1
|
Payushina OV, Tsomartova DA, Chereshneva YV, Ivanova MY, Lomanovskaya TA, Pavlova MS, Kuznetsov SL. Experimental Transplantation of Mesenchymal Stromal Cells as an Approach to Studying Their Differentiation In Vivo (Review). BIOL BULL+ 2022. [DOI: 10.1134/s1062359022060127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
2
|
Langdahl BL, Hofbauer LC, Forfar JC. Cardiovascular Safety and Sclerostin Inhibition. J Clin Endocrinol Metab 2021; 106:1845-1853. [PMID: 33755157 DOI: 10.1210/clinem/dgab193] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/15/2021] [Indexed: 12/19/2022]
Abstract
Sclerostin, which is primarily produced by the osteocytes, inhibits the canonical Wnt pathway and thereby the osteoblasts and stimulates RANKL release by the osteocytes and thereby osteoclast recruitment. Inhibition of sclerostin therefore causes stimulation of bone formation and inhibition of resorption. In clinical trials, romosozumab, an antibody against sclerostin, increases bone mineral density and reduces the risk of fractures compared with placebo and alendronate. The cardiovascular safety of romosozumab was adjudicated in 2 large clinical osteoporosis trials in postmenopausal women. Compared with placebo, the incidence of cardiovascular events was similar in the 2 treatment groups. Compared with alendronate, the incidence of serious cardiovascular events was higher in women treated with romosozumab. The incidence of serious cardiovascular adverse events was low and post hoc analyses should therefore be interpreted with caution; however, the relative risk seemed unaffected by preexisting cardiovascular disease or risk factors. Sclerostin is expressed in the vasculature, predominantly in vascular smooth muscle cells in the media. However, preclinical and genetic studies have not demonstrated any increased cardiovascular risk with continuously low sclerostin levels or inhibition of sclerostin. Furthermore, no potential mechanisms for such an effect have been identified. In conclusion, while there is no preclinical or genetic evidence of a harmful effect of sclerostin inhibition on cardiovascular safety, the evidence from the large clinical trials in postmenopausal women is conflicting. Romosozumab should therefore be used for the treatment of postmenopausal women with osteoporosis at high risk of fracture after careful consideration of the cardiovascular risk and the balance between benefits and risks.
Collapse
Affiliation(s)
- Bente Lomholt Langdahl
- Dept of Endocrinology and Internal Medicine, Aarhus University Hospital, DK8200 Aarhus N, Denmark
- Institute of Clinical Medicine, Aarhus University, Denmark
| | - Lorenz Christian Hofbauer
- Division of Endocrinology, Diabetes, and Bone Diseases, Department of Medicine III & Center for Healthy Aging, Technische Universität Dresden, D-01307 Dresden, Germany
| | - John Colin Forfar
- Former Clinical Director, Oxford Heart Centre, Oxford University Hospitals Foundation Trust, OX1 5DG Oxford, UK
| |
Collapse
|
3
|
Jiang W, Zhang Z, Li Y, Chen C, Yang H, Lin Q, Hu M, Qin X. The Cell Origin and Role of Osteoclastogenesis and Osteoblastogenesis in Vascular Calcification. Front Cardiovasc Med 2021; 8:639740. [PMID: 33969008 PMCID: PMC8102685 DOI: 10.3389/fcvm.2021.639740] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 03/24/2021] [Indexed: 02/01/2023] Open
Abstract
Arterial calcification refers to the abnormal deposition of calcium salts in the arterial wall, which results in vessel lumen stenosis and vascular remodeling. Studies increasingly show that arterial calcification is a cell mediated, reversible and active regulated process similar to physiological bone mineralization. The osteoblasts and chondrocytes-like cells are present in large numbers in the calcified lesions, and express osteogenic transcription factor and bone matrix proteins that are known to initiate and promote arterial calcification. In addition, osteoclast-like cells have also been detected in calcified arterial walls wherein they possibly inhibit vascular calcification, similar to the catabolic process of bone mineral resorption. Therefore, tilting the balance between osteoblast-like and osteoclast-like cells to the latter maybe a promising therapeutic strategy against vascular calcification. In this review, we have summarized the current findings on the origin and functions of osteoblast-like and osteoclast-like cells in the development and progression of vascular progression, and explored novel therapeutic possibilities.
Collapse
Affiliation(s)
- Wenhong Jiang
- Department of Vascular Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Zhanman Zhang
- Department of Vascular Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yaodong Li
- Department of Vascular Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Chuanzhen Chen
- Department of Vascular Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Han Yang
- Department of Vascular Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Qiuning Lin
- Department of Vascular Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Ming Hu
- Department of Vascular Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xiao Qin
- Department of Vascular Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
4
|
Zou Y, Yang M, Wang J, Cui L, Jiang Z, Ding J, Li M, Zhou H. Association of sclerostin with cardiovascular events and mortality in dialysis patients. Ren Fail 2020; 42:282-288. [PMID: 32216514 PMCID: PMC7170300 DOI: 10.1080/0886022x.2020.1741386] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Introduction Sclerostin has been reported to be a novel biomarker associated with the bone-vascular axis. In this study, we determined the relationships between serum sclerostin and all-cause mortality, the prevalence of cardiovascular events (CVEs), and coronary artery calcifications (CACs) in dialysis patients. Methods A total of 165 dialysis patients (84 hemodialysis [HD] and 81 peritoneal dialysis [PD]) were enrolled in this study. We performed multivariable linear regression analysis to test the relationships between serum sclerostin levels and demographics and clinical parameters. We also performed Cox proportional hazard regression analysis to determine independent predictors of overall survival and CVEs. Results The median serum sclerostin level was 250.9 pg/mL in dialysis patients. Kaplan–Meier analysis showed that both overall and CVE-free survival rates were significantly lower in the high serum sclerostin group (serum sclerostin level >250.9 pg/mL) compared to the low serum sclerostin group (serum sclerostin level ≤250.9 pg/mL) in patients with PD (p < 0.05). In patients with HD, only CVE-free survival rates notably declined in the high serum sclerostin group compared to the low serum sclerostin group (p = 0.029). However, serum sclerostin level was only an independent predictor of all-cause mortality and CVEs in patients with PD after adjusting for confounding factors (p < 0.05), and therefore was not an independent predictor for patients with HD (p > 0.05). Conclusions A low serum sclerostin was associated with better overall survival and lower prevalence of CVEs in patients with PD, but had no relationships in patients with HD. We found that serum sclerostin level was not correlated with CACs in either patients with HD or PD.
