic changes, epigenetic regulation, and coupling with systemic energy metabolism of osteoclasts during the development and progression of osteoporosis. At the same time, we propose a hypothesis, the compensatory recovery mechanism (involving the balance between osteoclast survival and functional activation), which may provide a new approach for the treatment of osteoporosis.
Collapse
Affiliation(s)
| | - Lin Tao
- Department of Orthopedics, The First Hospital of China Medical University, Shenyang, China
| | - Yue Zhu
- Department of Orthopedics, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
10
|
Lumican Inhibits Osteoclastogenesis and Bone Resorption by Suppressing Akt Activity. Int J Mol Sci 2021; 22:ijms22094717. [PMID: 33946862 PMCID: PMC8124849 DOI: 10.3390/ijms22094717] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/26/2021] [Accepted: 04/28/2021] [Indexed: 12/24/2022] Open
Abstract
Lumican, a ubiquitously expressed small leucine-rich proteoglycan, has been utilized in diverse biological functions. Recent experiments demonstrated that lumican stimulates preosteoblast viability and differentiation, leading to bone formation. To further understand the role of lumican in bone metabolism, we investigated its effects on osteoclast biology. Lumican inhibited both osteoclast differentiation and in vitro bone resorption in a dose-dependent manner. Consistent with this, lumican markedly decreased the expression of osteoclastogenesis markers. Moreover, the migration and fusion of preosteoclasts and the resorptive activity per osteoclast were significantly reduced in the presence of lumican, indicating that this protein affects most stages of osteoclastogenesis. Among RANKL-dependent pathways, lumican inhibited Akt but not MAP kinases such as JNK, p38, and ERK. Importantly, co-treatment with an Akt activator almost completely reversed the effect of lumican on osteoclast differentiation. Taken together, our findings revealed that lumican inhibits osteoclastogenesis by suppressing Akt activity. Thus, lumican plays an osteoprotective role by simultaneously increasing bone formation and decreasing bone resorption, suggesting that it represents a dual-action therapeutic target for osteoporosis.
Collapse
|
11
|
Regulation of invadosomes by microtubules: Not only a matter of railways. Eur J Cell Biol 2020; 99:151109. [DOI: 10.1016/j.ejcb.2020.151109] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 07/02/2020] [Accepted: 07/13/2020] [Indexed: 12/19/2022] Open
|
12
|
Zhao Y, Jia L, Zheng Y, Li W. Involvement of Noncoding RNAs in the Differentiation of Osteoclasts. Stem Cells Int 2020; 2020:4813140. [PMID: 32908541 PMCID: PMC7468661 DOI: 10.1155/2020/4813140] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 08/11/2020] [Accepted: 08/14/2020] [Indexed: 12/13/2022] Open
Abstract
As the most important bone-resorbing cells, osteoclasts play fundamental roles in bone remodeling and skeletal health. Much effort has been focused on identifying the regulators of osteoclast metabolism. Noncoding RNAs (ncRNAs) reportedly regulate osteoclast formation, differentiation, survival, and bone-resorbing activity to participate in bone physiology and pathology. The present review intends to provide a general framework for how ncRNAs and their targets regulate osteoclast differentiation and the important events of osteoclastogenesis they are involved in, including osteoclast precursor generation, early differentiation, mononuclear osteoclast fusion, and multinucleated osteoclast function and survival. This framework is beneficial for understanding bone biology and for identifying the potential biomarkers or therapeutic targets of bone diseases. The review also summarizes the results of in vivo experiments and classic experiment methods for osteoclast-related researches.
Collapse
Affiliation(s)
- Yi Zhao
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing 100081, China
| | - Lingfei Jia
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing 100081, China
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing 100081, China
| | - Yunfei Zheng
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing 100081, China
| | - Weiran Li
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing 100081, China
| |
Collapse
|
13
|
Blangy A, Bompard G, Guerit D, Marie P, Maurin J, Morel A, Vives V. The osteoclast cytoskeleton - current understanding and therapeutic perspectives for osteoporosis. J Cell Sci 2020; 133:133/13/jcs244798. [PMID: 32611680 DOI: 10.1242/jcs.244798] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Osteoclasts are giant multinucleated myeloid cells specialized for bone resorption, which is essential for the preservation of bone health throughout life. The activity of osteoclasts relies on the typical organization of osteoclast cytoskeleton components into a highly complex structure comprising actin, microtubules and other cytoskeletal proteins that constitutes the backbone of the bone resorption apparatus. The development of methods to differentiate osteoclasts in culture and manipulate them genetically, as well as improvements in cell imaging technologies, has shed light onto the molecular mechanisms that control the structure and dynamics of the osteoclast cytoskeleton, and thus the mechanism of bone resorption. Although essential for normal bone physiology, abnormal osteoclast activity can cause bone defects, in particular their hyper-activation is commonly associated with many pathologies, hormonal imbalance and medical treatments. Increased bone degradation by osteoclasts provokes progressive bone loss, leading to osteoporosis, with the resulting bone frailty leading to fractures, loss of autonomy and premature death. In this context, the osteoclast cytoskeleton has recently proven to be a relevant therapeutic target for controlling pathological bone resorption levels. Here, we review the present knowledge on the regulatory mechanisms of the osteoclast cytoskeleton that control their bone resorption activity in normal and pathological conditions.
