1
|
Xie W, Shi L, Zhang C, Cui X, Chen X, Xie T, Zhang S, Chen H, Rui Y. Anteromedial cortical support reduction of intertrochanteric fractures-A review. Injury 2024; 55:111926. [PMID: 39388744 DOI: 10.1016/j.injury.2024.111926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/19/2024] [Accepted: 09/21/2024] [Indexed: 10/12/2024]
Abstract
The intertrochanteric fracture is a common fragility fracture typically resulting from low-energy falls. The functional outcome of intertrochanteric fractures is closely linked to the patient's underlying physical condition, intraoperative procedures, and postoperative complications. In terms of surgery, while timely surgery and appropriate internal fixation have demonstrated favorable outcomes, attention to intraoperative reduction is crucial. In recent years, there have been further developments in the evaluation of reduction of intertrochanteric fractures, particularly in the anteromedial cortical reduction, and these advances have been further scientifically elucidated in terms of their ability to provide stable fracture reduction and resist loss of reduction. In order to gain a comprehensive understanding of the anteromedial cortex theory, this article reviewed the anatomy, related theoretical progress, and controversies in recent years.
Collapse
Affiliation(s)
- Wenjun Xie
- Department of Orthopaedics, Zhongda Hospital, Southeast University, 87 Ding Jia Qiao, Nanjing, Jiangsu, 210009, China; Trauma Center, Zhongda Hospital, Southeast University, 87 Ding Jia Qiao, Nanjing, Jiangsu, 210009, China; Orthopaedic Trauma Institute (OTI), Southeast University, Nanjing, Jiangsu, 210009, China; Multidisciplinary Team (MDT) for Geriatric Hip Fracture Management Zhongda Hospital, School of Medicine Southeast University, Nanjing, Jiangsu, China.
| | - Liu Shi
- Department of Orthopaedics, Zhongda Hospital, Southeast University, 87 Ding Jia Qiao, Nanjing, Jiangsu, 210009, China; Trauma Center, Zhongda Hospital, Southeast University, 87 Ding Jia Qiao, Nanjing, Jiangsu, 210009, China; Orthopaedic Trauma Institute (OTI), Southeast University, Nanjing, Jiangsu, 210009, China; Multidisciplinary Team (MDT) for Geriatric Hip Fracture Management Zhongda Hospital, School of Medicine Southeast University, Nanjing, Jiangsu, China.
| | - Cheng Zhang
- Department of Orthopaedics, Zhongda Hospital, Southeast University, 87 Ding Jia Qiao, Nanjing, Jiangsu, 210009, China; Trauma Center, Zhongda Hospital, Southeast University, 87 Ding Jia Qiao, Nanjing, Jiangsu, 210009, China; Orthopaedic Trauma Institute (OTI), Southeast University, Nanjing, Jiangsu, 210009, China; Multidisciplinary Team (MDT) for Geriatric Hip Fracture Management Zhongda Hospital, School of Medicine Southeast University, Nanjing, Jiangsu, China.
| | - Xueliang Cui
- Department of Orthopaedics, Zhongda Hospital, Southeast University, 87 Ding Jia Qiao, Nanjing, Jiangsu, 210009, China; Trauma Center, Zhongda Hospital, Southeast University, 87 Ding Jia Qiao, Nanjing, Jiangsu, 210009, China; Orthopaedic Trauma Institute (OTI), Southeast University, Nanjing, Jiangsu, 210009, China; Multidisciplinary Team (MDT) for Geriatric Hip Fracture Management Zhongda Hospital, School of Medicine Southeast University, Nanjing, Jiangsu, China.
| | - Xiangxu Chen
- Department of Orthopaedics, Zhongda Hospital, Southeast University, 87 Ding Jia Qiao, Nanjing, Jiangsu, 210009, China; Trauma Center, Zhongda Hospital, Southeast University, 87 Ding Jia Qiao, Nanjing, Jiangsu, 210009, China; Orthopaedic Trauma Institute (OTI), Southeast University, Nanjing, Jiangsu, 210009, China; Multidisciplinary Team (MDT) for Geriatric Hip Fracture Management Zhongda Hospital, School of Medicine Southeast University, Nanjing, Jiangsu, China.
| | - Tian Xie
- Department of Orthopaedics, Zhongda Hospital, Southeast University, 87 Ding Jia Qiao, Nanjing, Jiangsu, 210009, China; Trauma Center, Zhongda Hospital, Southeast University, 87 Ding Jia Qiao, Nanjing, Jiangsu, 210009, China; Orthopaedic Trauma Institute (OTI), Southeast University, Nanjing, Jiangsu, 210009, China; Multidisciplinary Team (MDT) for Geriatric Hip Fracture Management Zhongda Hospital, School of Medicine Southeast University, Nanjing, Jiangsu, China.
| | - Sheng Zhang
- Department of Orthopaedics, Zhongda Hospital, Southeast University, 87 Ding Jia Qiao, Nanjing, Jiangsu, 210009, China; Trauma Center, Zhongda Hospital, Southeast University, 87 Ding Jia Qiao, Nanjing, Jiangsu, 210009, China; Orthopaedic Trauma Institute (OTI), Southeast University, Nanjing, Jiangsu, 210009, China; Multidisciplinary Team (MDT) for Geriatric Hip Fracture Management Zhongda Hospital, School of Medicine Southeast University, Nanjing, Jiangsu, China.
| | - Hui Chen
- Department of Orthopaedics, Zhongda Hospital, Southeast University, 87 Ding Jia Qiao, Nanjing, Jiangsu, 210009, China; Trauma Center, Zhongda Hospital, Southeast University, 87 Ding Jia Qiao, Nanjing, Jiangsu, 210009, China; Orthopaedic Trauma Institute (OTI), Southeast University, Nanjing, Jiangsu, 210009, China; Multidisciplinary Team (MDT) for Geriatric Hip Fracture Management Zhongda Hospital, School of Medicine Southeast University, Nanjing, Jiangsu, China.
| | - Yunfeng Rui
- Department of Orthopaedics, Zhongda Hospital, Southeast University, 87 Ding Jia Qiao, Nanjing, Jiangsu, 210009, China; Trauma Center, Zhongda Hospital, Southeast University, 87 Ding Jia Qiao, Nanjing, Jiangsu, 210009, China; Orthopaedic Trauma Institute (OTI), Southeast University, Nanjing, Jiangsu, 210009, China; Multidisciplinary Team (MDT) for Geriatric Hip Fracture Management Zhongda Hospital, School of Medicine Southeast University, Nanjing, Jiangsu, China.
| |
Collapse
|
2
|
Long Y, Liu N, Huang X, Liang W, Liu J, Huang Z, Zhang Y, Wang W. Biomechanical evaluation of ortho-bridge system and proximal femoral nail antirotation in intertrochanteric fractures with lateral wall fracture based on finite element analysis. Front Bioeng Biotechnol 2024; 12:1368492. [PMID: 38974654 PMCID: PMC11224473 DOI: 10.3389/fbioe.2024.1368492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 05/31/2024] [Indexed: 07/09/2024] Open
Abstract
Background The integrity of the lateral wall in femoral intertrochanteric fractures significantly impacts fracture stability and internal fixation. In this study, we compared the outcomes of treating intertrochanteric fractures with lateral wall involvement using the ortho-bridge system (OBS) combined with proximal femoral nail antirotation (PFNA) versus simple PFNA from a biomechanical perspective. Methods Finite-element models of femoral intertrochanteric fractures with lateral wall involvement were subjected to fixation with OBS combined with PFNA and simple PFNA. Von Mises stress measurements and corresponding displacement assessments for each component of the model, including the proximal femur and lateral wall, were used to evaluate the biomechanical effects of OBS fixation on bone and intramedullary nail stability. Results Using PFNA alone to fix intertrochanteric fractures with lateral wall involvement resulted in von Mises stress levels on the lateral wall exceeding safe stress tolerances for bone growth. OBS fixation significantly reduced stress on the lateral wall of the femur and minimized the stress on each part of the intramedullary nail, reducing the overall displacement. Conclusion In cases of intertrochanteric fractures with lateral wall involvement, PFNA fixation alone may compromise the biomechanical integrity of the lateral femoral wall, increasing the risk of postoperative complications. The addition of OBS to PFNA significantly reduces stress on the lateral femoral wall. Consequently, OBS should be considered for lateral wall fixation when managing intertrochanteric fractures combined with lateral wall fractures.
Collapse
Affiliation(s)
- Yuntao Long
- The First Affiliated Hospital of Guangxi University of Science and Technology, Guangxi University of Science and Technology, Liuzhou, Guangxi Province, China
| | - Na Liu
- Tianjin Walkman Biomaterial Co., Ltd., Newton Laboratory, Tianjin, China
| | - Xiaomeng Huang
- The First Affiliated Hospital of Guangxi University of Science and Technology, Guangxi University of Science and Technology, Liuzhou, Guangxi Province, China
| | - Weiming Liang
- The First Affiliated Hospital of Guangxi University of Science and Technology, Guangxi University of Science and Technology, Liuzhou, Guangxi Province, China
| | - Jianke Liu
- Shandong First Medical University and Shandong Academy Medical Sciences, Jinan, Shandong, China
| | - Zhaozhao Huang
- Tianjin Walkman Biomaterial Co., Ltd., Newton Laboratory, Tianjin, China
| | - Yanhui Zhang
- Department of Orthopaedics, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
| | - Wen Wang
- Department of Orthopaedics, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
| |
Collapse
|
3
|
Lewiecki EM, Betah D, Humbert L, Libanati C, Oates M, Shi Y, Winzenrieth R, Ferrari S, Omura F. 3D-modeling from hip DXA shows improved bone structure with romosozumab followed by denosumab or alendronate. J Bone Miner Res 2024; 39:473-483. [PMID: 38477808 PMCID: PMC11262148 DOI: 10.1093/jbmr/zjae028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 11/22/2023] [Accepted: 12/15/2024] [Indexed: 03/14/2024]
Abstract
Romosozumab treatment in women with postmenopausal osteoporosis increases bone formation while decreasing bone resorption, resulting in large BMD gains to reduce fracture risk within 1 yr. DXA-based 3D modeling of the hip was used to assess estimated changes in cortical and trabecular bone parameters and map the distribution of 3D changes in bone parameters over time in patients from 2 randomized controlled clinical trials: FRAME (romosozumab vs placebo followed by denosumab) and ARCH (romosozumab vs alendronate followed by alendronate). For each study, data from a subset of ~200 women per treatment group who had TH DXA scans at baseline and months 12 and 24 and had provided consent for future research were analyzed post hoc. 3D-SHAPER software v2.11 (3D-SHAPER Medical) was used to generate patient-specific 3D models from TH DXA scans. Percentage changes from baseline to months 12 and 24 in areal BMD (aBMD), integral volumetric BMD (vBMD), cortical thickness, cortical vBMD, cortical surface BMD (sBMD), and trabecular vBMD were evaluated. Data from 377 women from FRAME (placebo, 190; romosozumab, 187) and 368 women from ARCH (alendronate, 185; romosozumab, 183) with evaluable 3D assessments at baseline and months 12 and 24 were analyzed. At month 12, treatment with romosozumab vs placebo in FRAME and romosozumab vs alendronate in ARCH resulted in greater increases in aBMD, integral vBMD, cortical thickness, cortical vBMD, cortical sBMD, and trabecular vBMD (P < .05 for all). At month 24, cumulative gains in all parameters were greater in the romosozumab-to-denosumab vs placebo-to-denosumab sequence and romosozumab-to-alendronate vs alendronate-to-alendronate sequence (P < .05 for all). 3D-SHAPER analysis provides a novel technique for estimating changes in cortical and trabecular parameters from standard hip DXA images. These data add to the accumulating evidence that romosozumab improves hip bone density and structure, thereby contributing to the antifracture efficacy of the drug.