Collapse
Affiliation(s)
- Yun Zou
- Department of Nephrology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Min Yang
- Department of Nephrology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Jiao Wang
- Changzhou Center for Animal Disease Control and Prevention, Changzhou, China
| | - Li Cui
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Zhenxing Jiang
- Department of Medical Imaging, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Jiule Ding
- Department of Medical Imaging, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Min Li
- Department of Nephrology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Hua Zhou
- Department of Nephrology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| |
Collapse
|
5
|
Yu L, Li M. Roles of klotho and stem cells in mediating vascular calcification (Review). Exp Ther Med 2020; 20:124. [PMID: 33005250 DOI: 10.3892/etm.2020.9252] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 08/28/2020] [Indexed: 12/15/2022] Open
Abstract
Vascular calcification, characterized by the active deposition of calcium phosphate in the vascular walls, is commonly observed in aging, diabetes mellitus and chronic kidney disease. This process is mediated by different cell types, including vascular stem/progenitor cells. The anti-aging protein klotho may act as an inhibitor of vascular calcification through direct effects on vascular stem/progenitor cells with osteogenic differentiation potential. A better understanding of the possible effects of klotho on vascular stem/progenitor cells may provide novel insight into the cellular and molecular mechanisms of klotho deficiency-related vascular calcification and disease. The klotho protein may be considered as a promising therapeutic agent for treating vascular calcification and disease and calcification-related vascular diseases.
Collapse
Affiliation(s)
- Liangzhu Yu
- Hubei Key Laboratory of Cardiovascular, Cerebrovascular and Metabolic Disorders, Xianning, Hubei 437100, P.R. China.,Departments of Physiology, School of Basic Medical Sciences, Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China
| | - Mincai Li
- Hubei Key Laboratory of Cardiovascular, Cerebrovascular and Metabolic Disorders, Xianning, Hubei 437100, P.R. China.,Departments of Pathology, School of Basic Medical Sciences, Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China
| |
Collapse
|
6
|
Turk JR, Deaton AM, Yin J, Stolina M, Felx M, Boyd G, Bienvenu JG, Varela A, Guillot M, Holdsworth G, Wolfreys A, Dwyer D, Kumar SV, de Koning EM, Qu Y, Engwall M, Locher K, Ward LD, Glaus C, He YD, Boyce RW. Nonclinical cardiovascular safety evaluation of romosozumab, an inhibitor of sclerostin for the treatment of osteoporosis in postmenopausal women at high risk of fracture. Regul Toxicol Pharmacol 2020; 115:104697. [PMID: 32590049 DOI: 10.1016/j.yrtph.2020.104697] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 05/20/2020] [Accepted: 05/29/2020] [Indexed: 12/26/2022]
Abstract
Romosozumab (EVENITY™ [romosozumab-aqqg in the US]) is a humanized monoclonal antibody that inhibits sclerostin and has been approved in several countries for the treatment of osteoporosis in postmenopausal women at high risk of fracture. Sclerostin is expressed in bone and aortic vascular smooth muscle (AVSM). Its function in AVSM is unclear but it has been proposed to inhibit vascular calcification, atheroprogression, and inflammation. An increased incidence of positively adjudicated serious cardiovascular adverse events driven by an increase in myocardial infarction and stroke was observed in romosozumab-treated subjects in a clinical trial comparing alendronate with romosozumab (ARCH; NCT01631214) but not in a placebo-controlled trial (FRAME; NCT01575834). To investigate the effects of sclerostin inhibition with sclerostin antibody on the cardiovascular system, a comprehensive nonclinical toxicology package with additional cardiovascular studies was conducted. Although pharmacodynamic effects were observed in the bone, there were no functional, morphological, or transcriptional effects on the cardiovascular system in animal models in the presence or absence of atherosclerosis. These nonclinical studies did not identify evidence that proves the association between sclerostin inhibition and adverse cardiovascular function, increased cardiovascular calcification, and atheroprogression.
Collapse
Affiliation(s)
- James R Turk
- Translational Safety and Bioanalytical Sciences, Amgen Research, Thousand Oaks, CA, USA.
| | - Aimee M Deaton
- Translational Safety and Bioanalytical Sciences, Amgen Research, Cambridge, MA, USA
| | - Jun Yin
- Genome Analysis Unit, Amgen Research, South San Francisco, CA, USA
| | - Marina Stolina
- Cardiometabolic Disorders Research, Amgen Research, Thousand Oaks, CA, USA
| | - Melanie Felx
- Charles River Laboratories Montreal ULC, Senneville, QC, Canada
| | - Gabrielle Boyd
- Charles River Laboratories Montreal ULC, Senneville, QC, Canada
| | | | - Aurore Varela
- Charles River Laboratories Montreal ULC, Senneville, QC, Canada
| | - Martin Guillot
- Charles River Laboratories Montreal ULC, Senneville, QC, Canada
| | | | | | - Denise Dwyer
- Cardiometabolic Disorders Research, Amgen Research, Thousand Oaks, CA, USA
| | - Sheetal V Kumar
- Translational Safety and Bioanalytical Sciences, Amgen Research, Cambridge, MA, USA
| | - Emily M de Koning
- Translational Safety and Bioanalytical Sciences, Amgen Research, Cambridge, MA, USA
| | - Yusheng Qu
- Translational Safety and Bioanalytical Sciences, Amgen Research, Thousand Oaks, CA, USA
| | - Michael Engwall
- Translational Safety and Bioanalytical Sciences, Amgen Research, Thousand Oaks, CA, USA
| | - Kathrin Locher
- Translational Safety and Bioanalytical Sciences, Amgen Research, South San Francisco, CA, USA
| | - Lucas D Ward
- Translational Safety and Bioanalytical Sciences, Amgen Research, Cambridge, MA, USA
| | - Charles Glaus
- Cardiometabolic Disorders Research, Amgen Research, Thousand Oaks, CA, USA
| | - Yudong D He
- Translational Safety and Bioanalytical Sciences, Amgen Research, Thousand Oaks, CA, USA; Genome Analysis Unit, Amgen Research, South San Francisco, CA, USA
| | - Rogely Waite Boyce
- Translational Safety and Bioanalytical Sciences, Amgen Research, Thousand Oaks, CA, USA
| |
Collapse
|
7
|
Catalano A, Bellone F, Morabito N, Corica F. Sclerostin and Vascular Pathophysiology. Int J Mol Sci 2020; 21:ijms21134779. [PMID: 32640551 PMCID: PMC7370046 DOI: 10.3390/ijms21134779] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 06/26/2020] [Accepted: 07/03/2020] [Indexed: 12/12/2022] Open
Abstract
There is cumulating evidence for a contribution of Wnt signaling pathways in multiple processes involved in atherosclerosis and vascular aging. Wnt signaling plays a role in endothelial dysfunction, in the proliferation and migration of vascular smooth muscle cells (VSMCs) and intimal thickening. Moreover, it interferes with inflammation processes, monocyte adhesion and migration, as well as with foam cell formation and vascular calcification progression. Sclerostin is a negative regulator of the canonical Wnt signaling pathway and, accordingly, the consequence of increased sclerostin availability can be disruption of the Wnt signalling cascade. Sclerostin is becoming a marker for clinical and subclinical vascular diseases and several lines of evidence illustrate its role in the pathophysiology of the vascular system. Sclerostin levels increase with aging and persist higher in some diseases (e.g., diabetes, chronic kidney disease) that are known to precipitate atherosclerosis and enhance cardiovascular risk. Current knowledge on the association between sclerostin and vascular diseases is summarized in this review.