Collapse
Affiliation(s)
- Anne Blangy
- Centre de Recherche de Biologie Cellulaire de Montpellier (CRBM), Montpellier Univ., CNRS, 34000 Montpellier, France
| | - Guillaume Bompard
- Centre de Recherche de Biologie Cellulaire de Montpellier (CRBM), Montpellier Univ., CNRS, 34000 Montpellier, France
| | - David Guerit
- Centre de Recherche de Biologie Cellulaire de Montpellier (CRBM), Montpellier Univ., CNRS, 34000 Montpellier, France
| | - Pauline Marie
- Centre de Recherche de Biologie Cellulaire de Montpellier (CRBM), Montpellier Univ., CNRS, 34000 Montpellier, France
| | - Justine Maurin
- Centre de Recherche de Biologie Cellulaire de Montpellier (CRBM), Montpellier Univ., CNRS, 34000 Montpellier, France
| | - Anne Morel
- Centre de Recherche de Biologie Cellulaire de Montpellier (CRBM), Montpellier Univ., CNRS, 34000 Montpellier, France
| | - Virginie Vives
- Centre de Recherche de Biologie Cellulaire de Montpellier (CRBM), Montpellier Univ., CNRS, 34000 Montpellier, France
| |
Collapse
|
14
|
Kobayakawa M, Matsubara T, Mizokami A, Hiura F, Takakura N, Kokabu S, Matsuda M, Yasuda H, Nakamura I, Takei Y, Honda H, Hosokawa R, Jimi E. Kif1c regulates osteoclastic bone resorption as a downstream molecule of p130Cas. Cell Biochem Funct 2019; 38:300-308. [DOI: 10.1002/cbf.3476] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 10/04/2019] [Accepted: 12/08/2019] [Indexed: 01/16/2023]
Affiliation(s)
- Miki Kobayakawa
- Division of Molecular Signaling and Biochemistry, Department of Health ImprovementKyushu Dental University Kitakyushu Japan
- Division of Oral Reconstruction and Rehabilitation, Department of Oral Functional ReconstructionKyushu Dental University Kitakyushu Japan
- Laboratory of Molecular and Cellular BiochemistryFaculty of Dental Science, Kyushu University Fukuoka Japan
| | - Takuma Matsubara
- Division of Molecular Signaling and Biochemistry, Department of Health ImprovementKyushu Dental University Kitakyushu Japan
| | - Akiko Mizokami
- Oral Health/Brain Health/Total Health Research Center, Faculty of Dental ScienceKyushu University Fukuoka Japan
| | - Fumitaka Hiura
- Laboratory of Molecular and Cellular BiochemistryFaculty of Dental Science, Kyushu University Fukuoka Japan
| | - Nana Takakura
- Laboratory of Molecular and Cellular BiochemistryFaculty of Dental Science, Kyushu University Fukuoka Japan
| | - Shoichiro Kokabu
- Division of Molecular Signaling and Biochemistry, Department of Health ImprovementKyushu Dental University Kitakyushu Japan
| | - Miho Matsuda
- Laboratory of Molecular and Cellular BiochemistryFaculty of Dental Science, Kyushu University Fukuoka Japan
| | - Hisataka Yasuda
- Nagahama Institute for Biochemical ScienceOriental Yeast Co., Ltd. Shiga Japan
| | - Ichiro Nakamura
- Faculty of Health and Medical ScienceTeikyo Heisei University 2‐51‐4 Higashi‐Ikebukuro Tokyo Japan
| | - Yosuke Takei
- Department of Anatomy and Neuroscience, Faculty of MedicineUniversity of Tsukuba Tsukuba Japan
| | - Hiroaki Honda
- Field of Human Disease Models, Major in Advanced Life Sciences and Medicine, Institute of Laboratory AnimalsTokyo Women's Medical University Tokyo Japan
| | - Ryuji Hosokawa
- Division of Oral Reconstruction and Rehabilitation, Department of Oral Functional ReconstructionKyushu Dental University Kitakyushu Japan
| | - Eijiro Jimi
- Division of Molecular Signaling and Biochemistry, Department of Health ImprovementKyushu Dental University Kitakyushu Japan
- Laboratory of Molecular and Cellular BiochemistryFaculty of Dental Science, Kyushu University Fukuoka Japan
- Oral Health/Brain Health/Total Health Research Center, Faculty of Dental ScienceKyushu University Fukuoka Japan
| |
Collapse
|
15
|
Guimbal S, Morel A, Guérit D, Chardon M, Blangy A, Vives V. Dock5 is a new regulator of microtubule dynamic instability in osteoclasts. Biol Cell 2019; 111:271-283. [PMID: 31461543 DOI: 10.1111/boc.201900014] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 07/02/2019] [Accepted: 08/06/2019] [Indexed: 12/27/2022]
Abstract