Collapse
Affiliation(s)
- E Michael Lewiecki
- New Mexico Clinical Research & Osteoporosis Center, 300 Oak St NE, Albuquerque, NM 87106, United States
| | - Donald Betah
- Amgen Inc., One Amgen Center Drive, Thousand Oaks, CA 91320, United States
| | - Ludovic Humbert
- 3D-SHAPER Medical, Rambla de Catalunya, 53, 4-H, Eixample, 08007 Barcelona, Spain
| | - Cesar Libanati
- UCB Pharma, Allée de la Recherche, 60, Brussels B-1070, Belgium
| | - Mary Oates
- Amgen Inc., One Amgen Center Drive, Thousand Oaks, CA 91320, United States
| | - Yifei Shi
- Amgen Inc., One Amgen Center Drive, Thousand Oaks, CA 91320, United States
| | - Renaud Winzenrieth
- 3D-SHAPER Medical, Rambla de Catalunya, 53, 4-H, Eixample, 08007 Barcelona, Spain
| | - Serge Ferrari
- Division of Bone Diseases, University Hospital of Geneva, Geneva 1211, Switzerland
| | - Fumitoshi Omura
- Koenji Orthopedics Clinic, 4-29-2, Koenji minami, Suginami-ku, Tokyo, 166-0003, Japan
| |
Collapse
|
4
|
Ding K, Zhu Y, Li J, Yuwen P, Yang W, Zhang Y, Wang H, Ren C, Chen W, Zhang Q, Zhang Y. Age-related Changes with the Trabecular Bone of Ward's Triangle and Neck-shaft Angle in the Proximal Femur: A Radiographic Study. Orthop Surg 2023; 15:3279-3287. [PMID: 37853985 PMCID: PMC10694024 DOI: 10.1111/os.13923] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 09/13/2023] [Accepted: 09/15/2023] [Indexed: 10/20/2023] Open
Abstract
OBJECTIVE The Ward triangle is an important area used clinically to diagnose and assess osteoporosis and its fracture risk in the proximal femur. The main objective of this study was to investigate the rules of development and maturation of the trabeculae of Ward's triangle to provide a basis for the prevention and treatment proximal femur fracture. METHODS From January 2018 to December 2019, individuals from 4 months to 19 years old who underwent hip growth and development assessments at the Third Hospital of Hebei Medical University were selected retrospectively. The outpatient electronic medical record system was used to collect information such as age, gender, imaging images, and clinical diagnosis. The development score and maturity characteristics of the trabecular bone were analyzed using hip radiograph data. Correlation analysis was performed to identify the relationship among age, neck-shaft angle and development and maturity score of the trabecular bone. RESULTS A total of 941 patients were enrolled in this study, including 539 males and 402 females. Primary compression trabeculae were all present at 1 year of age and matured at 7 years of age and older; primary tension trabeculae were all present at 4 years of age and matured at 18 years of age. Secondary compression trabeculae were present at 4 years of age and matured at 18 years of age. In addition, the neck-shaft angle progressively decreases from 4 months to 14 years of age but barely changes between 15 and 19 years of age. CONCLUSION In short, the development and maturation of the trabeculae in the ward' triangle followed a specific temporal pattern that was related to the neck-shaft angle. Therefore, these findings can help us understand structure and mechanical characteristics of proximal femoral trabeculae, and improve our understanding of the mechanism and treatment of proximal femoral fractures.
Collapse
Affiliation(s)
- Kai Ding
- Department of Orthopaedic Surgery, Hebei Orthopaedic Clinical Research CenterThe Third Hospital of Hebei Medical UniversityShijiazhuangChina
- Key Laboratory of Biomechanics of Hebei ProvinceOrthopaedic Research Institute of Hebei ProvinceHebeiChina
- NHC Key Laboratory of Intelligent Orthopaedic Equipment (The Third Hospital of Hebei Medical University)ShijiazhuangChina
- Engineering Research Center of Orthopaedic Minimally Invasive Intelligent EquipmentMinistry of EducationShijiazhuangChina
| | - Yanbin Zhu
- Department of Orthopaedic Surgery, Hebei Orthopaedic Clinical Research CenterThe Third Hospital of Hebei Medical UniversityShijiazhuangChina
- Key Laboratory of Biomechanics of Hebei ProvinceOrthopaedic Research Institute of Hebei ProvinceHebeiChina
- NHC Key Laboratory of Intelligent Orthopaedic Equipment (The Third Hospital of Hebei Medical University)ShijiazhuangChina
- Engineering Research Center of Orthopaedic Minimally Invasive Intelligent EquipmentMinistry of EducationShijiazhuangChina
| | - Jiaxing Li
- Department of Orthopaedic Surgery, Hebei Orthopaedic Clinical Research CenterThe Third Hospital of Hebei Medical UniversityShijiazhuangChina
- Key Laboratory of Biomechanics of Hebei ProvinceOrthopaedic Research Institute of Hebei ProvinceHebeiChina
- NHC Key Laboratory of Intelligent Orthopaedic Equipment (The Third Hospital of Hebei Medical University)ShijiazhuangChina
- Engineering Research Center of Orthopaedic Minimally Invasive Intelligent EquipmentMinistry of EducationShijiazhuangChina
| | - Peizhi Yuwen
- Department of Orthopaedic Surgery, Hebei Orthopaedic Clinical Research CenterThe Third Hospital of Hebei Medical UniversityShijiazhuangChina
- Key Laboratory of Biomechanics of Hebei ProvinceOrthopaedic Research Institute of Hebei ProvinceHebeiChina
- NHC Key Laboratory of Intelligent Orthopaedic Equipment (The Third Hospital of Hebei Medical University)ShijiazhuangChina
- Engineering Research Center of Orthopaedic Minimally Invasive Intelligent EquipmentMinistry of EducationShijiazhuangChina
| | - Weijie Yang
- Department of Orthopaedic Surgery, Hebei Orthopaedic Clinical Research CenterThe Third Hospital of Hebei Medical UniversityShijiazhuangChina
- Key Laboratory of Biomechanics of Hebei ProvinceOrthopaedic Research Institute of Hebei ProvinceHebeiChina
- NHC Key Laboratory of Intelligent Orthopaedic Equipment (The Third Hospital of Hebei Medical University)ShijiazhuangChina
- Engineering Research Center of Orthopaedic Minimally Invasive Intelligent EquipmentMinistry of EducationShijiazhuangChina
| | - Yifan Zhang
- Department of Orthopaedic Surgery, Hebei Orthopaedic Clinical Research CenterThe Third Hospital of Hebei Medical UniversityShijiazhuangChina
- Key Laboratory of Biomechanics of Hebei ProvinceOrthopaedic Research Institute of Hebei ProvinceHebeiChina
- NHC Key Laboratory of Intelligent Orthopaedic Equipment (The Third Hospital of Hebei Medical University)ShijiazhuangChina
- Engineering Research Center of Orthopaedic Minimally Invasive Intelligent EquipmentMinistry of EducationShijiazhuangChina
| | - Haicheng Wang
- Department of Orthopaedic Surgery, Hebei Orthopaedic Clinical Research CenterThe Third Hospital of Hebei Medical UniversityShijiazhuangChina
- Key Laboratory of Biomechanics of Hebei ProvinceOrthopaedic Research Institute of Hebei ProvinceHebeiChina
- NHC Key Laboratory of Intelligent Orthopaedic Equipment (The Third Hospital of Hebei Medical University)ShijiazhuangChina
- Engineering Research Center of Orthopaedic Minimally Invasive Intelligent EquipmentMinistry of EducationShijiazhuangChina
| | - Chuan Ren
- Department of Orthopaedic Surgery, Hebei Orthopaedic Clinical Research CenterThe Third Hospital of Hebei Medical UniversityShijiazhuangChina
- Key Laboratory of Biomechanics of Hebei ProvinceOrthopaedic Research Institute of Hebei ProvinceHebeiChina
- NHC Key Laboratory of Intelligent Orthopaedic Equipment (The Third Hospital of Hebei Medical University)ShijiazhuangChina
- Engineering Research Center of Orthopaedic Minimally Invasive Intelligent EquipmentMinistry of EducationShijiazhuangChina
| | - Wei Chen
- Department of Orthopaedic Surgery, Hebei Orthopaedic Clinical Research CenterThe Third Hospital of Hebei Medical UniversityShijiazhuangChina
- Key Laboratory of Biomechanics of Hebei ProvinceOrthopaedic Research Institute of Hebei ProvinceHebeiChina
- NHC Key Laboratory of Intelligent Orthopaedic Equipment (The Third Hospital of Hebei Medical University)ShijiazhuangChina
- Engineering Research Center of Orthopaedic Minimally Invasive Intelligent EquipmentMinistry of EducationShijiazhuangChina
| | - Qi Zhang
- Department of Orthopaedic Surgery, Hebei Orthopaedic Clinical Research CenterThe Third Hospital of Hebei Medical UniversityShijiazhuangChina
- Key Laboratory of Biomechanics of Hebei ProvinceOrthopaedic Research Institute of Hebei ProvinceHebeiChina
- NHC Key Laboratory of Intelligent Orthopaedic Equipment (The Third Hospital of Hebei Medical University)ShijiazhuangChina
- Engineering Research Center of Orthopaedic Minimally Invasive Intelligent EquipmentMinistry of EducationShijiazhuangChina
| | - Yingze Zhang
- Department of Orthopaedic Surgery, Hebei Orthopaedic Clinical Research CenterThe Third Hospital of Hebei Medical UniversityShijiazhuangChina
- Key Laboratory of Biomechanics of Hebei ProvinceOrthopaedic Research Institute of Hebei ProvinceHebeiChina
- NHC Key Laboratory of Intelligent Orthopaedic Equipment (The Third Hospital of Hebei Medical University)ShijiazhuangChina
- Engineering Research Center of Orthopaedic Minimally Invasive Intelligent EquipmentMinistry of EducationShijiazhuangChina
- Chinese Academy of EngineeringBingjiaokou HutongBejingChina
| |
Collapse
|
5
|
Emerzian SR, Wu T, Vaidya R, Tang SY, Abergel RJ, Keaveny TM. Relative Effects of Radiation-Induced Changes in Bone Mass, Structure, and Tissue Material on Vertebral Strength in a Rat Model. J Bone Miner Res 2023; 38:1032-1042. [PMID: 37191221 PMCID: PMC10524463 DOI: 10.1002/jbmr.4828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 04/06/2023] [Accepted: 05/07/2023] [Indexed: 05/17/2023]
Abstract
The observed increased risk of fracture after cancer radiation therapy is presumably due to a radiation-induced reduction in whole-bone strength. However, the mechanisms for impaired strength remain unclear, as the increased fracture risk is not fully explained by changes in bone mass. To provide insight, a small animal model was used to determine how much of this whole-bone weakening effect for the spine is attributable to changes in bone mass, structure, and material properties of the bone tissue and their relative effects. Further, because women have a greater risk of fracture after radiation therapy than men, we investigated if sex had a significant influence on bone's response to irradiation. Fractionated in vivo irradiation (10 × 3 Gy) or sham irradiation (0 Gy) was administered daily to the lumbar spine in twenty-seven 17-week-old Sprague-Dawley rats (n = 6-7/sex/group). Twelve weeks after final treatment, animals were euthanized, and lumbar vertebrae (L4 and L5 ) were isolated. Using a combination of biomechanical testing, micro-CT-based finite element analysis, and statistical regression analysis, we separated out the effect of mass, structural, and tissue material changes on vertebral strength. Compared with the sham group (mean ± SD strength = 420 ± 88 N), the mean strength of the irradiated group was lower by 28% (117 N/420 N, p < 0.0001). Overall, the response of treatment did not differ with sex. By combining results from both general linear regression and finite element analyses, we calculated that mean changes in bone mass, structure, and material properties of the bone tissue accounted for 56% (66 N/117 N), 20% (23 N/117 N), and 24% (28 N/117 N), respectively, of the overall change in strength. As such, these results provide insight into why an elevated clinical fracture risk for patients undergoing radiation therapy is not well explained by changes in bone mass alone. © 2023 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Shannon R. Emerzian
- Department of Mechanical Engineering, University of
California, Berkeley, California, USA
| | - Tongge Wu
- Department of Mechanical Engineering, University of
California, Berkeley, California, USA
| | - Rachana Vaidya
- Department of Orthopaedic Surgery, Washington University,
St. Louis, Missouri, USA
| | - Simon Y. Tang
- Department of Orthopaedic Surgery, Washington University,
St. Louis, Missouri, USA
- Department of Biomedical Engineering, Washington
University, St. Louis, Missouri, USA
- Department of Material Science & Mechanical
Engineering, Washington University, St. Louis, Missouri, USA
| | - Rebecca J. Abergel
- Department of Nuclear Engineering, University of
California, Berkeley, California, USA
| | - Tony M. Keaveny
- Department of Mechanical Engineering, University of
California, Berkeley, California, USA
- Department of Bioengineering, University of California,
Berkeley, California, USA
| |
Collapse
|
6
|
Biomechanical properties and clinical significance of cancellous bone in proximal femur: A review. Injury 2023:S0020-1383(23)00251-6. [PMID: 36922271 DOI: 10.1016/j.injury.2023.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 02/26/2023] [Accepted: 03/06/2023] [Indexed: 03/18/2023]
Abstract
Trabecular bone plays an important role in the load-bearing capacity of the femur. Understanding the structural characteristics, biomechanics, and mechanical conduction of the trabecular bone is of great value in studying the mechanism of fractures and formulating surgical plans. The past decade has witnessed unprecedented progress in imaging, biomechanics and finite element analysis techniques, translating into a better understanding of trabecular bone. This article reviews the research progress achieved over the years regarding femoral trabecular bone, especially on factors influencing the strength of the proximal femoral cancellous bone and cancellous bone microfractures and provides a comprehensive overview of the latest findings on proximal femoral trabecular bone and their clinical significance.