Collapse
Affiliation(s)
- Antonino Catalano
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (F.B.); (N.M.); (F.C.)
- A.O.U. Policlinico “G.Martino”, Via Consolare Valeria, 98125 Messina, Italy
- Correspondence: ; Tel.: +39-090-221-3946; Fax: +39-090-221-7176
| | - Federica Bellone
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (F.B.); (N.M.); (F.C.)
- A.O.U. Policlinico “G.Martino”, Via Consolare Valeria, 98125 Messina, Italy
| | - Nunziata Morabito
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (F.B.); (N.M.); (F.C.)
- A.O.U. Policlinico “G.Martino”, Via Consolare Valeria, 98125 Messina, Italy
| | - Francesco Corica
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (F.B.); (N.M.); (F.C.)
- A.O.U. Policlinico “G.Martino”, Via Consolare Valeria, 98125 Messina, Italy
| |
Collapse
|
8
|
Saag KG, Curtis JR, Reid IR. Reply to Serious Adverse Events With Romosozumab Use in Japanese Patients: Need for Clear Formulation of Contraindications Worldwide. J Bone Miner Res 2020; 35:996-997. [PMID: 32298496 DOI: 10.1002/jbmr.4000] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/26/2020] [Accepted: 03/04/2020] [Indexed: 12/22/2022]
Affiliation(s)
- Kenneth G Saag
- Division of Clinical Immunology and Rheumatology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jeffrey R Curtis
- Division of Clinical Immunology and Rheumatology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Ian R Reid
- Department of Medicine, University of Auckland, Auckland, New Zealand
| |
Collapse
|
9
|
The Emerging Role of Mesenchymal Stem Cells in Vascular Calcification. Stem Cells Int 2019; 2019:2875189. [PMID: 31065272 PMCID: PMC6466855 DOI: 10.1155/2019/2875189] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 01/12/2019] [Accepted: 02/11/2019] [Indexed: 12/20/2022] Open
Abstract
Vascular calcification (VC), characterized by hydroxyapatite crystal depositing in the vessel wall, is a common pathological condition shared by many chronic diseases and an independent risk factor for cardiovascular events. Recently, VC is regarded as an active, dynamic cell-mediated process, during which calcifying cell transition is critical. Mesenchymal stem cells (MSCs), with a multidirectional differentiation ability and great potential for clinical application, play a duplex role in the VC process. MSCs facilitate VC mainly through osteogenic transformation and apoptosis. Meanwhile, several studies have reported the protective role of MSCs. Anti-inflammation, blockade of the BMP2 signal, downregulation of the Wnt signal, and antiapoptosis through paracrine signaling are possible mechanisms. This review displays the evidence both on the facilitating role and on the protective role of MSCs, then discusses the key factors determining this divergence.
Collapse
|
10
|
Sost Haploinsufficiency Provokes Peracute Lethal Cardiac Tamponade without Rescuing the Osteopenia in a Mouse Model of Excess Glucocorticoids. THE AMERICAN JOURNAL OF PATHOLOGY 2019; 189:753-761. [PMID: 30664862 PMCID: PMC6445804 DOI: 10.1016/j.ajpath.2018.12.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 11/21/2018] [Accepted: 12/07/2018] [Indexed: 11/23/2022]
Abstract
Glucocorticoid-induced secondary osteoporosis is the most predictable side effect of this anti-inflammatory. One of the main mechanisms by which glucocorticoids achieve such deleterious outcome in bone is by antagonizing Wnt/β-catenin signaling. Sclerostin, encoded by Sost gene, is the main negative regulator of the proformative and antiresorptive role of the Wnt signaling pathway in the skeleton. It was hypothesized that the partial inactivation of sclerostin function by genetic manipulation will rescue the osteopenia induced by high endogenous glucocorticoid levels. Sost-deficient mice were crossed with an established mouse model of excess glucocorticoids, and the effects on bone mass and structure were evaluated. Sost haploinsufficiency did not rescue the low bone mass induced by high glucocorticoids. Intriguingly, the critical manifestation of Sost deficiency combined with glucocorticoid excess was sporadic, sudden, unprovoked, and nonconvulsive death. Detailed histopathologic analysis in a wide range of tissues identified peracute hemopericardium and cardiac tamponade to be the cause. These preclinical studies reveal outcomes with direct relevance to ongoing clinical trials that explore the use of antisclerostin antibodies as a treatment for osteoporosis. They particularly highlight a potential for increased cardiovascular risk and may inform improved stratification of patients who might otherwise benefit from antisclerostin antibody treatment.
Collapse
|
11
|
Hegner B, Schaub T, Janke D, Zickler D, Lange C, Girndt M, Jankowski J, Schindler R, Dragun D. Targeting proinflammatory cytokines ameliorates calcifying phenotype conversion of vascular progenitors under uremic conditions in vitro. Sci Rep 2018; 8:12087. [PMID: 30108259 PMCID: PMC6092400 DOI: 10.1038/s41598-018-30626-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 07/06/2018] [Indexed: 11/09/2022] Open
Abstract
Severe vascular calcification develops almost invariably in chronic kidney patients posing a substantial risk to quality of life and survival. This unmet medical need demands identification of novel therapeutic modalities. We aimed to pinpoint components of the uremic microenvironment triggering differentiation of vascular progenitors to calcifying osteoblast-like cells. In an unbiased approach, assessing the individual potency of 63 uremic retention solutes to enhance calcific phenotype conversion of vascular progenitor cells, the pro-inflammatory cytokines IL-1β and TNF-α were identified as the strongest inducers followed by FGF-2, and PTH. Pharmacologic targeting of these molecules alone or in combination additively antagonized pro-calcifying properties of sera from uremic patients. Our findings stress the importance of pro-inflammatory cytokines above other characteristic components of the uremic microenvironment as key mediators of calcifying osteoblastic differentiation in vascular progenitors. Belonging to the group of "middle-sized molecules", they are neither effectively removed by conventional dialysis nor influenced by established supportive therapies. Specific pharmacologic interventions or novel extracorporeal approaches may help preserve regenerative capacity and control vascular calcification due to uremic environment.