BACKGROUND INFORMATION Osteoclast resorption is dependent on a podosome-rich structure called sealing zone. It tightly attaches the osteoclast to the bone creating a favourable acidic microenvironment for bone degradation. This adhesion structure needs to be stabilised by microtubules whose acetylation is maintained by down-regulation of deacetylase HDAC6 and/or of microtubule destabilising kinase GSK3β activities. We already established that Dock5 is a guanine nucleotide exchange factor for Rac1. As a consequence, Dock5 inhibition results in a decrease of the GTPase activity associated with impaired podosome assembly into sealing zones and resorbing activity in osteoclasts. More, administration of C21, a chemical compound that directly inhibits the exchange activity of Dock5, disrupts osteoclast podosome organisation and protects mice against bone degradation in models recapitulating major osteolytic diseases. RESULTS In this report, we show that Dock5 knockout osteoclasts also present a reduced acetylated tubulin level leading to a decreased length and duration of microtubule growth phases, whereas their growth speed remains unaffected. Dock5 does not act by direct interaction with the polymerised tubulin. Using specific Rac inhibitors, we showed that Dock5 regulates microtubule dynamic instability through Rac-dependent and -independent pathways. The latter involves GSK3β inhibitory serine 9 phosphorylation downstream of Akt activation but not HDAC6 activity. CONCLUSION We showed that Dock5 is a new regulator of microtubule dynamic instability in osteoclast. SIGNIFICANCE Dock5 dual role in the regulation of the actin cytoskeleton and microtubule, which both need to be intact for bone resorption, reinforces the fact that it is an interesting therapeutic target for osteolytic pathologies.
Collapse
Affiliation(s)
- Sarah Guimbal
- Centre de Recherche de Biologie Cellulaire (CRBM), CNRS UMR 5237, Montpellier, Cedex 5, 34293, France.,Montpellier University, Montpellier, Cedex 5, 34095, France
| | - Anne Morel
- Centre de Recherche de Biologie Cellulaire (CRBM), CNRS UMR 5237, Montpellier, Cedex 5, 34293, France.,Montpellier University, Montpellier, Cedex 5, 34095, France
| | - David Guérit
- Centre de Recherche de Biologie Cellulaire (CRBM), CNRS UMR 5237, Montpellier, Cedex 5, 34293, France.,Montpellier University, Montpellier, Cedex 5, 34095, France
| | - Manon Chardon
- Centre de Recherche de Biologie Cellulaire (CRBM), CNRS UMR 5237, Montpellier, Cedex 5, 34293, France.,Montpellier University, Montpellier, Cedex 5, 34095, France
| | - Anne Blangy
- Centre de Recherche de Biologie Cellulaire (CRBM), CNRS UMR 5237, Montpellier, Cedex 5, 34293, France.,Montpellier University, Montpellier, Cedex 5, 34095, France
| | - Virginie Vives
- Centre de Recherche de Biologie Cellulaire (CRBM), CNRS UMR 5237, Montpellier, Cedex 5, 34293, France.,Montpellier University, Montpellier, Cedex 5, 34095, France
| |
Collapse
|
16
|
Parker A, Fonseca S, Carding SR. Gut microbes and metabolites as modulators of blood-brain barrier integrity and brain health. Gut Microbes 2019; 11:135-157. [PMID: 31368397 PMCID: PMC7053956 DOI: 10.1080/19490976.2019.1638722] [Citation(s) in RCA: 331] [Impact Index Per Article: 66.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 05/22/2019] [Accepted: 06/26/2019] [Indexed: 02/03/2023] Open
Abstract
The human gastrointestinal (gut) microbiota comprises diverse and dynamic populations of bacteria, archaea, viruses, fungi, and protozoa, coexisting in a mutualistic relationship with the host. When intestinal homeostasis is perturbed, the function of the gastrointestinal tract and other organ systems, including the brain, can be compromised. The gut microbiota is proposed to contribute to blood-brain barrier disruption and the pathogenesis of neurodegenerative diseases. While progress is being made, a better understanding of interactions between gut microbes and host cells, and the impact these have on signaling from gut to brain is now required. In this review, we summarise current evidence of the impact gut microbes and their metabolites have on blood-brain barrier integrity and brain function, and the communication networks between the gastrointestinal tract and brain, which they may modulate. We also discuss the potential of microbiota modulation strategies as therapeutic tools for promoting and restoring brain health.