Collapse
|
7
|
Jepsen KJ, Bigelow EMR, Casden MA, Goulet RW, Kennedy K, Hertz S, Kadur C, Nolan BT, Richards‐McCullough K, Merillat S, Karvonen‐Gutierrez CA, Clines G, Bredbenner TL. Associations Among Hip Structure, Bone Mineral Density, and Strength Vary With External Bone Size in White Women. JBMR Plus 2023; 7:e10715. [PMID: 36936363 PMCID: PMC10020918 DOI: 10.1002/jbm4.10715] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 12/01/2022] [Accepted: 12/12/2022] [Indexed: 12/29/2022] Open
Abstract
Bone mineral density (BMD) is heavily relied upon to reflect structural changes affecting hip strength and fracture risk. Strong correlations between BMD and strength are needed to provide confidence that structural changes are reflected in BMD and, in turn, strength. This study investigated how variation in bone structure gives rise to variation in BMD and strength and tested whether these associations differ with external bone size. Cadaveric proximal femurs (n = 30, White women, 36-89+ years) were imaged using nanocomputed tomography (nano-CT) and loaded in a sideways fall configuration to assess bone strength and brittleness. Bone voxels within the nano-CT images were projected onto a plane to create pseudo dual-energy X-ray absorptiometry (pseudo-DXA) images consistent with a clinical DXA scan. A validation study using 19 samples confirmed pseudo-DXA measures correlated significantly with those measured from a commercially available DXA system, including bone mineral content (BMC) (R 2 = 0.95), area (R 2 = 0.58), and BMD (R 2 = 0.92). BMD-strength associations were conducted using multivariate linear regression analyses with the samples divided into narrow and wide groups by pseudo-DXA area. Nearly 80% of the variation in strength was explained by age, body weight, and pseudo-DXA BMD for the narrow subgroup. Including additional structural or density distribution information in regression models only modestly improved the correlations. In contrast, age, body weight, and pseudo-DXA BMD explained only half of the variation in strength for the wide subgroup. Including bone density distribution or structural details did not improve the correlations, but including post-yield deflection (PYD), a measure of bone material brittleness, did increase the coefficient of determination to more than 70% for the wide subgroup. This outcome suggested material level effects play an important role in the strength of wide femoral necks. Thus, the associations among structure, BMD, and strength differed with external bone size, providing evidence that structure-function relationships may be improved by judiciously sorting study cohorts into subgroups. © 2022 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Karl J Jepsen
- Department of Orthopaedic Surgery (Medical School) and Department of Epidemiology (Public Health)University of MichiganAnn ArborMIUSA
| | - Erin MR Bigelow
- Department of Orthopaedic Surgery (Medical School) and Department of Epidemiology (Public Health)University of MichiganAnn ArborMIUSA
| | - Michael A Casden
- Department of Orthopaedic Surgery (Medical School) and Department of Epidemiology (Public Health)University of MichiganAnn ArborMIUSA
| | - Robert W Goulet
- Department of Orthopaedic Surgery (Medical School) and Department of Epidemiology (Public Health)University of MichiganAnn ArborMIUSA
| | - Kathryn Kennedy
- Department of Biomedical EngineeringMarquette UniversityMilwaukeeWIUSA
| | - Samantha Hertz
- Department of Orthopaedic Surgery (Medical School) and Department of Epidemiology (Public Health)University of MichiganAnn ArborMIUSA
| | - Chandan Kadur
- Department of Orthopaedic Surgery (Medical School) and Department of Epidemiology (Public Health)University of MichiganAnn ArborMIUSA
| | - Bonnie T Nolan
- Department of Orthopaedic Surgery (Medical School) and Department of Epidemiology (Public Health)University of MichiganAnn ArborMIUSA
| | - Kerry Richards‐McCullough
- Department of Orthopaedic Surgery (Medical School) and Department of Epidemiology (Public Health)University of MichiganAnn ArborMIUSA
| | - Steffenie Merillat
- Department of Orthopaedic Surgery (Medical School) and Department of Epidemiology (Public Health)University of MichiganAnn ArborMIUSA
| | - Carrie A Karvonen‐Gutierrez
- Department of Orthopaedic Surgery (Medical School) and Department of Epidemiology (Public Health)University of MichiganAnn ArborMIUSA
| | - Gregory Clines
- Department of Orthopaedic Surgery (Medical School) and Department of Epidemiology (Public Health)University of MichiganAnn ArborMIUSA
- EndocrinologyVA Medical CenterAnn ArborMIUSA
| | - Todd L Bredbenner
- Department of Mechanical and Aerospace EngineeringUniversity of Colorado Colorado SpringsColorado SpringsCOUSA
| |
Collapse
|
8
|
Xia N, Cai Y, Kan Q, Xiao J, Cui L, Zhou J, Xu W, Liu D. The role of microscopic properties on cortical bone strength of femoral neck. BMC Musculoskelet Disord 2023; 24:133. [PMID: 36803341 PMCID: PMC9940427 DOI: 10.1186/s12891-023-06248-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 02/17/2023] [Indexed: 02/22/2023] Open
Abstract
BACKGROUND Femoral neck fractures are serious consequence of osteoporosis (OP), numbers of people are working on the micro-mechanisms of femoral neck fractures. This study aims to investigate the role and weight of microscopic properties on femoral neck maximum load (Lmax), funding the indicator which effects Lmax most. METHODS A total of 115 patients were recruited from January 2018 to December 2020. Femoral neck samples were collected during the total hip replacement surgery. Femoral neck Lmax, micro-structure, micro-mechanical properties, micro-chemical composition were all measured and analyzed. Multiple linear regression analyses were performed to identify significant factors that affected the femoral neck Lmax. RESULTS The Lmax, cortical bone mineral density (cBMD), cortical bone thickness (Ct. Th), elastic modulus, hardness and collagen cross-linking ratio were all significantly decreased, whereas other parameters were significantly increased during the progression of OP (P < 0.05). In micro-mechanical properties, elastic modulus has the strongest correlation with Lmax (P < 0.05). The cBMD has the strongest association with Lmax in micro-structure (P < 0.05). In micro-chemical composition, crystal size has the strongest correlation with Lmax (P < 0.05). Multiple linear regression analysis showed that elastic modulus was most strongly related to Lmax (β = 0.920, P = 0.000). CONCLUSIONS Compared with other parameters, elastic modulus has the greatest influence on Lmax. Evaluation of microscopic parameters on femoral neck cortical bone can clarify the effects of microscopic properties on Lmax, providing a theoretical basis for the femoral neck OP and fragility fractures.
Collapse
Affiliation(s)
- Ning Xia
- Department of Orthopedics, The General Hospital of Western Theater Command, Chengdu, 610083 China
| | - Yun Cai
- grid.443397.e0000 0004 0368 7493Department of Critical Care Medicine, The Second Affiliated Hospital of Hainan Medical University, Haikou, 570311 China
| | - Qianhua Kan
- grid.263901.f0000 0004 1791 7667School of Mechanics and Aerospace Engineering, Southwest Jiaotong University, Chengdu, 611756 China
| | - Jian Xiao
- Department of Endocrinology, The General Hospital of Western Theater Command, Chengdu, 610083 China
| | - Lin Cui
- Department of Orthopedics, The General Hospital of Western Theater Command, Chengdu, 610083 China
| | - Jiangjun Zhou
- Department of Orthopedic, The 908Th Hospital of Joint Logistic Support Force of PLA, Nanchang, 330001 China
| | - Wei Xu
- Trauma Center, The General Hospital of Western Theater Command, Chengdu, 610083, China.
| | - Da Liu
- Department of Orthopedics, The General Hospital of Western Theater Command, Chengdu, 610083, China.
| |
Collapse
|
9
|
Shao X, Dou M, Yang Q, Li J, Zhang A, Yao Y, Chu Q, Li K, Li Z. Reconstruction of massive bone defects after femoral tumor resection using two new-designed 3D-printed intercalary prostheses: a clinical analytic study with the cooperative utilization of multiple technologies. BMC Musculoskelet Disord 2023; 24:67. [PMID: 36698116 PMCID: PMC9875495 DOI: 10.1186/s12891-023-06171-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 01/17/2023] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND To reconstruct massive bone defects of the femoral diaphysis and proximal end with limited bilateral cortical bone after joint-preserving musculoskeletal tumor resections, two novel 3D-printed customized intercalary femoral prostheses were applied. METHODS A series of nine patients with malignancies who received these novel 3D-printed prostheses were retrospectively studied between July 2018 and November 2021. The proximal and diaphyseal femur was divided into three regions of interest (ROIs) according to anatomic landmarks, and anatomic measurements were conducted on 50 computed tomography images showing normal femurs. Based on the individual implant-involved ROIs, osteotomy level, and anatomical and biomechanical features, two alternative 3D-printed prostheses were designed. In each patient, Hounsfield Unit (HU) value thresholding and finite element analysis were conducted to identify the bone trabecula and calcar femorale and to determine the stress distribution, respectively. We described the characteristics of each prosthesis and surgical procedure and recorded the intraoperative data. All patients underwent regular postoperative follow-up, in which the clinical, functional and radiographical outcomes were evaluated. RESULTS With the ROI division and radiographic measurements, insufficient bilateral cortical bones for anchoring the traditional stem were verified in the normal proximal femur. Therefore, two 3D-printed intercalary endoprostheses, a Type A prosthesis with a proximal curved stem and a Type B prosthesis with a proximal anchorage-slot and corresponding locking screws, were designed. Based on HU value thresholding and finite element analysis, the 3D-printed proximal stems in all prostheses maximally preserved the trabecular bone and calcar femorale and optimized the biomechanical distribution, as did the proximal screws. With the 3D-printed osteotomy guide plates and reaming guide plates, all patients underwent the operation uneventfully with a satisfactory duration (325.00 ± 62.60 min) and bleeding volume (922.22 ± 222.36 ml). In the follow-up, Harris Hip and Musculoskeletal Tumor Society scores were ameliorated after surgery (P < 0.001 and P < 0.001, respectively), reliable bone ingrowth was observed, and no major complications occurred. CONCLUSIONS Two novel 3D-printed femoral intercalary prostheses, which achieved acceptable overall postoperative outcomes, were used as appropriate alternatives for oncologic patients with massive bone defects and limited residual bone and increased the opportunities for joint-preserving tumor resection. Several scientific methodologies utilized in this study may promote the clinical design proposals of 3D-printed implants.