Collapse
Affiliation(s)
- Björn Hegner
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Clinic for Nephrology and Intensive Care Medicine, Campus Virchow-Clinic, Berlin, Germany. .,Berlin-Brandenburg School for Regenerative Therapies (BSRT), Berlin, Germany. .,Center for Cardiovascular Research (CCR), Charité University Hospital, Berlin, Germany. .,Vivantes Ida Wolff Hospital for Geriatric Medicine, Berlin, Germany.
| | - Theres Schaub
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Clinic for Nephrology and Intensive Care Medicine, Campus Virchow-Clinic, Berlin, Germany.,Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute for Chemistry and Biochemistry, Berlin, Germany.,Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute for Cell- and Neurobiology, Campus Mitte, Berlin, Germany
| | - Daniel Janke
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Clinic for Nephrology and Intensive Care Medicine, Campus Virchow-Clinic, Berlin, Germany
| | - Daniel Zickler
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Clinic for Nephrology and Intensive Care Medicine, Campus Virchow-Clinic, Berlin, Germany
| | - Claudia Lange
- Clinic for Stem Cell Transplantation, Department of Cell and Gene Therapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Matthias Girndt
- Department of Internal Medicine II, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Joachim Jankowski
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Clinic for Nephrology, Charité University Hospital Campus Benjamin Franklin, Berlin, Germany.,Institute for Molecular Cardiovascular Research, University Hospital RWTH, Aachen, Germany.,School for Cardiovascular Diseases, Maastricht University, Maastricht, The Netherlands
| | - Ralf Schindler
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Clinic for Nephrology and Intensive Care Medicine, Campus Virchow-Clinic, Berlin, Germany
| | - Duska Dragun
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Clinic for Nephrology and Intensive Care Medicine, Campus Virchow-Clinic, Berlin, Germany.,Berlin-Brandenburg School for Regenerative Therapies (BSRT), Berlin, Germany.,Center for Cardiovascular Research (CCR), Charité University Hospital, Berlin, Germany
| |
Collapse
|
12
|
Effect of adipose-derived mesenchymal stem cell transplantation on vascular calcification in rats with adenine-induced kidney disease. Sci Rep 2017; 7:14036. [PMID: 29070880 PMCID: PMC5656613 DOI: 10.1038/s41598-017-14492-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 10/11/2017] [Indexed: 12/29/2022] Open
Abstract
Previous studies have investigated the use of mesenchymal stem cells (MSCs) to treat damaged kidneys. However, the effect of adipose-derived MSCs (ASCs) on vascular calcification in chronic kidney disease (CKD) is still poorly understood. In the present study, we explored the potential of ASCs for the treatment of CKD and vascular calcification. CKD was induced in male Sprague-Dawley rats by feeding them a diet containing 0.75% adenine for 4 weeks. ASCs transplantation significantly reduced serum inorganic phosphorus (Pi) as compared to that in the control. The histopathology of the kidneys showed a greater dilation of tubular lumens and interstitial fibrosis in the control group. Calcium and Pi contents of the aorta in the ASCs transplantation group were lower than those in the control group. Von Kossa staining of the thoracic aorta media revealed that ASCs transplantation suppressed vascular calcification. Thus, this study revealed that autogenic ASCs transplantation inhibits kidney damage and suppresses the progression of vascular calcification in the CKD rat model, suggesting that autogenic ASCs transplantation is a novel approach for preventing the progression of CKD and vascular calcification.
Collapse
|
13
|
Saag KG, Petersen J, Brandi ML, Karaplis AC, Lorentzon M, Thomas T, Maddox J, Fan M, Meisner PD, Grauer A. Romosozumab or Alendronate for Fracture Prevention in Women with Osteoporosis. N Engl J Med 2017; 377:1417-1427. [PMID: 28892457 DOI: 10.1056/nejmoa1708322] [Citation(s) in RCA: 798] [Impact Index Per Article: 114.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND Romosozumab is a monoclonal antibody that binds to and inhibits sclerostin, increases bone formation, and decreases bone resorption. METHODS We enrolled 4093 postmenopausal women with osteoporosis and a fragility fracture and randomly assigned them in a 1:1 ratio to receive monthly subcutaneous romosozumab (210 mg) or weekly oral alendronate (70 mg) in a blinded fashion for 12 months, followed by open-label alendronate in both groups. The primary end points were the cumulative incidence of new vertebral fracture at 24 months and the cumulative incidence of clinical fracture (nonvertebral and symptomatic vertebral fracture) at the time of the primary analysis (after clinical fractures had been confirmed in ≥330 patients). Secondary end points included the incidences of nonvertebral and hip fracture at the time of the primary analysis. Serious cardiovascular adverse events, osteonecrosis of the jaw, and atypical femoral fractures were adjudicated. RESULTS Over a period of 24 months, a 48% lower risk of new vertebral fractures was observed in the romosozumab-to-alendronate group (6.2% [127 of 2046 patients]) than in the alendronate-to-alendronate group (11.9% [243 of 2047 patients]) (P<0.001). Clinical fractures occurred in 198 of 2046 patients (9.7%) in the romosozumab-to-alendronate group versus 266 of 2047 patients (13.0%) in the alendronate-to-alendronate group, representing a 27% lower risk with romosozumab (P<0.001). The risk of nonvertebral fractures was lower by 19% in the romosozumab-to-alendronate group than in the alendronate-to-alendronate group (178 of 2046 patients [8.7%] vs. 217 of 2047 patients [10.6%]; P=0.04), and the risk of hip fracture was lower by 38% (41 of 2046 patients [2.0%] vs. 66 of 2047 patients [3.2%]; P=0.02). Overall adverse events and serious adverse events were balanced between the two groups. During year 1, positively adjudicated serious cardiovascular adverse events were observed more often with romosozumab than with alendronate (50 of 2040 patients [2.5%] vs. 38 of 2014 patients [1.9%]). During the open-label alendronate period, adjudicated events of osteonecrosis of the jaw (1 event each in the romosozumab-to-alendronate and alendronate-to-alendronate groups) and atypical femoral fracture (2 events and 4 events, respectively) were observed. CONCLUSIONS In postmenopausal women with osteoporosis who were at high risk for fracture, romosozumab treatment for 12 months followed by alendronate resulted in a significantly lower risk of fracture than alendronate alone. (Funded by Amgen and others; ARCH ClinicalTrials.gov number, NCT01631214 .).