Collapse
Affiliation(s)
- Aimée Parker
- Gut Microbes and Health Research Programme, Quadram Institute Bioscience, Norwich, UK
| | - Sonia Fonseca
- Gut Microbes and Health Research Programme, Quadram Institute Bioscience, Norwich, UK
| | - Simon R. Carding
- Gut Microbes and Health Research Programme, Quadram Institute Bioscience, Norwich, UK
- Norwich Medical School, University of East Anglia, Norwich, UK
| |
Collapse
|
17
|
Guo L, Chen K, Yuan J, Huang P, Xu X, Li C, Qian N, Qi J, Shao Z, Deng L, He C, Xu J. Estrogen inhibits osteoclasts formation and bone resorption via microRNA-27a targeting PPARγ and APC. J Cell Physiol 2018; 234:581-594. [PMID: 30272823 DOI: 10.1002/jcp.26788] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 04/30/2018] [Indexed: 12/19/2022]
Abstract
Inhibition of osteoclasts formation and bone resorption by estrogen is very important in the etiology of postmenopausal osteoporosis. The mechanisms of this process are still not fully understood. Recent studies implicated an important role of microRNAs in estrogen-mediated responses in various cellular processes, including cell differentiation and proliferation. Thus, we hypothesized that these regulatory molecules might be implicated in the process of estrogen-decreased osteoclasts formation and bone resorption. Western blot, quantitative real-time polymerase chain reaction, tartrate-resistant acid phosphatase staining, pit formation assay and luciferase assay were used to investigate the role of microRNAs in estrogen-inhibited osteoclast differentiation and bone resorption. We found that estrogen could directly suppress receptor activator of nuclear factor B ligand/macrophage colony-stimulating factor-induced differentiation of bone marrow-derived macrophages into osteoclasts in the absence of stromal cell. MicroRNA-27a was significantly increased during the process of estrogen-decreased osteoclast differentiation. Overexpressing of microRNA-27a remarkably enhanced the inhibitory effect of estrogen on osteoclast differentiation and bone resorption, whereas which were alleviated by microRNA-27a depletion. Mechanistic studies showed that microRNA-27a inhibited peroxisome proliferator-activated receptor gamma (PPARγ) and adenomatous polyposis coli (APC) expression in osteoclasts through a microRNA-27a binding site within the 3'-untranslational region of PPARγ and APC. PPARγ and APC respectively contributed to microRNA-27a-decreased osteoclast differentiation and bone resorption. Taken together, these results showed that microRNA-27a may play a significant role in the process of estrogen-inhibited osteoclast differentiation and function.
Collapse
Affiliation(s)
- Lei Guo
- Shanghai Key Laboratory for Bone and Joint Diseases, Shanghai Institute of Orthopaedics and Traumatology, Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Kaizhe Chen
- Shanghai Key Laboratory for Bone and Joint Diseases, Shanghai Institute of Orthopaedics and Traumatology, Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jun Yuan
- Shanghai Key Laboratory for Bone and Joint Diseases, Shanghai Institute of Orthopaedics and Traumatology, Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Ping Huang
- Shanghai Key Laboratory for Bone and Joint Diseases, Shanghai Institute of Orthopaedics and Traumatology, Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xing Xu
- Shanghai Key Laboratory for Bone and Joint Diseases, Shanghai Institute of Orthopaedics and Traumatology, Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Changwei Li
- Shanghai Key Laboratory for Bone and Joint Diseases, Shanghai Institute of Orthopaedics and Traumatology, Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Niandong Qian
- Shanghai Key Laboratory for Bone and Joint Diseases, Shanghai Institute of Orthopaedics and Traumatology, Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jin Qi
- Shanghai Key Laboratory for Bone and Joint Diseases, Shanghai Institute of Orthopaedics and Traumatology, Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Zhiliang Shao
- Shanghai Key Laboratory for Bone and Joint Diseases, Shanghai Institute of Orthopaedics and Traumatology, Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Lianfu Deng
- Shanghai Key Laboratory for Bone and Joint Diseases, Shanghai Institute of Orthopaedics and Traumatology, Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Chuan He
- Shanghai Key Laboratory for Bone and Joint Diseases, Shanghai Institute of Orthopaedics and Traumatology, Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jiping Xu
- Orthopedic Sevice, Shanghai Fengxian District Center Hospital, Shanghai Jiaotong University Affiliated Sixth People's Hospital South Campus, Shanghai, China
| |
Collapse
|
18
|
Osteoclast Formation within a Human Co-Culture System on Bone Material as an In Vitro Model for Bone Remodeling Processes. J Funct Morphol Kinesiol 2018. [DOI: 10.3390/jfmk3010017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
19
|
George EL, Lin YL, Saunders MM. Bisphosphonate-related osteonecrosis of the jaw: a mechanobiology perspective. Bone Rep 2018; 8:104-109. [PMID: 29955628 PMCID: PMC6020112 DOI: 10.1016/j.bonr.2018.03.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 01/04/2018] [Accepted: 03/13/2018] [Indexed: 01/02/2023] Open
Abstract
Bisphosphonate-related osteonecrosis of the jaw (BRONJ) is a dramatic disintegration of the jaw that affects patients treated with bisphosphonates (BPs) for diseases characterized by bone loss. These diseases are often metastasizing cancers (like multiple myeloma, breast cancer and prostate cancer (Aragon-Ching et al., 2009)) as well as osteoporosis. BRONJ is incompletely understood, although it is believed to arise from a defect in bone remodeling—the intricate process by which sensory osteocytes signal to osteoclasts and osteoblasts to resorb and form bone in response to stimuli. Further, tooth extraction and infection have been overwhelmingly linked to BRONJ (Ikebe, 2013). Because bone cells are highly networked, the importance of multicellular interactions and mechanotransduction during the onset of these risk factors cannot be overstated. As such, this perspective addresses current research on the effects of BPs, mechanical load and inflammation on bone remodeling and on development of BRONJ. Our investigation has led us to conclude that improved in vitro systems capable of adequately recapitulating multicellular communication and incorporating effects of osteocyte mechanosensing on bone resorption and formation are needed to elucidate the mechanism(s) by which BRONJ ensues. Current research on cofactors implicated in BRONJ is reviewed. BPs, load and inflammation work in tandem to contribute to BRONJ. Effects of cofactors on remodeling in the oral cavity are poorly understood. Osteocytes' ability to sense and respond to cofactors is likely central to BRONJ. Research is limited by a lack of multicellular systems integrating mechanosensing.