Collapse
Affiliation(s)
- Xianhao Shao
- grid.460018.b0000 0004 1769 9639Department of Orthopaedics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021 Shandong China
| | - Mengmeng Dou
- Department of Orthopaedics, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012 China ,grid.417024.40000 0004 0605 6814Department of Biomedical Engineering, Tianjin First Central Hospital, Tianjin, 300070 China
| | - Qiang Yang
- Department of Orthopaedics, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012 China
| | - Jianmin Li
- Department of Orthopaedics, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012 China
| | - Ailin Zhang
- grid.417021.10000 0004 0627 7561Physiotherapy department, Acute Neurosciences, the Wesley Hospital, 451 Coronation Drive, Auchenflower, QLD 4066 Australia
| | - Yuan Yao
- Department of Radiography, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012 China
| | - Qing Chu
- grid.415105.40000 0004 9430 5605State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Centre for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037 China ,grid.415105.40000 0004 9430 5605Department of Cardiac Surgery, Fuwai Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100037 China
| | - Ka Li
- Department of Orthopaedics, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012 China
| | - Zhenfeng Li
- Department of Orthopaedics, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012 China
| |
Collapse
|
10
|
Chanpaisaeng K, Reyes‐Fernandez PC, Dilkes B, Fleet JC. Diet X Gene Interactions Control Femoral Bone Adaptation to Low Dietary Calcium. JBMR Plus 2022; 6:e10668. [PMID: 36111202 PMCID: PMC9465001 DOI: 10.1002/jbm4.10668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 06/29/2022] [Accepted: 07/22/2022] [Indexed: 11/12/2022] Open
Abstract
Genetics and dietary calcium (Ca) are each critical regulators of peak bone mass but it is unclear how genetics alters the physiologic response of bone to dietary Ca restriction (RCR). Here, we conducted genetic mapping in C57BL/6J × DBA/2J (BXD) recombinant inbred mouse lines to identify environmentally sensitive loci controlling whole-bone mass (bone mineral density [BMD], bone mineral content [BMC]), distal trabecular bone, and cortical bone midshaft of the femur. Mice were fed adequate (basal) or low Ca diets from 4-12 weeks of age. Femurs were then examined by dual-energy X-ray absorptiometry (DXA) and micro-computed tomography (μCT). Body size-corrected residuals were used for statistical analysis, genetic mapping, and to estimate narrow sense heritability (h2). Genetics had a strong impact on femoral traits (eg, bone volume fraction [BV/TV] basal Ca, h2 = 0.60) as well as their RCR (eg, BV/TV, h2 = 0.32). Quantitative trait locus (QTL) mapping identified up to six loci affecting each bone trait. A subset of loci was detected in both diet groups, providing replication of environmentally robust genetic effects. Several loci control multiple bone phenotypes suggesting the existence of genetic pleiotropy. QTL controlling the bone RCR did not overlap with basal diet QTL, demonstrating genetic independence of those traits. Candidate genes underlying select multi-trait loci were prioritized by protein coding effects or gene expression differences in bone cells. These include candidate alleles in Rictor (chromosome [chr] 15) and Egfl7 (chr 2) at loci affecting bone in the basal or low Ca groups and in Msr1 (chr 8), Apc, and Camk4 (chr 18) at loci affecting RCR. By carefully controlling dietary Ca and measuring traits in age-matched mice we identified novel genetic loci determining bone mass/microarchitecture of the distal femur as well as their physiologic adaptation to inadequate dietary Ca intake. © 2022 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Krittikan Chanpaisaeng
- Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA)Pathum ThaniThailand
| | - Perla C. Reyes‐Fernandez
- School of Health and Human Sciences, Department of Physical TherapyIndiana University–Purdue University IndianapolisIndianapolisINUSA
| | - Brian Dilkes
- Center for Plant BiologyPurdue UniversityWest LafayetteINUSA
- Department of BiochemistryPurdue UniversityWest LafayetteINUSA
| | - James C. Fleet
- Department of Nutritional Sciences and the Dell Pediatric Research InstituteUniversity of TexasAustinTXUSA
| |
Collapse
|
11
|
Ding K, Zhu Y, Li Y, Wang H, Cheng X, Yang W, Zhang Y, Chen W, Zhang Q. Triangular support intramedullary nail: A new internal fixation innovation for treating intertrochanteric fracture and its finite element analysis. Injury 2022; 53:1796-1804. [PMID: 35354529 DOI: 10.1016/j.injury.2022.03.032] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 02/13/2022] [Accepted: 03/18/2022] [Indexed: 02/02/2023]
Abstract
BACKGROUND Proximal femoral nail anti-rotation (PFNA) and Gamma nail were recommended for intertrochanteric fracture, however, with high rate of post-operation complications. The triangular support intramedullary nail (TSIN) was designed to reduce the risk of postoperative complications related to Gamma nail and PFNA, and the aim is to compare the biomechanical characters of Gamma nail, PFNA and TSIN for fixation of intertrochanteric fracture and prove the rationality of the concept of triangle fixation in the treatment of intertrochanteric fractures. METHODS The finite element model of proximal femur was constructed according to the CT data of femur. Intertrochanteric fracture models with Evans type Ⅰ and Ⅳ were established and fixed with Gamma nail, PFNA and TSIN by UG-NX 12.0. The finite element analysis software was used to compare the stress distribution and displacement of three implants fixation models. RESULTS Under axial loading of 600 N, the peak stress and maximum displacement of intact proximal femur was 13.78 MPa and 1.33 mm, respectively. The maximum stress of TSIN for fixation of Evans type Ⅰ and Ⅳ intertrochanteric fractures was 86.23 MPa and 160.63 MPa which was significantly lower than that of Gamma nail and PFNA. The maximum relative displacement of fracture section in Gamma nail and PFNA fixation models was 0.18 mm and 0.19 mm which has 135% and 148% higher than in TSIN fixation models for fixing Evans type Ⅰ intertrochanteric fracture, and 0.47 mm and 0.59 mm which has 91% and 140% higher than in TSIN fixation models for stabilization of Evans type Ⅳ intertrochanteric fracture. CONCLUSION Compared with Gamma nail and PFNA fixation, TSIN has superior advantages in stress distribution and construct stability. We believe that triangle fixation concept help to reduce the risk of post-operative complications associated with PFNA and Gamma nail and improve the clinical effect of intertrochanteric fracture.
Collapse
Affiliation(s)
- Kai Ding
- Trauma Emergency Center, The Third Hospital of Hebei Medical University, No.139 Ziqiang Road, Shijiazhuang, Hebei 050051, PR China; Key Laboratory of Biomechanics of Hebei Province, Orthopaedic Research Institute of Hebei Province, Shijiazhuang, Hebei 050051, PR China
| | - Yanbin Zhu
- Trauma Emergency Center, The Third Hospital of Hebei Medical University, No.139 Ziqiang Road, Shijiazhuang, Hebei 050051, PR China; Key Laboratory of Biomechanics of Hebei Province, Orthopaedic Research Institute of Hebei Province, Shijiazhuang, Hebei 050051, PR China
| | - Yonglong Li
- Trauma Emergency Center, The Third Hospital of Hebei Medical University, No.139 Ziqiang Road, Shijiazhuang, Hebei 050051, PR China; Key Laboratory of Biomechanics of Hebei Province, Orthopaedic Research Institute of Hebei Province, Shijiazhuang, Hebei 050051, PR China
| | - Haicheng Wang
- Trauma Emergency Center, The Third Hospital of Hebei Medical University, No.139 Ziqiang Road, Shijiazhuang, Hebei 050051, PR China; Key Laboratory of Biomechanics of Hebei Province, Orthopaedic Research Institute of Hebei Province, Shijiazhuang, Hebei 050051, PR China
| | - Xiaodong Cheng
- Trauma Emergency Center, The Third Hospital of Hebei Medical University, No.139 Ziqiang Road, Shijiazhuang, Hebei 050051, PR China; Key Laboratory of Biomechanics of Hebei Province, Orthopaedic Research Institute of Hebei Province, Shijiazhuang, Hebei 050051, PR China
| | - Weijie Yang
- Trauma Emergency Center, The Third Hospital of Hebei Medical University, No.139 Ziqiang Road, Shijiazhuang, Hebei 050051, PR China; Key Laboratory of Biomechanics of Hebei Province, Orthopaedic Research Institute of Hebei Province, Shijiazhuang, Hebei 050051, PR China
| | - Yingze Zhang
- Trauma Emergency Center, The Third Hospital of Hebei Medical University, No.139 Ziqiang Road, Shijiazhuang, Hebei 050051, PR China; Key Laboratory of Biomechanics of Hebei Province, Orthopaedic Research Institute of Hebei Province, Shijiazhuang, Hebei 050051, PR China; NHC Key Laboratory of Intelligent Orthopeadic Equipment (The Third Hospital of Hebei Medical University), PR China; Chinese Academy of Engineering, Beijing, PR China
| | - Wei Chen
- Trauma Emergency Center, The Third Hospital of Hebei Medical University, No.139 Ziqiang Road, Shijiazhuang, Hebei 050051, PR China; Key Laboratory of Biomechanics of Hebei Province, Orthopaedic Research Institute of Hebei Province, Shijiazhuang, Hebei 050051, PR China; NHC Key Laboratory of Intelligent Orthopeadic Equipment (The Third Hospital of Hebei Medical University), PR China
| | - Qi Zhang
- Trauma Emergency Center, The Third Hospital of Hebei Medical University, No.139 Ziqiang Road, Shijiazhuang, Hebei 050051, PR China; Key Laboratory of Biomechanics of Hebei Province, Orthopaedic Research Institute of Hebei Province, Shijiazhuang, Hebei 050051, PR China.