Collapse
Affiliation(s)
- Kenneth G Saag
- From the University of Alabama, Birmingham (K.G.S.); Amgen, Thousand Oaks, CA (J.P., J.M., M.F., A.G.); University of Florence, Florence, Italy (M.L.B.); McGill University, Montreal (A.C.K.); University of Gothenburg and Sahlgrenska University Hospital, Mölndal, Sweden (M.L.); Centre Hospitalier Universitaire de Saint-Étienne, Saint-Étienne, France (T.T.); and UCB Pharma, Brussels (P.D.M.)
| | - Jeffrey Petersen
- From the University of Alabama, Birmingham (K.G.S.); Amgen, Thousand Oaks, CA (J.P., J.M., M.F., A.G.); University of Florence, Florence, Italy (M.L.B.); McGill University, Montreal (A.C.K.); University of Gothenburg and Sahlgrenska University Hospital, Mölndal, Sweden (M.L.); Centre Hospitalier Universitaire de Saint-Étienne, Saint-Étienne, France (T.T.); and UCB Pharma, Brussels (P.D.M.)
| | - Maria Luisa Brandi
- From the University of Alabama, Birmingham (K.G.S.); Amgen, Thousand Oaks, CA (J.P., J.M., M.F., A.G.); University of Florence, Florence, Italy (M.L.B.); McGill University, Montreal (A.C.K.); University of Gothenburg and Sahlgrenska University Hospital, Mölndal, Sweden (M.L.); Centre Hospitalier Universitaire de Saint-Étienne, Saint-Étienne, France (T.T.); and UCB Pharma, Brussels (P.D.M.)
| | - Andrew C Karaplis
- From the University of Alabama, Birmingham (K.G.S.); Amgen, Thousand Oaks, CA (J.P., J.M., M.F., A.G.); University of Florence, Florence, Italy (M.L.B.); McGill University, Montreal (A.C.K.); University of Gothenburg and Sahlgrenska University Hospital, Mölndal, Sweden (M.L.); Centre Hospitalier Universitaire de Saint-Étienne, Saint-Étienne, France (T.T.); and UCB Pharma, Brussels (P.D.M.)
| | - Mattias Lorentzon
- From the University of Alabama, Birmingham (K.G.S.); Amgen, Thousand Oaks, CA (J.P., J.M., M.F., A.G.); University of Florence, Florence, Italy (M.L.B.); McGill University, Montreal (A.C.K.); University of Gothenburg and Sahlgrenska University Hospital, Mölndal, Sweden (M.L.); Centre Hospitalier Universitaire de Saint-Étienne, Saint-Étienne, France (T.T.); and UCB Pharma, Brussels (P.D.M.)
| | - Thierry Thomas
- From the University of Alabama, Birmingham (K.G.S.); Amgen, Thousand Oaks, CA (J.P., J.M., M.F., A.G.); University of Florence, Florence, Italy (M.L.B.); McGill University, Montreal (A.C.K.); University of Gothenburg and Sahlgrenska University Hospital, Mölndal, Sweden (M.L.); Centre Hospitalier Universitaire de Saint-Étienne, Saint-Étienne, France (T.T.); and UCB Pharma, Brussels (P.D.M.)
| | - Judy Maddox
- From the University of Alabama, Birmingham (K.G.S.); Amgen, Thousand Oaks, CA (J.P., J.M., M.F., A.G.); University of Florence, Florence, Italy (M.L.B.); McGill University, Montreal (A.C.K.); University of Gothenburg and Sahlgrenska University Hospital, Mölndal, Sweden (M.L.); Centre Hospitalier Universitaire de Saint-Étienne, Saint-Étienne, France (T.T.); and UCB Pharma, Brussels (P.D.M.)
| | - Michelle Fan
- From the University of Alabama, Birmingham (K.G.S.); Amgen, Thousand Oaks, CA (J.P., J.M., M.F., A.G.); University of Florence, Florence, Italy (M.L.B.); McGill University, Montreal (A.C.K.); University of Gothenburg and Sahlgrenska University Hospital, Mölndal, Sweden (M.L.); Centre Hospitalier Universitaire de Saint-Étienne, Saint-Étienne, France (T.T.); and UCB Pharma, Brussels (P.D.M.)
| | - Paul D Meisner
- From the University of Alabama, Birmingham (K.G.S.); Amgen, Thousand Oaks, CA (J.P., J.M., M.F., A.G.); University of Florence, Florence, Italy (M.L.B.); McGill University, Montreal (A.C.K.); University of Gothenburg and Sahlgrenska University Hospital, Mölndal, Sweden (M.L.); Centre Hospitalier Universitaire de Saint-Étienne, Saint-Étienne, France (T.T.); and UCB Pharma, Brussels (P.D.M.)
| | - Andreas Grauer
- From the University of Alabama, Birmingham (K.G.S.); Amgen, Thousand Oaks, CA (J.P., J.M., M.F., A.G.); University of Florence, Florence, Italy (M.L.B.); McGill University, Montreal (A.C.K.); University of Gothenburg and Sahlgrenska University Hospital, Mölndal, Sweden (M.L.); Centre Hospitalier Universitaire de Saint-Étienne, Saint-Étienne, France (T.T.); and UCB Pharma, Brussels (P.D.M.)
| |
Collapse
|
14
|
[Efficacy of gamma-irradiated adipose-derived stem cells for treatment of thin endometrium in rats]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2017; 37. [PMID: 28539277 PMCID: PMC6780482 DOI: 10.3969/j.issn.1673-4254.2017.05.02] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
OBJECTIVE Transplantation of adipose-derived stem cells (ADSCs) is associated with potential risks of late complications including tumorigenesis due to the active proliferation of the cells. We aimed to test the effect of transplantation of ADSCs with suppressed proliferation by gamma irradiation in the treatment of thin endometrium in rats. METHODS ADSCs were isolated from female SD rats and identified by detecting the surface antigens with flow cytometry. After exposure to gamma irradiation at 0, 5 Gy and 10 Gy, the cells were examined for changes in colony-forming ability. Twenty-four female rats with chemically induced thin endometrium were randomized into 4 equal groups and at 6-8 h after modeling, the rats received intrauterine injection of non-irradiated ADSCs (group Ⅰ), 5 Gy irradiated ADSCs (group Ⅱ), 10 Gy irradiated ADSCs (group Ⅲ), or PBS only (group Ⅳ). Endometrial pathology was analyzed with HE staining in these rats in the third estrus phase following the cell transplantation. RESULTS The ADSCs showed a complete loss of proliferative capacity after exposure to 10 Gy irradiation. After the cell transplantation, the endometrium thickness was thicker in group Ⅰ and Ⅱ than in group Ⅳ (P < 0.01), but there was no significant difference between groups Ⅲ and Ⅳ. CONCLUSIONS Gamma irradiation impairs the proliferative capacity of ADSCs in vitro. Exposure to 10 Gy irradiation causes a total loss of proliferation capacity of the ADSCs, which have no therapeutic potential; 5 Gy irradiation causes partial loss of proliferation capacity of the cells, which still retain the activity to promote endometrial cell regeneration.