Collapse
Affiliation(s)
- Estee L George
- The University of Akron, Olson Research Center 319, 302 E. Buchtel Ave., Akron, OH 44325, USA
| | - Yi-Ling Lin
- University of California, Los Angeles School of Dentistry, 10833 Le Conte Ave., Los Angeles, CA 90095, USA
| | - Marnie M Saunders
- The University of Akron, Olson Research Center 319, 302 E. Buchtel Ave., Akron, OH 44325, USA
| |
Collapse
|
20
|
BRD7 regulates the insulin-signaling pathway by increasing phosphorylation of GSK3β. Cell Mol Life Sci 2017; 75:1857-1869. [PMID: 29127434 DOI: 10.1007/s00018-017-2711-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 11/01/2017] [Accepted: 11/03/2017] [Indexed: 10/18/2022]
Abstract
Reduced hepatic expression levels of bromodomain-containing protein 7 (BRD7) have been suggested to play a role in the development of glucose intolerance in obesity. However, the molecular mechanism by which BRD7 regulates glucose metabolism has remained unclear. Here, we show that BRD7 increases phosphorylation of glycogen synthase kinase 3β (GSK3β) in response to activation of the insulin receptor-signaling pathway shortly after insulin stimulation and the nutrient-sensing pathway after feeding. BRD7 mediates phosphorylation of GSK3β at the Serine 9 residue and this effect on GSK3β occurs even in the absence of AKT activity. Using both in vitro and in vivo models, we further demonstrate that BRD7 mediates phosphorylation of ribosomal protein S6 kinase (S6K) and leads to increased phosphorylation of the eukaryotic translation initiation factor 4E-binding protein 1 (4E-BP1) and, therefore, relieves its inhibition of the eukaryotic translation initiation factor 4E (eIF4E). However, the increase in phosphorylation of 4E-BP1 with BRD7 overexpression is blunted in the absence of AKT activity. In addition, using liver-specific BRD7 knockout (LBKO) mice, we show that BRD7 is required for mTORC1 activity on its downstream molecules. These findings show a novel basis for understanding the molecular dynamics of glucose metabolism and suggest the unique function of BRD7 in the regulation of glucose homeostasis.
Collapse
|
21
|
Aukes K, Forsman C, Brady NJ, Astleford K, Blixt N, Sachdev D, Jensen ED, Mansky KC, Schwertfeger KL. Breast cancer cell-derived fibroblast growth factors enhance osteoclast activity and contribute to the formation of metastatic lesions. PLoS One 2017; 12:e0185736. [PMID: 28968431 PMCID: PMC5624603 DOI: 10.1371/journal.pone.0185736] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 09/18/2017] [Indexed: 11/25/2022] Open
Abstract
Fibroblast growth factors (FGFs) and their receptors (FGFRs) have been implicated in promoting breast cancer growth and progression. While the autocrine effects of FGFR activation in tumor cells have been extensively studied, little is known about the effects of tumor cell-derived FGFs on cells in the microenvironment. Because FGF signaling has been implicated in the regulation of bone formation and osteoclast differentiation, we hypothesized that tumor cell-derived FGFs are capable of modulating osteoclast function and contributing to growth of metastatic lesions in the bone. Initial studies examining FGFR expression during osteoclast differentiation revealed increased expression of FGFR1 in osteoclasts during differentiation. Therefore, studies were performed to determine whether tumor cell-derived FGFs are capable of promoting osteoclast differentiation and activity. Using both non-transformed and transformed cell lines, we demonstrate that breast cancer cells express a number of FGF ligands that are known to activate FGFR1. Furthermore our results demonstrate that inhibition of FGFR activity using the clinically relevant inhibitor BGJ398 leads to reduced osteoclast differentiation and activity in vitro. Treatment of mice injected with tumor cells into the femurs with BGJ398 leads to reduced osteoclast activity and bone destruction. Together, these studies demonstrate that tumor cell-derived FGFs enhance osteoclast function and contribute to the formation of metastatic lesions in breast cancer.