| |
Collapse
|
12
|
Brown JP, Engelke K, Keaveny TM, Chines A, Chapurlat R, Foldes AJ, Nogues X, Civitelli R, De Villiers T, Massari F, Zerbini CAF, Wang Z, Oates MK, Recknor C, Libanati C. Romosozumab improves lumbar spine bone mass and bone strength parameters relative to alendronate in postmenopausal women: results from the Active-Controlled Fracture Study in Postmenopausal Women With Osteoporosis at High Risk (ARCH) trial. J Bone Miner Res 2021; 36:2139-2152. [PMID: 34190361 PMCID: PMC9292813 DOI: 10.1002/jbmr.4409] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 06/16/2021] [Accepted: 06/25/2021] [Indexed: 01/20/2023]
Abstract
The Active-Controlled Fracture Study in Postmenopausal Women With Osteoporosis at High Risk (ARCH) trial (NCT01631214; https://clinicaltrials.gov/ct2/show/NCT01631214) showed that romosozumab for 1 year followed by alendronate led to larger areal bone mineral density (aBMD) gains and superior fracture risk reduction versus alendronate alone. aBMD correlates with bone strength but does not capture all determinants of bone strength that might be differentially affected by various osteoporosis therapeutic agents. We therefore used quantitative computed tomography (QCT) and finite element analysis (FEA) to assess changes in lumbar spine volumetric bone mineral density (vBMD), bone volume, bone mineral content (BMC), and bone strength with romosozumab versus alendronate in a subset of ARCH patients. In ARCH, 4093 postmenopausal women with severe osteoporosis received monthly romosozumab 210 mg sc or weekly oral alendronate 70 mg for 12 months, followed by open-label weekly oral alendronate 70 mg for ≥12 months. Of these, 90 (49 romosozumab, 41 alendronate) enrolled in the QCT/FEA imaging substudy. QCT scans at baseline and at months 6, 12, and 24 were assessed to determine changes in integral (total), cortical, and trabecular lumbar spine vBMD and corresponding bone strength by FEA. Additional outcomes assessed include changes in aBMD, bone volume, and BMC. Romosozumab caused greater gains in lumbar spine integral, cortical, and trabecular vBMD and BMC than alendronate at months 6 and 12, with the greater gains maintained upon transition to alendronate through month 24. These improvements were accompanied by significantly greater increases in FEA bone strength (p < 0.001 at all time points). Most newly formed bone was accrued in the cortical compartment, with romosozumab showing larger absolute BMC gains than alendronate (p < 0.001 at all time points). In conclusion, romosozumab significantly improved bone mass and bone strength parameters at the lumbar spine compared with alendronate. These results are consistent with greater vertebral fracture risk reduction observed with romosozumab versus alendronate in ARCH and provide insights into structural determinants of this differential treatment effect. © 2021 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Jacques P Brown
- Centre Hospitalier Universitaire (CHU) de Québec Research Centre, Department of Medicine, Rheumatology Division, Laval University, Quebec City, Québec, Canada
| | - Klaus Engelke
- Bioclinica, Hamburg, Germany.,Department of Medicine 3, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Tony M Keaveny
- Departments of Mechanical Engineering and Bioengineering, University of California Berkeley, Berkeley, California, USA
| | | | - Roland Chapurlat
- Institut National de la Santé et de la Recherche Médicale (INSERM) Unités Mixtes de Recherche (UMR) 1033, Université de Lyon, Hôpital E Herriot, Lyon, France
| | - A Joseph Foldes
- Osteoporosis Center, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Xavier Nogues
- Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable (CIBERFES), Autonomous University of Barcelona, Barcelona, Spain
| | - Roberto Civitelli
- Musculoskeletal Research Center, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Tobias De Villiers
- Department of Obstetrics and Gynaecology, Stellenbosch University, Stellenbosch, South Africa
| | - Fabio Massari
- Instituto de Diagnóstico e Investigaciones Metabólicas, Buenos Aires, Argentina
| | | | | | | | | | | |
Collapse
|
13
|
Pisano AA, Fuschi P. Limit analysis of human proximal femur. J Mech Behav Biomed Mater 2021; 124:104844. [PMID: 34601433 DOI: 10.1016/j.jmbbm.2021.104844] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 09/03/2021] [Accepted: 09/15/2021] [Indexed: 10/20/2022]
Abstract
A limit analysis numerical approach oriented to predict the peak/collapse load of human proximal femur, under two different loading conditions, is presented. A yield criterion of Tsai-Hu-type, expressed in principal stress space, is used to model the orthotropic bone tissues. A simplified human femur 3D model is envisaged to carry on numerical simulation of in-vitro tests borrowed from the relevant literature and to reproduce their findings. A critical discussion, together with possible future developments, is presented.
Collapse
Affiliation(s)
- A A Pisano
- University Mediterranea of Reggio Calabria, Via dell'Universitá 25, I-89124 Reggio Calabria, Italy.
| | - P Fuschi
- University Mediterranea of Reggio Calabria, Via dell'Universitá 25, I-89124 Reggio Calabria, Italy
| |
Collapse
|
14
|
The Role of Vertebral Porosity and Implant Loading Mode on Bone-Tissue Stress in the Human Vertebral Body Following Lumbar Total Disc Arthroplasty. Spine (Phila Pa 1976) 2021; 46:E1022-E1030. [PMID: 33660678 DOI: 10.1097/brs.0000000000004023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN Micro-computed tomography- (micro-CT-) based finite element analysis of cadaveric human lumbar vertebrae virtually implanted with total disc arthroplasty (TDA) implants. OBJECTIVE (1) Assess the relationship between vertebral porosity and maximum levels of bone-tissue stress following TDA; (2) determine whether the implant's loading mode (axial compression vs. sagittal bending) alters the relationship between vertebral porosity and bone-tissue stress. SUMMARY OF BACKGROUND DATA Implant subsidence may be related to the bone biomechanics in the underlying vertebral body, which are poorly understood. For example, it remains unclear how the stresses that develop in the supporting bone tissue depend on the implant's loading mode or on typical inter-individual variations in vertebral morphology. METHODS Data from micro-CT scans from 12 human lumbar vertebrae (8 males, 4 females; 51-89 years of age; bone volume fraction [BV/TV] = 0.060-0.145) were used to construct high-resolution finite element models (37 μm element edge length) comprising disc-vertebra-implant motion segments. Implants were loaded to 800 N of force in axial compression, flexion-, and extension-induced impingement. For comparison, the same net loads were applied via an intact disc without an implant. Linear regression was used to assess the relationship between BV/TV, loading mode, and the specimen-specific change in stress caused by implantation. RESULTS The increase in maximum bone-tissue stress caused by implantation depended on loading mode (P < 0.001), increasing more in bending-induced impingement than axial compression (for the same applied force). The change in maximum stress was significantly associated with BV/TV (P = 0.002): higher porosity vertebrae experienced a disproportionate increase in stress compared with lower porosity vertebrae. There was a significant interaction between loading mode and BV/TV (P = 0.002), indicating that loading mode altered the relationship between BV/TV and the change in maximum bone-tissue stress. CONCLUSION Typically-sized TDA implants disproportionately increase the bone-tissue stress in more porous vertebrae; this affect is accentuated when the implant impinges in sagittal bending.Level of Evidence: N/A.
Collapse
|
15
|
Ding K, Yang W, Zhu J, Cheng X, Wang H, Hao D, Yinuo S, Zhu Y, Zhang Y, Chen W, Zhang Q. Titanium alloy cannulated screws and biodegradable magnesium alloy bionic cannulated screws for treatment of femoral neck fractures: a finite element analysis. J Orthop Surg Res 2021; 16:511. [PMID: 34407833 PMCID: PMC8371795 DOI: 10.1186/s13018-021-02665-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 08/11/2021] [Indexed: 01/13/2023] Open
Abstract
Background Cannulated screws (CS) are one of the most widely used treatments for femoral neck fracture, however, associated with high rate of complications. In this study, we designed a new type of cannulated screws called degradable magnesium alloy bionic cannulated screws (DMBCS) and our aim was to compare the biomechanical properties of DMBCS, the traditionally used titanium alloy bionic cannulated screws (TBCS) and titanium alloy cannulated screws (TTCS). Methods A proximal femur model was established based on CT data of a lower extremity from a voluntary healthy man. Garden type III femoral neck fracture was constructed and fixed with DMBCS, TBCS, and TTCS, respectively. Biomechanical effect which three type of CS models have on femoral neck fracture was evaluated and compared using von Mises stress distribution and displacement. Results In the normal model, the maximum stress value of cortical bone and cancellous bone was 76.18 and 6.82 MPa, and the maximum displacement was 5.52 mm. Under 3 different fracture healing status, the stress peak value of the cortical bone and cancellous bone in the DMBCS fixation model was lower than that in the TTCS and TBCS fixation, while the maximum displacement of DMBCS fixation model was slightly higher than that of TTCS and TBCS fixation models. As the fracture heals, stress peak value of the screws and cortical bone of intact models are decreasing, while stress peak value of cancellous bone is increasing initially and then decreasing. Conclusions The DMBCS exhibits the superior biomechanical performance than TTCS and TBCS, whose fixation model is closest to the normal model in stress distribution. DMBCS is expected to reduce the rates of post-operative complications with traditional internal fixation and provide practical guidance for the structural design of CS for clinical applications.
Collapse
Affiliation(s)
- Kai Ding
- Trauma Emergency Center, Key Laboratory of Biomechanics and Orthopaedic Research Institute of Hebei Province, The Third Hospital of Hebei Medical University, No.139 Ziqiang Road, Shijiazhuang, 050051, Hebei, People's Republic of China
| | - Weijie Yang
- Trauma Emergency Center, Key Laboratory of Biomechanics and Orthopaedic Research Institute of Hebei Province, The Third Hospital of Hebei Medical University, No.139 Ziqiang Road, Shijiazhuang, 050051, Hebei, People's Republic of China
| | - Jian Zhu
- School of Medicine, Nankai University, Tianjin, 300071, People's Republic of China
| | - Xiaodong Cheng
- Trauma Emergency Center, Key Laboratory of Biomechanics and Orthopaedic Research Institute of Hebei Province, The Third Hospital of Hebei Medical University, No.139 Ziqiang Road, Shijiazhuang, 050051, Hebei, People's Republic of China
| | - Haicheng Wang
- Trauma Emergency Center, Key Laboratory of Biomechanics and Orthopaedic Research Institute of Hebei Province, The Third Hospital of Hebei Medical University, No.139 Ziqiang Road, Shijiazhuang, 050051, Hebei, People's Republic of China
| | - Du Hao
- The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, 471003, China
| | - Song Yinuo
- Yanjing Medical College, Capital Medical University, Beijing, China
| | - Yanbin Zhu
- Trauma Emergency Center, Key Laboratory of Biomechanics and Orthopaedic Research Institute of Hebei Province, The Third Hospital of Hebei Medical University, No.139 Ziqiang Road, Shijiazhuang, 050051, Hebei, People's Republic of China
| | - Yingze Zhang
- Trauma Emergency Center, Key Laboratory of Biomechanics and Orthopaedic Research Institute of Hebei Province, The Third Hospital of Hebei Medical University, No.139 Ziqiang Road, Shijiazhuang, 050051, Hebei, People's Republic of China. .,Chinese Academy of Engineering, Beijing, 100088, People's Republic of China. .,NHC Key Laboratory of Intelligent Orthopeadic Equipment (The Third Hospital of Hebei Medical University), Shijiazhuang, China.
| | - Wei Chen
- Trauma Emergency Center, Key Laboratory of Biomechanics and Orthopaedic Research Institute of Hebei Province, The Third Hospital of Hebei Medical University, No.139 Ziqiang Road, Shijiazhuang, 050051, Hebei, People's Republic of China. .,NHC Key Laboratory of Intelligent Orthopeadic Equipment (The Third Hospital of Hebei Medical University), Shijiazhuang, China.
| | - Qi Zhang
- Trauma Emergency Center, Key Laboratory of Biomechanics and Orthopaedic Research Institute of Hebei Province, The Third Hospital of Hebei Medical University, No.139 Ziqiang Road, Shijiazhuang, 050051, Hebei, People's Republic of China.