Collapse
|
15
|
Conforti A, Starc N, Biagini S, Tomao L, Pitisci A, Algeri M, Sirleto P, Novelli A, Grisendi G, Candini O, Carella C, Dominici M, Locatelli F, Bernardo ME. Resistance to neoplastic transformation of ex-vivo expanded human mesenchymal stromal cells after exposure to supramaximal physical and chemical stress. Oncotarget 2016; 7:77416-77429. [PMID: 27764806 PMCID: PMC5363595 DOI: 10.18632/oncotarget.12678] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 09/24/2016] [Indexed: 01/07/2023] Open
Abstract
The risk of malignant transformation of ex-vivo expanded human mesenchymal stromal cells (huMSCs) has been debated in the last years; however, the biosafety of these cells after exposure to supramaximal physical and chemical stress has never been systematically investigated.We established an experimental in vitro model to induce supramaximal physical (ionizing radiation, IR) and chemical (starvation) stress on ex-vivo expanded bone marrow (BM)-derived huMSCs and investigated their propensity to undergo malignant transformation. To this aim, we examined MSC morphology, proliferative capacity, immune-phenotype, differentiation potential, immunomodulatory properties and genetic profile before and after stressor exposure. Furthermore, we investigated the cellular mechanisms underlying MSC response to stress. MSCs were isolated from 20 healthy BM donors and expanded in culture medium supplemented with 5% platelet lysate (PL) up to passage 2 (P2). At this stage, MSCs were exposed first to escalating doses of IR (30, 100, 200 Gy) and then to starvation culture conditions (1% PL).With escalating doses of radiation, MSCs lost their typical spindle-shaped morphology, their growth rate markedly decreased and eventually stopped (at P4-P6) by reaching early senescence. Irradiated and starved MSCs maintained their typical immune-phenotype, ability to differentiate into adipocytes/osteoblasts and to inhibit mitogen-induced T-cell proliferation. The study of the genetic profile of irradiated/starved MSCs did not show any alteration. While the induction of supramaximal stress triggered production of ROS and activation of DNA damage response pathway via multiple mechanisms, our data indicate that irradiated/starved MSCs, although presenting altered morphology/growth rate, do not display increased propensity for malignant transformation.
Collapse
Affiliation(s)
- Antonella Conforti
- Department of Pediatric Hematology/Oncology, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Nadia Starc
- Department of Pediatric Hematology/Oncology, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
- Department of System Medicine, University of Rome “Tor Vergata”, Rome, Italy
| | - Simone Biagini
- Department of Pediatric Hematology/Oncology, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Luigi Tomao
- Department of Pediatric Hematology/Oncology, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Angela Pitisci
- Department of Pediatric Hematology/Oncology, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Mattia Algeri
- Department of Pediatric Hematology/Oncology, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Pietro Sirleto
- Laboratory of Medical Genetics, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Antonio Novelli
- Laboratory of Medical Genetics, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Giulia Grisendi
- Department of Medical and Surgical Sciences for Children & Adults, Division of Oncology, University-Hospital of Modena and Reggio Emilia, Modena, Italy
| | - Olivia Candini
- Department of Medical and Surgical Sciences for Children & Adults, Division of Oncology, University-Hospital of Modena and Reggio Emilia, Modena, Italy
| | | | - Massimo Dominici
- Department of Medical and Surgical Sciences for Children & Adults, Division of Oncology, University-Hospital of Modena and Reggio Emilia, Modena, Italy
| | - Franco Locatelli
- Department of Pediatric Hematology/Oncology, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
- Department of Pediatrics, University of Pavia, Pavia, Italy
| | - Maria Ester Bernardo
- Department of Pediatric Hematology/Oncology, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
- Current address: San Raffaele-Telethon Institute for Gene Therapy, SR-TIGET, Pediatric Immunohematology, San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
16
|
Kanbay M, Solak Y, Siriopol D, Aslan G, Afsar B, Yazici D, Covic A. Sclerostin, cardiovascular disease and mortality: a systematic review and meta-analysis. Int Urol Nephrol 2016; 48:2029-2042. [DOI: 10.1007/s11255-016-1387-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 07/27/2016] [Indexed: 12/23/2022]
|
17
|
Zhu M, Fang X, Zhou S, Li W, Guan S. Indirect co‑culture of vascular smooth muscle cells with bone marrow mesenchymal stem cells inhibits vascular calcification and downregulates the Wnt signaling pathways. Mol Med Rep 2016; 13:5141-8. [PMID: 27121342 DOI: 10.3892/mmr.2016.5182] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 12/14/2015] [Indexed: 11/06/2022] Open
Abstract
Vascular calcification (VC) is widely considered to be a crucial clinical indicator of cardiovascular disease. Recently, certain properties of mesenchymal stem cells (MSCs) have been hypothesized to have potential in treating cardiovascular diseases. However, their effect on the initiation and progression of VC remains controversial. The present study aimed to investigate whether MSCs indirectly mediate VC and their impact on the Wnt signaling pathways. A Transwell system was selected to establish the indirect co‑culture environment, and hence, vascular smooth muscle cells (VSMCs) were indirectly co‑cultured in the presence or absence of MSCs at a ratio of 1:1. Osteogenic medium (OS) was added to imitate a calcifying environment. Fourteen days later, VSMCs in the lower layers of the Transwell plates were harvested. Alkaline phosphatase activity and calcium nodules were markedly increased in calcific VSMCs induced by OS. However, these parameters were significantly decreased in VSMCs by indirectly co‑culturing with MSCs in the same medium. Furthermore, the messenger RNA expression levels of osteopontin and osteoprotegerin were notably increased in VSMCs cultured in OS, but reduced by indirect interaction with MSCs. In addition, the activities of canonical and noncanonical Wnt ligands, wingless‑type MMTV integration site family, number 5A (Wnt5a), receptor tyrosine kinase‑like orphan receptor 2 (Ror2) and β‑catenin, which are important in the process of VC, were downregulated by indirect contact with MSCs in OS. Thus, indirect co‑culture with MSCs inhibits VC and downregulates the Wnt signaling pathways.