Collapse
Affiliation(s)
- Kelly Aukes
- Department of Lab Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Cynthia Forsman
- Department of Lab Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Nicholas J. Brady
- Microbiology, Cancer Biology and Immunology Graduate Program, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Kristina Astleford
- Developmental and Surgical Science, School of Dentistry, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Nicholas Blixt
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Deepali Sachdev
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, United States of America
- Department of Medicine, Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Eric D. Jensen
- Department of Diagnostic and Biological Science, School of Dentistry, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Kim C. Mansky
- Developmental and Surgical Science, School of Dentistry, University of Minnesota, Minneapolis, Minnesota, United States of America
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, United States of America
- * E-mail: (KLS); (KCM)
| | - Kathryn L. Schwertfeger
- Department of Lab Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota, United States of America
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, United States of America
- Center for Immunology, University of Minnesota, Minneapolis, Minnesota, United States of America
- * E-mail: (KLS); (KCM)
| |
Collapse
|
22
|
Park OJ, Kim J, Ahn KB, Lee JY, Park YJ, Kum KY, Yun CH, Han SH. A 15-amino acid C-terminal peptide of beta-defensin-3 inhibits bone resorption by inhibiting the osteoclast differentiation and disrupting podosome belt formation. J Mol Med (Berl) 2017; 95:1315-1325. [DOI: 10.1007/s00109-017-1589-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 08/22/2017] [Accepted: 08/29/2017] [Indexed: 02/05/2023]
|
23
|
A FKBP5 mutation is associated with Paget's disease of bone and enhances osteoclastogenesis. Exp Mol Med 2017; 49:e336. [PMID: 28524179 PMCID: PMC5454451 DOI: 10.1038/emm.2017.64] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 01/20/2017] [Indexed: 02/07/2023] Open
Abstract
Paget's disease of bone (PDB) is a common metabolic bone disease that is characterized by aberrant focal bone remodeling, which is caused by excessive osteoclastic bone resorption followed by disorganized osteoblastic bone formation. Genetic factors are a critical determinant of PDB pathogenesis, and several susceptibility genes and loci have been reported, including SQSTM1, TNFSF11A, TNFRSF11B, VCP, OPTN, CSF1 and DCSTAMP. Herein, we report a case of Chinese familial PDB without mutations in known genes and identify a novel c.163G>C (p.Val55Leu) mutation in FKBP5 (encodes FK506-binding protein 51, FKBP51) associated with PDB using whole-exome sequencing. Mutant FKBP51 enhanced the Akt phosphorylation and kinase activity in cells. A study of osteoclast function using FKBP51V55L KI transgenic mice proved that osteoclast precursors from FKBP51V55L mice were hyperresponsive to RANKL, and osteoclasts derived from FKBP51V55L mice displayed more intensive bone resorbing activity than did FKBP51WT controls. The osteoclast-specific molecules tartrate-resistant acid phosphatase, osteoclast-associated receptor and transcription factor NFATC1 were increased in bone marrow-derived monocyte/macrophage cells (BMMs) from FKBP51V55L mice during osteoclast differentiation. However, c-fos expression showed no significant difference in the wild-type and mutant groups. Akt phosphorylation in FKBP51V55L BMMs was elevated in response to RANKL. In contrast, IκB degradation, ERK phosphorylation and LC3II expression showed no difference in wild-type and mutant BMMs. Micro-CT analysis revealed an intensive trabecular bone resorption pattern in FKBP51V55L mice, and suspicious osteolytic bone lesions were noted in three-dimensional reconstruction of distal femurs from mutant mice. These results demonstrate that the mutant FKBP51V55L promotes osteoclastogenesis and function, which could subsequently participate in PDB development.