| |
Collapse
|
16
|
Chen S, Rittel D, Shemtov Yona K. The normal stiffness of the edentulous alveolar process. Bone Rep 2021; 14:101066. [PMID: 33898661 PMCID: PMC8060551 DOI: 10.1016/j.bonr.2021.101066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 04/06/2021] [Indexed: 11/26/2022] Open
Abstract
The normal stiffness of the jawbone is seldom considered, as opposed to the mechanical properties of its individual cortical and trabecular components. Our standpoint is essentially structural, rather than purely material-oriented, as the jawbone is considered as a natural load-bearing structure. Throughout the work, 3 representative sections in the mandible and the maxilla are modelled and compared. Specifically, we evaluate the sections' elastic structural stiffness numerically, according to the recent geometrical classification proposed by Shemtov Yona (2021). Each case is modelled using two extreme configurations for the cortical-trabecular interaction, namely bonded and unbonded. Those two configurations reflect extreme interfacial conditions, though the bonded one is more physical. For the unbonded cases, the structural stiffness is the sum of the individual stiffnesses of the components. By sharp contrast, the bonded case results in a much larger stiffness than that obtained by the simple sum of the individual stiffnesses, indicating a strong synergistic stiffening effect between the components through their interface. We also investigate the role of the elastic moduli, whose reported values vary widely in the literature, emphasizing the role of the trabecular Poisson's coefficient, whose stiffening effect is evidenced when it exceeds about 0.3. The bone's structural stiffness shown here complements the geometrical classification of the jawbone types with a fundamental mechanical/structural property delineating the coupling between the mechanical properties and the geometry. The adopted approach is not limited to the jawbone and applies in principle to other bone types. From a clinical standpoint, the results presented here complement not only the basic mechanical aspects of the geometrical characterization, but also provide a starting point for future studies on dental implant placement and stability, the latter being directly related to the structural stiffness.
Collapse
Affiliation(s)
- S Chen
- Mechanical Engineering Faculty, Technion, Israel Institute of Technology, Haifa, Israel
| | - D Rittel
- Mechanical Engineering Faculty, Technion, Israel Institute of Technology, Haifa, Israel
| | - K Shemtov Yona
- Mechanical Engineering Faculty, Technion, Israel Institute of Technology, Haifa, Israel.,The Maurice and Gabriela Goldschleger School of Dental Medicine, Department of Oral Biology, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
17
|
Lim MJ, Kang KY. A Contemporary View of the Diagnosis of Osteoporosis in Patients With Axial Spondyloarthritis. Front Med (Lausanne) 2020; 7:569449. [PMID: 33363182 PMCID: PMC7759657 DOI: 10.3389/fmed.2020.569449] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 11/13/2020] [Indexed: 01/31/2023] Open
Abstract
Axial spondyloarthritis (axSpA) is a chronic inflammatory disease that primarily affects the axial joints. Altered bone metabolism associated with chronic inflammation leads to both new bone formation in the spine and increased bone loss. It is known that patients with axSpA have a high prevalence of osteoporosis and fractures. However, there is no consensus on which imaging modality is the most appropriate for diagnosing osteoporosis in axSpA. Bone mineral density measurement using dual-energy X-ray absorptiometry is the primary diagnostic method for osteoporosis, but it has notable limitations in patients with axSpA. This method may lead to the overestimation of bone density in patients with axSpA because they often exhibit abnormal calcification of spinal ligaments or syndesmophytes. Therefore, the method may not provide adequate information about bone microarchitecture. These limitations result in the underdiagnosis of osteoporosis. Recently, new imaging techniques, such as high-resolution peripheral quantitative computed tomography, and trabecular bone score have been introduced for the evaluation of osteoporosis risk in patients with axSpA. In this review, we summarize the current knowledge regarding imaging techniques for diagnosing osteoporosis in patients with axSpA.
Collapse
Affiliation(s)
- Mie Jin Lim
- Division of Rheumatology, Department of Internal Medicine, College of Medicine, Inha University, Incheon, South Korea
| | - Kwi Young Kang
- Division of Rheumatology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, South Korea.,Division of Rheumatology, Department of Internal Medicine, College of Medicine, Incheon Saint Mary's Hospital, The Catholic University of Korea, Incheon, South Korea
| |
Collapse
|
18
|
Zhang L, Wang L, Fu R, Wang J, Yang D, Liu Y, Zhang W, Liang W, Yang R, Yang H, Cheng X. In Vivo
Assessment of Age‐ and Loading Configuration‐Related Changes in Multiscale Mechanical Behavior of the Human Proximal Femur Using MRI‐Based Finite Element Analysis. J Magn Reson Imaging 2020; 53:905-912. [PMID: 33075178 DOI: 10.1002/jmri.27403] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 10/03/2020] [Accepted: 10/05/2020] [Indexed: 01/08/2023] Open
Affiliation(s)
- Lingyun Zhang
- Department of Biomedical Engineering, Faculty of Environment and Life Science Beijing University of Technology Beijing China
| | - Ling Wang
- Department of Radiology Beijing Jishuitan Hospital Beijing China
| | - Ruisen Fu
- Department of Biomedical Engineering, Faculty of Environment and Life Science Beijing University of Technology Beijing China
| | - Jianing Wang
- Department of Biomedical Engineering, Faculty of Environment and Life Science Beijing University of Technology Beijing China
| | - Dongyue Yang
- Department of Biomedical Engineering, Faculty of Environment and Life Science Beijing University of Technology Beijing China
| | - Yandong Liu
- Department of Radiology Beijing Jishuitan Hospital Beijing China
| | - Wei Zhang
- Department of Radiology Beijing Jishuitan Hospital Beijing China
| | - Wei Liang
- Department of Radiology Beijing Jishuitan Hospital Beijing China
| | - Ruopei Yang
- Department of Radiology Beijing Jishuitan Hospital Beijing China
| | - Haisheng Yang
- Department of Biomedical Engineering, Faculty of Environment and Life Science Beijing University of Technology Beijing China
| | - Xiaoguang Cheng
- Department of Radiology Beijing Jishuitan Hospital Beijing China
| |
Collapse
|
19
|
Iori G, Schneider J, Reisinger A, Heyer F, Peralta L, Wyers C, Glüer CC, van den Bergh JP, Pahr D, Raum K. Cortical thinning and accumulation of large cortical pores in the tibia reflect local structural deterioration of the femoral neck. Bone 2020; 137:115446. [PMID: 32450342 DOI: 10.1016/j.bone.2020.115446] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 05/03/2020] [Accepted: 05/19/2020] [Indexed: 01/09/2023]
Abstract
INTRODUCTION Cortical bone thinning and a rarefaction of the trabecular architecture represent possible causes of increased femoral neck (FN) fracture risk. Due to X-ray exposure limits, the bone microstructure is rarely measurable in the FN of subjects but can be assessed at the tibia. Here, we studied whether changes of the tibial cortical microstructure, which were previously reported to be associated with femur strength, are also associated with structural deteriorations of the femoral neck. METHODS The cortical and trabecular architectures in the FN of 19 humans were analyzed ex vivo on 3D microcomputed tomography images with 30.3 μm voxel size. Cortical thickness (Ct.Thtibia), porosity (Ct.Potibia) and pore size distribution in the tibiae of the same subjects were measured using scanning acoustic microscopy (12 μm pixel size). Femur strength during sideways falls was simulated with homogenized voxel finite element models. RESULTS Femur strength was associated with the total (vBMDtot; R2 = 0.23, p < 0.01) and trabecular (vBMDtrab; R2 = 0.26, p < 0.01) volumetric bone mineral density (vBMD), with the cortical thickness (Ct.ThFN; R2 = 0.29, p < 0.001) and with the trabecular bone volume fraction (Tb.BV/TVFN; R2 = 0.34, p < 0.001), separation (Tb.SpFN; R2 = 0.25, p < 0.01) and number (Tb.NFN; R2 = 0.32, p < 0.001) of the femoral neck. Moreover, smaller Ct.Thtibia was associated with smaller Ct.ThFN (R2 = 0.31, p < 0.05), lower Tb.BV/TVFN (R2 = 0.29, p < 0.05), higher Tb.SpFN (R2 = 0.33, p < 0.05) and lower Tb.NFN (R2 = 0.42, p < 0.01). A higher prevalence of pores with diameter > 100 μm in tibial cortical bone (relCt.Po100μm-tibia) indicated higher Tb.SpFN (R2 = 0.36, p < 0.01) and lower Tb.NFN (R2 = 0.45, p < 0.01). CONCLUSION Bone resorption and structural decline of the femoral neck may be identified in vivo by measuring cortical bone thickness and large pores in the tibia.
Collapse
Affiliation(s)
- Gianluca Iori
- Berlin-Brandenburg Center for Regenerative Therapies, Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Johannes Schneider
- Berlin-Brandenburg Center for Regenerative Therapies, Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Andreas Reisinger
- Division Biomechanics, Karl Landsteiner University of Health Sciences, Krems, Austria
| | - Frans Heyer
- Department of Internal Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, the Netherlands; Department of Internal Medicine, VieCuri Medical Center, Venlo, the Netherlands
| | - Laura Peralta
- Laboratoire d'Imagerie Biomédicale, Sorbonne Universités, INSERM UMR S 1146, CNRS UMR 7371, Paris, France; Department of Biomedical Engineering, School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK
| | - Caroline Wyers
- Department of Internal Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, the Netherlands; Department of Internal Medicine, VieCuri Medical Center, Venlo, the Netherlands
| | - Claus C Glüer
- Sektion Biomedizinische Bildgebung, Klinik für Radiologie und Neuroradiologie, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - J P van den Bergh
- Department of Internal Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, the Netherlands; Department of Internal Medicine, VieCuri Medical Center, Venlo, the Netherlands
| | - Dieter Pahr
- Division Biomechanics, Karl Landsteiner University of Health Sciences, Krems, Austria; Institute for Lightweight Design and Structural Biomechanics, TU Wien, Vienna, Austria
| | - Kay Raum
- Berlin-Brandenburg Center for Regenerative Therapies, Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.
| |
Collapse
|
20
|
Sadoughi S, Vom Scheidt A, Nawathe S, Zhu S, Moini A, Keaveny TM. Effect of variations in tissue-level ductility on human vertebral strength. Bone 2020; 137:115445. [PMID: 32454256 DOI: 10.1016/j.bone.2020.115445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 05/17/2020] [Accepted: 05/19/2020] [Indexed: 11/28/2022]
Abstract
Although the ductility of bone tissue is a unique element of bone quality and varies with age and across the population, the extent to which and mechanisms by which typical population-variations in tissue-level ductility can alter whole-bone strength remains unclear. To provide insight, we conducted a finite element analysis parameter study of whole-vertebral (monotonic) compressive strength on six human L1 vertebrae. Each model was generated from micro-CT scans, capturing the trabecular micro-architecture in detail, and included a non-linear constitutive model for the bone tissue that allowed for plastic yielding, different strengths in tension and compression, large deformations, and, uniquely, localized damage once a specified limit in tissue-level ultimate strain was exceeded. Those strain limits were based on reported (mean ± SD) values from cadaver experiments (8.8 ± 3.7% strain for trabecular tissue and 2.2 ± 0.9% for cortical tissue). In the parameter study, the strain limits were varied by ±1 SD from their mean values, for a combination of nine analyses per specimen; bounding values of zero and unlimited post-yield strain were also modeled. The main outcomes from the finite element analysis were the vertebral compressive strength and the amount of failed (yielded or damaged) tissue at the overall structure-level failure. Compared to a reference case of using the mean values of ultimate strain, we found that varying both trabecular and cortical tissue ultimate strains by ±1 SD changed the computed vertebral strength by (mean ± SD) ±6.9 ± 1.1% on average. Mechanistically, that modest effect arose because the proportion of yielded tissue (without damage) was 0.9 ± 0.3% of all the bone tissue across the nine cases and the proportion of damaged tissue (i.e. tissue exceeding the prescribed tissue-level ultimate strain) was 0.2 ± 0.1%. If the types of variations in tissue-level ductility investigated here accurately represent real typical variations in the population, the consistency of our results across specimens and the modest effect size together suggest that typical variations in tissue-level ductility only have a modest impact on vertebral compressive strength, in large part because so few trabeculae are damaged at the load capacity of the bone.