Collapse
Affiliation(s)
- Meng'en Zhu
- Department of Geriatrics, Union Hospital, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Xin Fang
- Department of Geriatrics, Union Hospital, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Shaoqiong Zhou
- Department of Geriatrics, Union Hospital, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Wei Li
- Department of Geriatrics, Union Hospital, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Siming Guan
- Department of Geriatrics, Union Hospital, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| |
Collapse
|
18
|
Liu W, Kang N, Seriwatanachai D, Dong Y, Zhou L, Lin Y, Ye L, Liang X, Yuan Q. Chronic Kidney Disease Impairs Bone Defect Healing in Rats. Sci Rep 2016; 6:23041. [PMID: 26955758 PMCID: PMC4783709 DOI: 10.1038/srep23041] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 02/29/2016] [Indexed: 02/05/2023] Open
Abstract
Chronic kidney disease (CKD) has been regarded as a risk for bone health. The aim of this study was to evaluate the effect of CKD on bone defect repair in rats. Uremia was induced by subtotal renal ablation, and serum levels of BUN and PTH were significantly elevated four weeks after the second renal surgery. Calvarial defects of 5-mm diameter were created and implanted with or without deproteinized bovine bone mineral (DBBM). Micro-CT and histological analyses consistently revealed a decreased newly regenerated bone volume for CKD rats after 4 and 8 weeks. In addition, 1.4-mm-diameter cortical bone defects were established in the distal end of femora and filled with gelatin sponge. CKD rats exhibited significantly lower values of regenerated bone and bone mineral density (BMD) within the cortical gap after 2 and 4 weeks. Moreover, histomorphometric analysis showed an increase in both osteoblast number (N.Ob/B.Pm) and osteoclast number (N.Oc/B.Pm) in CKD groups due to hyperparathyroidism. Notably, collagen maturation was delayed in CKD rats as verified by Masson’s Trichrome staining. These data indicate that declined renal function negatively affects bone regeneration in both calvarial and femoral defects.
Collapse
Affiliation(s)
- Weiqing Liu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ning Kang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | | | - Yuliang Dong
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Liyan Zhou
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yunfeng Lin
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ling Ye
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xing Liang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Quan Yuan
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
19
|
Increased circulating sclerostin levels in end-stage renal disease predict biopsy-verified vascular medial calcification and coronary artery calcification. Kidney Int 2015; 88:1356-1364. [DOI: 10.1038/ki.2015.194] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 05/18/2015] [Accepted: 05/21/2015] [Indexed: 12/20/2022]
|
20
|
Arutyunyan I, Elchaninov A, Fatkhudinov T, Makarov A, Kananykhina E, Usman N, Bolshakova G, Glinkina V, Goldshtein D, Sukhikh G. Elimination of allogeneic multipotent stromal cells by host macrophages in different models of regeneration. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2015; 8:4469-80. [PMID: 26191137 PMCID: PMC4503009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 04/26/2015] [Indexed: 02/07/2023]
Abstract
Allogeneic multipotent stromal cells were previously thought to be poorly recognized by host immune system; the prolonged survival in host environments was explained by their immune privileged status. As long as the concept is currently reconsidered, the routes of elimination of allogeneic multipotent stromal cells by host immunity must be taken into account. This is necessary for correct comprehension of their therapeutic action. The study was focused upon survival of umbilical cord-derived allogeneic multipotent stromal cells in different rat models of tissue regeneration induced by partial hepatectomy or by critical limb ischemia. The observations were carried out by means of vital labeling of the cells with PKH26 prior to injection, in combination with differential immunostaining of host macrophages with anti-CD68 antibody. According to the results, allogeneic multipotent stromal cells are specifically eliminated by host immune system; the efficacy can reach 100%. Massive clearance of transplanted cells by host macrophages is accompanied by appropriation of the label by the latter, and this is a pronounced case of misleading presentation of exogenous label by host cells. The study emphasizes the role of macrophages in host response and also the need of additional criteria for correct data interpretation.
Collapse
Affiliation(s)
- Irina Arutyunyan
- Research Center for Obstetrics, Gynecology and Perinatology of Ministry of Healthcare of The Russian Federation4 Oparina Street, Moscow 117997, Russia
- Scientific Research Institute of Human Morphology3 Tsurupa Street, Moscow 117418, Russia
| | - Andrey Elchaninov
- Research Center for Obstetrics, Gynecology and Perinatology of Ministry of Healthcare of The Russian Federation4 Oparina Street, Moscow 117997, Russia
- Scientific Research Institute of Human Morphology3 Tsurupa Street, Moscow 117418, Russia
- Pirogov Russian National Research Medical University, Ministry of Healthcare of The Russian Federation1 Ostrovitianov Street, Moscow 117997, Russia
| | - Timur Fatkhudinov
- Research Center for Obstetrics, Gynecology and Perinatology of Ministry of Healthcare of The Russian Federation4 Oparina Street, Moscow 117997, Russia
- Scientific Research Institute of Human Morphology3 Tsurupa Street, Moscow 117418, Russia
- Pirogov Russian National Research Medical University, Ministry of Healthcare of The Russian Federation1 Ostrovitianov Street, Moscow 117997, Russia
| | - Andrey Makarov
- Research Center for Obstetrics, Gynecology and Perinatology of Ministry of Healthcare of The Russian Federation4 Oparina Street, Moscow 117997, Russia
- Scientific Research Institute of Human Morphology3 Tsurupa Street, Moscow 117418, Russia
- Pirogov Russian National Research Medical University, Ministry of Healthcare of The Russian Federation1 Ostrovitianov Street, Moscow 117997, Russia
| | - Evgeniya Kananykhina
- Research Center for Obstetrics, Gynecology and Perinatology of Ministry of Healthcare of The Russian Federation4 Oparina Street, Moscow 117997, Russia
- Scientific Research Institute of Human Morphology3 Tsurupa Street, Moscow 117418, Russia
| | - Natalia Usman
- Research Center for Obstetrics, Gynecology and Perinatology of Ministry of Healthcare of The Russian Federation4 Oparina Street, Moscow 117997, Russia
- Scientific Research Institute of Human Morphology3 Tsurupa Street, Moscow 117418, Russia
- Pirogov Russian National Research Medical University, Ministry of Healthcare of The Russian Federation1 Ostrovitianov Street, Moscow 117997, Russia
| | - Galina Bolshakova
- Scientific Research Institute of Human Morphology3 Tsurupa Street, Moscow 117418, Russia
| | - Valeria Glinkina
- Pirogov Russian National Research Medical University, Ministry of Healthcare of The Russian Federation1 Ostrovitianov Street, Moscow 117997, Russia
| | - Dmitry Goldshtein
- Research Centre of Medical Genetics1 Moskvorechie Street, Moscow 115478, Russia
| | - Gennady Sukhikh
- Research Center for Obstetrics, Gynecology and Perinatology of Ministry of Healthcare of The Russian Federation4 Oparina Street, Moscow 117997, Russia
| |
Collapse
|
21
|
Schlieper G, Hess K, Floege J, Marx N. The vulnerable patient with chronic kidney disease. Nephrol Dial Transplant 2015; 31:382-90. [DOI: 10.1093/ndt/gfv041] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2015] [Accepted: 01/25/2015] [Indexed: 11/14/2022] Open
|
22
|
Kuipers AL, Miljkovic I, Carr JJ, Terry JG, Nestlerode CS, Ge Y, Bunker CH, Patrick AL, Zmuda JM. Association of circulating sclerostin with vascular calcification in Afro-Caribbean men. Atherosclerosis 2015; 239:218-23. [PMID: 25618029 DOI: 10.1016/j.atherosclerosis.2015.01.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 01/02/2015] [Accepted: 01/10/2015] [Indexed: 12/21/2022]
Abstract
OBJECTIVE Sclerostin, a Wingless (Wnt) pathway antagonist, is an established regulator of bone mineralization in humans but its potential importance in the regulation of vascular calcification is less clear. Therefore, our objective was to assess the relationship of serum sclerostin levels with coronary and aortic artery calcification (CAC and AAC, respectively) in Afro-Caribbean men on the island of Tobago. METHODS Serum sclerostin levels and computed tomography of CAC and AAC were measured in 191 men (age mean(SD): 62.9(8.0)years) recruited without regard to health status. Multivariable logistic regression models were used to assess the cross-sectional association of sclerostin with prevalent arterial calcification. RESULTS Mean(SD) sclerostin was 45.2 pmol/L (15.6 pmol/L). After adjusting for risk factors including age, physical and lifestyle characteristics, comorbidities, lipoproteins and kidney function, 1 SD greater sclerostin level was associated with a 1.61-times (95%CI 1.02-2.53) greater odds of having CAC. Sclerostin was not associated with AAC in any model. CONCLUSIONS This is the first study to show that, among Afro-Caribbean men, greater serum sclerostin concentrations were associated with prevalence and extent of CAC. Further studies are needed to better define the role of the Wnt signaling pathway in arterial calcification in humans.