Collapse
|
24
|
Castillo LM, Guerrero CA, Acosta O. Expression of typical osteoclast markers by PBMCs after PEG-induced fusion as a model for studying osteoclast differentiation. J Mol Histol 2017; 48:169-185. [PMID: 28343338 DOI: 10.1007/s10735-017-9717-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 03/20/2017] [Indexed: 01/27/2023]
Abstract
Bone is a metabolically active organ subjected to continuous remodeling process that involves resorption by osteoclast and subsequent formation by osteoblasts. Osteoclast involvement in this physiological event is regulated by macrophage colony-stimulating factor (M-CSF) and receptor activator of nuclear factor κB ligand (RANKL). Fusion of mono-nuclear pre-osteoclasts is a critical event for osteoclast differentiation and for bone resorption. Here we show that PBMCs can be successfully fused with polyethylenglicol (PEG) in order to generated viable osteoclast-like cells that exhibit tartrate-resistant acid phosphatase (TRAP) and bone resorptive activities. PEG-fused PBMCs expressed additional markers compatible with osteoclastogenic differentiation such as carbonic anhydrase II (CAII), calcitonin receptor (CR), cathepsin K (Cat K), vacuolar ATPase (V-ATPase) subunit C1 (V-ATPase), integrin β3, RANK and cell surface aminopeptidase N/CD13. Actin redistribution in PEG-fused cells was found to be affected by cell cycle synchronization at G0/G1 or G2/M phases. PEG-induced fusion also led to expression of tyrosine kinases c-Src and Syk in their phosphorylated state. Scanning electron microscopy images showed morphological features typical of osteoclast-like cells. The results here shown allow concluding that PEG-induced fusion of PBMCs provides a suitable model system for understanding the mechanisms involved in osteoclastogenesis and for assaying new therapeutic strategies.
Collapse
Affiliation(s)
- Luz M Castillo
- Departamento de Ciencias Fisiológicas, Facultad de Medicina, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Carlos A Guerrero
- Departamento de Ciencias Fisiológicas, Facultad de Medicina, Universidad Nacional de Colombia, Bogotá, Colombia.
| | - Orlando Acosta
- Departamento de Ciencias Fisiológicas, Facultad de Medicina, Universidad Nacional de Colombia, Bogotá, Colombia
| |
Collapse
|
25
|
Kwon JO, Lee YD, Kim H, Kim MK, Song MK, Lee ZH, Kim HH. Tetraspanin 7 regulates sealing zone formation and the bone-resorbing activity of osteoclasts. Biochem Biophys Res Commun 2016; 477:1078-1084. [PMID: 27416754 DOI: 10.1016/j.bbrc.2016.07.046] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 07/08/2016] [Indexed: 11/26/2022]
Abstract
Tetraspanin family proteins regulate morphology, motility, fusion, and signaling in various cell types. We investigated the role of the tetraspanin 7 (Tspan7) isoform in the differentiation and function of osteoclasts. Tspan7 was up-regulated during osteoclastogenesis. When Tspan7 expression was reduced in primary precursor cells by siRNA-mediated gene knock-down, the generation of multinuclear osteoclasts was not affected. However, a striking cytoskeletal abnormality was observed: the formation of the podosome belt structure was inhibited and the microtubular network were disrupted by Tspan7 knock-down. Decreases in acetylated microtubules and levels of phosphorylated Src and Pyk2 in Tspan7 knock-down cells supported the involvement of Tspan7 in cytoskeletal rearrangement signaling in osteoclasts. This cytoskeletal defect interfered with sealing zone formation and subsequently the bone-resorbing activity of mature osteoclasts on dentin surfaces. Our results suggest that Tspan7 plays an important role in cytoskeletal organization required for the bone-resorbing function of osteoclasts by regulating signaling to Src, Pyk2, and microtubules.
Collapse
Affiliation(s)
- Jun-Oh Kwon
- Department of Cell and Developmental Biology, BK21 Program and DRI, School of Dentistry, Seoul National University, Seoul 03080, Republic of Korea
| | - Yong Deok Lee
- Department of Cell and Developmental Biology, BK21 Program and DRI, School of Dentistry, Seoul National University, Seoul 03080, Republic of Korea
| | - Haemin Kim
- Department of Cell and Developmental Biology, BK21 Program and DRI, School of Dentistry, Seoul National University, Seoul 03080, Republic of Korea
| | - Min Kyung Kim
- Department of Cell and Developmental Biology, BK21 Program and DRI, School of Dentistry, Seoul National University, Seoul 03080, Republic of Korea
| | - Min-Kyoung Song
- Department of Cell and Developmental Biology, BK21 Program and DRI, School of Dentistry, Seoul National University, Seoul 03080, Republic of Korea
| | - Zang Hee Lee
- Department of Cell and Developmental Biology, BK21 Program and DRI, School of Dentistry, Seoul National University, Seoul 03080, Republic of Korea
| | - Hong-Hee Kim
- Department of Cell and Developmental Biology, BK21 Program and DRI, School of Dentistry, Seoul National University, Seoul 03080, Republic of Korea.