Collapse
Affiliation(s)
- Saghi Sadoughi
- Department of Mechanical Engineering, University of California, Berkeley, CA, USA
| | - Annika Vom Scheidt
- Department of Mechanical Engineering, University of California, Berkeley, CA, USA; Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Shashank Nawathe
- Department of Mechanical Engineering, University of California, Berkeley, CA, USA
| | - Shan Zhu
- Department of Mechanical Engineering, University of California, Berkeley, CA, USA
| | - Ariana Moini
- Department of Mechanical Engineering, University of California, Berkeley, CA, USA
| | - Tony M Keaveny
- Department of Mechanical Engineering, University of California, Berkeley, CA, USA; Department of Bioengineering, University of California, Berkeley, CA, USA.
| |
Collapse
|
21
|
Falcinelli C, Whyne C. Image-based finite-element modeling of the human femur. Comput Methods Biomech Biomed Engin 2020; 23:1138-1161. [PMID: 32657148 DOI: 10.1080/10255842.2020.1789863] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Fracture is considered a critical clinical endpoint in skeletal pathologies including osteoporosis and bone metastases. However, current clinical guidelines are limited with respect to identifying cases at high risk of fracture, as they do not account for many mechanical determinants that contribute to bone fracture. Improving fracture risk assessment is an important area of research with clear clinical relevance. Patient-specific numerical musculoskeletal models generated from diagnostic images are widely used in biomechanics research and may provide the foundation for clinical tools used to quantify fracture risk. However, prior to clinical translation, in vitro validation of predictions generated from such numerical models is necessary. Despite adopting radically different models, in vitro validation of image-based finite element (FE) models of the proximal femur (predicting strains and failure loads) have shown very similar, encouraging levels of accuracy. The accuracy of such in vitro models has motivated their application to clinical studies of osteoporotic and metastatic fractures. Such models have demonstrated promising but heterogeneous results, which may be explained by the lack of a uniform strategy with respect to FE modeling of the human femur. This review aims to critically discuss the state of the art of image-based femoral FE modeling strategies, highlighting principal features and differences among current approaches. Quantitative results are also reported with respect to the level of accuracy achieved from in vitro evaluations and clinical applications and are used to motivate the adoption of a standardized approach/workflow for image-based FE modeling of the femur.
Collapse
Affiliation(s)
- Cristina Falcinelli
- Orthopaedic Biomechanics Laboratory, Sunnybrook Research Institute, Toronto, Canada
| | - Cari Whyne
- Orthopaedic Biomechanics Laboratory, Sunnybrook Research Institute, Toronto, Canada
| |
Collapse
|
22
|
Humbert L, Bagué A, Di Gregorio S, Winzenrieth R, Sevillano X, González Ballester MÁ, Del Rio L. DXA-Based 3D Analysis of the Cortical and Trabecular Bone of Hip Fracture Postmenopausal Women: A Case-Control Study. J Clin Densitom 2020; 23:403-410. [PMID: 30503030 DOI: 10.1016/j.jocd.2018.11.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 11/08/2018] [Indexed: 10/27/2022]
Abstract
Methods using statistical shape and appearance models have been proposed to analyze bone mineral density (BMD) in 3D from dual energy X-ray absorptiometry (DXA) scans. This paper presents a retrospective case-control study assessing the association of DXA-derived 3D measurements with osteoporotic hip fracture in postmenopausal women. Patients who experienced a hip fracture between 1 and 6 years from baseline and age-matched controls were included in this study. The 3D-SHAPER software (version 2.7, Galgo Medical, Barcelona, Spain) was used to derive 3D analysis from hip DXA scans at baseline. DXA and 3D measurements were compared between groups. Total hip areal BMD of hip fracture group as measured by DXA was 10.7% lower compared to control group. Differences in volumetric BMD (total hip) as measured by 3D-SHAPER were more pronounced in the trabecular compartment (-23.3%) than in the cortex (-8.2%). The area under the receiver operating curve was 0.742 for trabecular volumetric BMD, 0.706 for cortical volumetric BMD, and 0.712 for total hip areal BMD. Differences in the cortex were locally more pronounced at the medial aspect of the shaft, the lateral aspect of the greater trochanter, and the superolateral aspect of the neck. Marked differences in volumetric BMD were observed in the greater trochanter. This case-control study showed the association of DXA-derived 3D measurements with hip fracture. Analysis of large cohorts will be performed in future work to determine if DXA-derived 3D measurements could improve fracture risk prediction in clinical practice.
Collapse
Affiliation(s)
| | - Alexis Bagué
- Musculoskeletal Unit, Galgo Medical, Barcelona, Spain; BCN Medtech, Universitat Pompeu Fabra, Barcelona, Spain
| | | | | | - Xavier Sevillano
- Grup de Recerca en Tecnologies Mèdia, La Salle-Universitat Ramon Llull, Barcelona, Spain
| | | | | |
Collapse
|
23
|
Schileo E, Pitocchi J, Falcinelli C, Taddei F. Cortical bone mapping improves finite element strain prediction accuracy at the proximal femur. Bone 2020; 136:115348. [PMID: 32240847 DOI: 10.1016/j.bone.2020.115348] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 03/17/2020] [Accepted: 03/27/2020] [Indexed: 11/28/2022]
Abstract
Despite evidence of the biomechanical role of cortical bone, current state of the art finite element models of the proximal femur built from clinical CT data lack a subject-specific representation of the bone cortex. Our main research hypothesis is that the subject-specific modelling of cortical bone layer from CT images, through a deconvolution procedure known as Cortical Bone Mapping (CBM, validated for cortical thickness and density estimates) can improve the accuracy of CT-based FE models of the proximal femur, currently limited by partial volume artefacts. Our secondary hypothesis is that a careful choice of cortical-specific density-elasticity relationship may improve model accuracy. We therefore: (i) implemented a procedure to include subject-specific CBM estimates of both cortical thickness and density in CT-based FE models. (ii) defined alternative models that included CBM estimates and featured a cortical-specific or an independently optimised density-elasticity relationship. (iii) tested our hypotheses in terms of elastic strain estimates and failure load and location prediction, by comparing with a published cohort of 14 femurs, where strain and strength in stance and fall loading configuration were experimentally measured, and estimated through reference FE models that did not explicitly model the cortical compartment. Our findings support the main hypothesis: an explicit modelling of the proximal femur cortical bone layer including CBM estimates of cortical bone thickness and density increased the FE strains prediction, mostly by reducing peak errors (average error reduced by 30%, maximum error and 95th percentile of error distribution halved) and especially when focusing on the femoral neck locations (all error metrics at least halved). We instead rejected the secondary hypothesis: changes in cortical density-elasticity relationship could not improve validation performances. From these improved baseline strain estimates, further work is needed to achieve accurate strength predictions, as models incorporating cortical thickness and density produced worse estimates of failure load and equivalent estimates of failure location when compared to reference models. In summary, we recommend including local estimates of cortical thickness and density in FE models to estimate bone strains in physiological conditions, and especially when designing exercise studies to promote bone strength.
Collapse
Affiliation(s)
- Enrico Schileo
- Bioengineering and Computing Laboratory, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy.
| | - Jonathan Pitocchi
- Materialise N.V., Heverlee, Belgium; Multiscale in Mechanical and Biological Engineering (M2BE), University of Zaragoza, Zaragoza, Spain; Biomechanics Section, KU Leuven, Leuven, Belgium
| | | | - Fulvia Taddei
- Bioengineering and Computing Laboratory, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| |
Collapse
|
24
|
Keaveny TM, Clarke BL, Cosman F, Orwoll ES, Siris ES, Khosla S, Bouxsein ML. Biomechanical Computed Tomography analysis (BCT) for clinical assessment of osteoporosis. Osteoporos Int 2020; 31:1025-1048. [PMID: 32335687 PMCID: PMC7237403 DOI: 10.1007/s00198-020-05384-2] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 03/09/2020] [Indexed: 12/12/2022]
Abstract
The surgeon general of the USA defines osteoporosis as "a skeletal disorder characterized by compromised bone strength, predisposing to an increased risk of fracture." Measuring bone strength, Biomechanical Computed Tomography analysis (BCT), namely, finite element analysis of a patient's clinical-resolution computed tomography (CT) scan, is now available in the USA as a Medicare screening benefit for osteoporosis diagnostic testing. Helping to address under-diagnosis of osteoporosis, BCT can be applied "opportunistically" to most existing CT scans that include the spine or hip regions and were previously obtained for an unrelated medical indication. For the BCT test, no modifications are required to standard clinical CT imaging protocols. The analysis provides measurements of bone strength as well as a dual-energy X-ray absorptiometry (DXA)-equivalent bone mineral density (BMD) T-score at the hip and a volumetric BMD of trabecular bone at the spine. Based on both the bone strength and BMD measurements, a physician can identify osteoporosis and assess fracture risk (high, increased, not increased), without needing confirmation by DXA. To help introduce BCT to clinicians and health care professionals, we describe in this review the currently available clinical implementation of the test (VirtuOst), its application for managing patients, and the underlying supporting evidence; we also discuss its main limitations and how its results can be interpreted clinically. Together, this body of evidence supports BCT as an accurate and convenient diagnostic test for osteoporosis in both sexes, particularly when used opportunistically for patients already with CT. Biomechanical Computed Tomography analysis (BCT) uses a patient's CT scan to measure both bone strength and bone mineral density at the hip or spine. Performing at least as well as DXA for both diagnosing osteoporosis and assessing fracture risk, BCT is particularly well-suited to "opportunistic" use for the patient without a recent DXA who is undergoing or has previously undergone CT testing (including hip or spine regions) for an unrelated medical condition.
Collapse
Affiliation(s)
- T M Keaveny
- Departments of Mechanical Engineering and Bioengineering, University of California, Berkeley, CA, USA.
| | - B L Clarke
- Division of Endocrinology, Diabetes, Metabolism, and Nutrition, Mayo Clinic, Rochester, MN, USA
| | - F Cosman
- Department of Medicine, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - E S Orwoll
- Bone and Mineral Unit, Oregon Health and Science University, Portland, OR, USA
| | - E S Siris
- Toni Stabile Osteoporosis Center, Department of Medicine, Columbia University Medical Center, New York, NY, USA
| | - S Khosla
- Division of Endocrinology, Diabetes, Metabolism, and Nutrition, Mayo Clinic, Rochester, MN, USA
| | - M L Bouxsein
- Orthopedic Biomechanics Laboratory, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
25
|
Iori G, Peralta L, Reisinger A, Heyer F, Wyers C, van den Bergh J, Pahr D, Raum K. Femur strength predictions by nonlinear homogenized voxel finite element models reflect the microarchitecture of the femoral neck. Med Eng Phys 2020; 79:60-66. [PMID: 32291201 DOI: 10.1016/j.medengphy.2020.03.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Revised: 03/10/2020] [Accepted: 03/17/2020] [Indexed: 12/16/2022]
Abstract
In the human femoral neck, the contribution of the cortical and trabecular architecture to mechanical strength is known to depend on the load direction. In this work, we investigate if QCT-derived homogenized voxel finite element (hvFE) simulations of varying hip loading conditions can be used to study the architecture of the femoral neck. The strength of 19 pairs of human femora was measured ex vivo using nonlinear hvFE models derived from high-resolution peripheral QCT scans (voxel size: 30.3 µm). Standing and side-backwards falling loads were modeled. Quasi-static mechanical tests were performed on 20 bones for comparison. Associations of femur strength with volumetric bone mineral density (vBMD) or microstructural parameters of the femoral neck obtained from high-resolution QCT were compared between mechanical tests and simulations and between standing and falling loads. Proximal femur strength predictions by hvFE models were positively associated with the vBMD of the femoral neck (R² > 0.61, p < 0.001), as well as with its cortical thickness (R² > 0.27, p < 0.001), trabecular bone volume fraction (R² = 0.42, p < 0.001) and with the first two principal components of the femoral neck architecture (R² > 0.38, p < 0.001). Associations between femur strength and femoral neck microarchitecture were stronger for one-legged standing than for side-backwards falling. For both loading directions, associations between structural parameters and femur strength from hvFE models were in good agreement with those from mechanical tests. This suggests that hvFE models can reflect the load-direction-specific contribution of the femoral neck microarchitecture to femur strength.