Collapse
Affiliation(s)
- Allison L Kuipers
- Department of Epidemiology, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Iva Miljkovic
- Department of Epidemiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - J Jeffery Carr
- Department of Radiology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - James G Terry
- Department of Radiology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Cara S Nestlerode
- Department of Epidemiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yaorong Ge
- Department of Software and Information Sciences, University of North Carolina, Charlotte, NC, USA
| | - Clareann H Bunker
- Department of Epidemiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Alan L Patrick
- Tobago Health Studies Office, Scarborough, Tobago, Trinidad and Tobago
| | - Joseph M Zmuda
- Department of Epidemiology, University of Pittsburgh, Pittsburgh, PA, USA; Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
23
|
Guan S, Wang Z, Xin F, Xin H. Wnt5a is associated with the differentiation of bone marrow mesenchymal stem cells in vascular calcification by connecting with different receptors. Mol Med Rep 2014; 10:1985-91. [PMID: 25109262 DOI: 10.3892/mmr.2014.2449] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2013] [Accepted: 05/23/2014] [Indexed: 11/06/2022] Open
Abstract
Vascular calcification significantly affects the health of the elderly. Increasing evidence proved that vascular calcification is an actively regulated osteogenic process. The osteochondrocytic differentiation of mesenchymal stem cells (MSCs) is a significant step of osteogenic processes. The Wnt pathways has been identified as contributing to the regulation of osteogenic mineralization during development and disease. However, it remains unknown whether these MSCs in the vascular calcification differentiate into normal vascular smooth muscle cells (VSMCs) in vivo in order to treat damaged vascular tissue or into calcified VSMCs to aggravate calcification correlated to the Wnt pathways. Thus, it is necessary to analyze the mechanisms of MSC differentiation in detail. In the present study a cell‑cell co‑culturing in vitro system was used to observe MSCs that directly interact with normal or calcified VSMCs during calcification and to investigate the gene expression of the Wnt pathways during the process. Direct co‑cultures were established by seeding two different cell types, VSMCs or calcified VSMCs, or a mixture of both at ratios of 5,000:5,000 cells/1.7 cm2 onto either gelatin‑coated 1.7‑cm2 chamber slides for immunohistochemical analysis or gelatin‑coated 75‑cm2 tissue culture flasks for protein or RNA isolation. Osteoblastic differentiation was evaluated by examining the cell morphology and assessing the activity of alkaline phosphatase in the cell lysates by alkaline phosphatase staining. Additionally, the mRNA expression levels of the genes encoding for proteins involved in the Wnt signaling proteins, Wnt5A, LRP6, Ror2, c‑Jun‑N‑terminal kinase and β‑catenin, were assessed in each group. The present study demonstrated that Wnts are expressed in the progress of differentiation of MSCs during calcification. MSCs can differentiate into different cell phenotypes when there is direct cell‑cell contact with VSMCs or calcified VSMCs, and the Wnt5a/Ror2 signaling pathway may be associated with the determination of differentiation of MSCs in this process.
Collapse
Affiliation(s)
- Siming Guan
- Department of Geriatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Zhimin Wang
- Department of Neurology, The First People's Hospital of Taizhou, Taizhou, Zhejiang 318020, P.R. China
| | - Fang Xin
- Department of Geriatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Huaping Xin
- Department of Neurology, The First People's Hospital of Taizhou, Taizhou, Zhejiang 318020, P.R. China
| |
Collapse
|
24
|
de Andrade AVG, Riewaldt J, Wehner R, Schmitz M, Odendahl M, Bornhäuser M, Tonn T. Gamma irradiation preserves immunosuppressive potential and inhibits clonogenic capacity of human bone marrow-derived mesenchymal stromal cells. J Cell Mol Med 2014; 18:1184-93. [PMID: 24655362 PMCID: PMC4508157 DOI: 10.1111/jcmm.12264] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Accepted: 01/28/2014] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stromal cells (MSCs) are promising candidates for the treatment of graft-versus-host and autoimmune diseases. Here, by virtue of their immunosuppressive effects, they are discussed to exhibit inhibitory actions on various immune effector cells, including T lymphocytes that promote the underlying pathology. While it becomes apparent that MSCs exhibit their therapeutic effect in a transient manner, they are usually transplanted from third party donors into heavily immunocompromised patients. However, little is known about potential late complications of persisting third party MSCs in these patients. We therefore analysed the effect of gamma irradiation on the potency and proliferation of MSCs to elucidate an irradiation dose, which would allow inhibition of MSC proliferation while at the same time preserving their immunosuppressive function. Bone marrow-derived MSCs (BM-MSCs) were gamma-irradiated at increasing doses of 5, 10 and 30 Gy and subsequently assessed by colony formation unit (CFU)-assay, Annexin V-staining and in a mixed lymphocyte reaction, to assess colony growth, apoptosis and the immunosuppressive capacity, respectively. Complete loss of proliferative capacity measured by colony formation was observed after irradiation with a dose equal to or greater than 10 Gy. No significant decrease of viable cells was detected, as compared to non-irradiated BM-MSCs. Notably, irradiated BM-MSCs remained highly immunosuppressive in vitro for at least 5 days after irradiation. Gamma irradiation does not impair the immunosuppressive capacity of BM-MSCs in vitro and thus might increase the safety of MSC-based cell products in clinical applications.
Collapse
|