| |
Collapse
|
26
|
Dwi Antika L, Kim YH, Kang MK, Park SH, Lee EJ, Choi YJ, Kang YH. Dietary compound gossypetin inhibits bone resorption through down-regulating lysosomal cathepsin K activity and autophagy-related protein induction in actin ring-bearing osteoclasts. J Funct Foods 2016. [DOI: 10.1016/j.jff.2016.04.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
27
|
Cytoplasmic hnRNPK interacts with GSK3β and is essential for the osteoclast differentiation. Sci Rep 2015; 5:17732. [PMID: 26638989 PMCID: PMC4671015 DOI: 10.1038/srep17732] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 11/04/2015] [Indexed: 01/30/2023] Open
Abstract
Osteoclast differentiation is a complex and finely regulated physiological process that involves a variety of signaling pathways and factors. Recent studies suggested that the Ser9 phosphorylation of Glycogen synthase kinase-3β (GSK3β) is required for the osteoclast differentiation. However, the precise underlying mechanism remains unclear. We have previously identified the heterogeneous nuclear ribonucleoprotein K (hnRNPK) as a putative GSK3β interactor. In the present study, we demonstrate that, during the RANKL-induced osteoclast differentiation, the PI3K/Akt-mediated Ser9 phosphorylation of GSK3β provokes the nuclear-cytoplasmic translocation of hnRNPK in an ERK-dependent manner, enhancing the cytoplasmic co-localization and interaction of GSK3β and hnRNPK. We show that hnRNPK is essential for the osteoclast differentiation, and is involved in several reported functions of GSK3β, including the activation of NF-κB, the expression of NFATc1, and the acetylation of tubulin, all known to be critical for osteoclast differentiation and functions. We find that hnRNPK is localized in the actin belt, and is important for the mature osteoclast formation. Taken together, we demonstrate here the critical role of hnRNPK in osteoclast differentiation, and depict a model in which the cytoplasmic hnRNPK interacts with GSK3β and regulates its function.
Collapse
|
28
|
Zhou C, You Y, Shen W, Zhu YZ, Peng J, Feng HT, Wang Y, Li D, Shao WW, Li CX, Li WZ, Xu J, Shen X. Deficiency of sorting nexin 10 prevents bone erosion in collagen-induced mouse arthritis through promoting NFATc1 degradation. Ann Rheum Dis 2015; 75:1211-8. [DOI: 10.1136/annrheumdis-2014-207134] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 06/09/2015] [Indexed: 01/01/2023]
Abstract
ObjectivePeriarticular and subchondral bone erosion in rheumatoid arthritis caused by osteoclast differentiation and activation is a critical index for diagnosis, therapy and monitoring of the disease. Sorting nexin (SNX) 10, a member of the SNX family which functions in regulation of endosomal sorting, has been implicated to play an important clinical role in malignant osteopetrosis. Here we studied the roles and precise mechanisms of SNX10 in the bone destruction of collagen-induced arthritis (CIA) mice.MethodsThe role of SNX10 in bone destruction was evaluated by a CIA mice model which was induced in male SNX10−/− mice and wild type littermates. The mechanism was explored in osteoclasts induced by receptor activator of nuclear factor κB ligand from bone marrow mononuclear cells of wild type and SNX10−/− mice.ResultsSNX10 knockout prevented bone loss and joint destruction in CIA mice with reduced serum levels of TNF-α, interleukin 1β and anticollagen IgG 2α antibody. SNX10 deficiency did not block osteoclastogenesis, but significantly impaired osteoclast maturation and bone-resorption function by disturbing the formation of actin belt. The production of TRAP, CtsK and MMP9 in SNX10−/− osteoclasts was significantly inhibited, and partially restored by SNX10 overexpression. We further demonstrated that the degradation of NFATc1 was accelerated in SNX10−/− osteoclasts causing an inhibition of integrin β3-Src-PYK2 signalling.ConclusionsOur study discloses a crucial role and novel mechanism for SNX10 in osteoclast function, and provides evidence for SNX10 as a promising novel therapeutic target for suppression of immune inflammation and bone erosion in rheumatoid arthritis.
Collapse
|
29
|
Microtubule dynamic instability controls podosome patterning in osteoclasts through EB1, cortactin, and Src. Mol Cell Biol 2013; 34:16-29. [PMID: 24144981 DOI: 10.1128/mcb.00578-13] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
In osteoclasts (OCs) podosomes are organized in a belt, a feature critical for bone resorption. Although microtubules (MTs) promote the formation and stability of the belt, the MT and/or podosome molecules that mediate the interaction of the two systems are not identified. Because the growing "plus" ends of MTs point toward the podosome belt, plus-end tracking proteins (+TIPs) might regulate podosome patterning. Among the +TIPs, EB1 increased as OCs matured and was enriched in the podosome belt, and EB1-positive MTs targeted podosomes. Suppression of MT dynamic instability, displacement of EB1 from MT ends, or EB1 depletion resulted in the loss of the podosome belt. We identified cortactin as an Src-dependent interacting partner of EB1. Cortactin-deficient OCs presented a defective MT targeting to, and patterning of, podosomes and reduced bone resorption. Suppression of MT dynamic instability or EB1 depletion increased cortactin phosphorylation, decreasing its acetylation and affecting its interaction with EB1. Thus, dynamic MTs and podosomes interact to control bone resorption.
Collapse
|