Collapse
Affiliation(s)
- Gianluca Iori
- Berlin-Brandenburg Center for Regenerative Therapies, Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Laura Peralta
- Laboratoire d'Imagerie Biomédicale, Sorbonne Universités, INSERM UMR S 1146, CNRS UMR, 7371, Paris, France; Department of Biomedical Engineering, School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK
| | - Andreas Reisinger
- Division Biomechanics, Karl Landsteiner University of Health Sciences, Krems, Austria
| | - Frans Heyer
- Department of Internal Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, the Netherlands; Department of Internal Medicine, VieCuri Medical Center, Venlo, the Netherlands
| | - Caroline Wyers
- Department of Internal Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, the Netherlands; Department of Internal Medicine, VieCuri Medical Center, Venlo, the Netherlands
| | - Joop van den Bergh
- Department of Internal Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, the Netherlands; Department of Internal Medicine, VieCuri Medical Center, Venlo, the Netherlands
| | - Dieter Pahr
- Division Biomechanics, Karl Landsteiner University of Health Sciences, Krems, Austria; Institute for Lightweight Design and Structural Biomechanics, TU Wien, Vienna, Austria
| | - Kay Raum
- Berlin-Brandenburg Center for Regenerative Therapies, Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.
| |
Collapse
|
26
|
Varga P, Willie BM, Stephan C, Kozloff KM, Zysset PK. Finite element analysis of bone strength in osteogenesis imperfecta. Bone 2020; 133:115250. [PMID: 31981754 PMCID: PMC7383936 DOI: 10.1016/j.bone.2020.115250] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 01/17/2020] [Accepted: 01/19/2020] [Indexed: 12/11/2022]
Abstract
As a dedicated experimentalist, John Currey praised the high potential of finite element (FE) analysis but also recognized its critical limitations. The application of the FE methodology to bone tissue is reviewed in the light of his enthusiastic and colorful statements. In the past decades, FE analysis contributed substantially to the understanding of structure-function properties in the hierarchical organization of bone and to the simulation of bone adaptation. The systematic experimental validation of FE analysis of bone strength in anatomical locations at risk of fracture led to its application in clinical studies to evaluate efficacy of antiresorptive or anabolic treatment of bone fragility. Beyond the successful analyses of healthy or osteoporotic bone, FE analysis becomes increasingly involved in the investigation of other fragility-related bone diseases. The case of osteogenesis imperfecta (OI) is exposed, the multiscale alterations of the bone tissue and the effect of treatment summarized. A few FE analyses attempting to answer open questions in OI are then reported. An original study is finally presented that explored the structural properties of the Brtl/+ murine model of OI type IV subjected to sclerostin neutralizing antibody treatment using microFE analysis. The use of identical material properties in the four-point bending FE simulations of the femora reproduced not only the experimental values but also the statistical comparisons examining the effect of disease and treatment. Further efforts are needed to build upon the extraordinary legacy of John Currey and clarify the impact of different bone diseases on the hierarchical mechanical properties of bone.
Collapse
Affiliation(s)
- Peter Varga
- AO Research Institute Davos, Davos, Switzerland.
| | - Bettina M Willie
- Research Centre, Shriners Hospital for Children-Canada, Montreal, Canada; Department of Pediatric Surgery, McGill University, Montreal, Canada
| | - Chris Stephan
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, USA
| | - Kenneth M Kozloff
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, USA
| | - Philippe K Zysset
- ARTORG Centre for Biomedical Engineering Research, University of Bern, Bern, Switzerland
| |
Collapse
|
27
|
Bouxsein ML, Zysset P, Glüer CC, McClung M, Biver E, Pierroz DD, Ferrari SL. Perspectives on the non-invasive evaluation of femoral strength in the assessment of hip fracture risk. Osteoporos Int 2020; 31:393-408. [PMID: 31900541 DOI: 10.1007/s00198-019-05195-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 10/04/2019] [Indexed: 10/25/2022]
Abstract
UNLABELLED We reviewed the experimental and clinical evidence that hip bone strength estimated by BMD and/or finite element analysis (FEA) reflects the actual strength of the proximal femur and is associated with hip fracture risk and its changes upon treatment. INTRODUCTION The risk of hip fractures increases exponentially with age due to a progressive loss of bone mass, deterioration of bone structure, and increased incidence of falls. Areal bone mineral density (aBMD), measured by dual-energy X-ray absorptiometry (DXA), is the most used surrogate marker of bone strength. However, age-related declines in bone strength exceed those of aBMD, and the majority of fractures occur in those who are not identified as osteoporotic by BMD testing. With hip fracture incidence increasing worldwide, the development of accurate methods to estimate bone strength in vivo would be very useful to predict the risk of hip fracture and to monitor the effects of osteoporosis therapies. METHODS We reviewed experimental and clinical evidence regarding the association between aBMD and/orCT-finite element analysis (FEA) estimated femoral strength and hip fracture risk as well as their changes with treatment. RESULTS Femoral aBMD and bone strength estimates by CT-FEA explain a large proportion of femoral strength ex vivo and predict hip fracture risk in vivo. Changes in femoral aBMD are strongly associated with anti-fracture efficacy of osteoporosis treatments, though comparable data for FEA are currently not available. CONCLUSIONS Hip aBMD and estimated femoral strength are good predictors of fracture risk and could potentially be used as surrogate endpoints for fracture in clinical trials. Further improvements of FEA may be achieved by incorporating trabecular orientations, enhanced cortical modeling, effects of aging on bone tissue ductility, and multiple sideway fall loading conditions.
Collapse
Affiliation(s)
- M L Bouxsein
- Center for Advanced Orthopedic Studies, Beth Israel Deaconess Medical Center, and Department of Orthopedic Surgery, Harvard Medical School, Boston, MA, USA
| | - P Zysset
- ARTORG Center for Biomedical Engineering Research, University of Bern, Bern, Switzerland
| | - C C Glüer
- Section of Biomedical Imaging, Department of Radiology and Neuroradiology, University Medical Center of Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - M McClung
- Oregon Osteoporosis Center, Portland, OR, USA
- Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC, Australia
| | - E Biver
- Division of Bone Disease, Department of Internal Medicine Specialties, Faculty of Medicine, Geneva University Hospital, Geneva, Switzerland
| | - D D Pierroz
- International Osteoporosis Foundation (IOF), Nyon, Switzerland
| | - S L Ferrari
- Division of Bone Disease, Department of Internal Medicine Specialties, Faculty of Medicine, Geneva University Hospital, Geneva, Switzerland.
| | | |
Collapse
|
28
|
Yang P, Fan H, Wang X, Xu S, Yang L, Chen G. The association between anterior femoroacetabular impingement and femoral neck fractures: An observational study. Medicine (Baltimore) 2020; 99:e19068. [PMID: 32028429 PMCID: PMC7015654 DOI: 10.1097/md.0000000000019068] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
The impact between acetabulum and femoral neck is another possible mechanism of femoral neck fracture.Direct trauma of the greater trochanter may not be able to fully explain the mechanism underlying femoral neck fracture. In this study, we sought to investigate whether anterior femoroacetabular impingement are associated with femoral neck fractures.A total of 36 patients with femoral neck fracture who had undergone total hip arthroplasty or hemiarthroplasty were included in this study. These patients were divided into 2 groups: labrum tear group and normal labrum group. Patients' age, gender, body mass index, muscle injury, injury pattern, trauma severity, femoral head-neck offset, femoral head-neck ratio, Cam deformity alpha angle, acetabular anteversion, femoral head diameter, acetabular index, cortical index, hip axis length, and neck stem angle were recorded and analyzed. SPSS 18.0 software was used for statistical analyses.According to intraoperative findings, 22 patients exhibited a labrum tear. Magnetic resonance imaging examination revealed bone contusion on the anterolateral margin of the acetabulum with muscle damage surrounding the hip. Among 14 cases without a labrum tear, no bone contusion and obvious muscle injury were found on the anterolateral margin of the acetabulum. Notably, muscle injury, injury pattern, trauma severity and femoral head-neck offset differed significantly (P < .05) between labrum tear and normal labrum groups.Previous studies have focused more on direct lateral trauma. In this study, the impact between acetabulum and femoral neck is another possible mechanism besides lateral impact. Specifically, the abnormal anatomy of the hip, such as femoral head-neck offset, may promote the fracturing process.
Collapse
Affiliation(s)
| | - Huaquan Fan
- Centre for Joint Surgery, Southwest Hospital
| | - Xin Wang
- Radiology Department, Southwest Hospital
| | - Senlin Xu
- Pathology Department, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Liu Yang
- Centre for Joint Surgery, Southwest Hospital
| | | |
Collapse
|
29
|
Efficient materially nonlinear [Formula: see text]FE solver for simulations of trabecular bone failure. Biomech Model Mechanobiol 2019; 19:861-874. [PMID: 31749070 PMCID: PMC7203600 DOI: 10.1007/s10237-019-01254-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 11/05/2019] [Indexed: 01/15/2023]
Abstract
An efficient solver for large-scale linear \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\mu \hbox {FE}$$\end{document}μFE simulations was extended for nonlinear material behavior. The material model included damage-based tissue degradation and fracture. The new framework was applied to 20 trabecular biopsies with a mesh resolution of \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${36}\,{{\upmu }\hbox {m}}$$\end{document}36μm. Suitable material parameters were identified based on two biopsies by comparison with axial tension and compression experiments. The good parallel performance and low memory footprint of the solver were preserved. Excellent correlation of the maximum apparent stress was found between simulations and experiments (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$R^2 > 0.97$$\end{document}R2>0.97). The development of local damage regions was observable due to the nonlinear nature of the simulations. A novel elasticity limit was proposed based on the local damage information. The elasticity limit was found to be lower than the 0.2% yield point. Systematic differences in the yield behavior of biopsies under apparent compression and tension loading were observed. This indicates that damage distributions could lead to more insight into the failure mechanisms of trabecular bone.
Collapse
|
30
|
Chanpaisaeng K, Reyes Fernandez PC, Fleet JC. Dietary calcium intake and genetics have site-specific effects on peak trabecular bone mass and microarchitecture in male mice. Bone 2019; 125:46-53. [PMID: 31078711 PMCID: PMC6604851 DOI: 10.1016/j.bone.2019.05.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 04/20/2019] [Accepted: 05/08/2019] [Indexed: 11/30/2022]
Abstract
Trabecular bone (Tb) is used for rapid exchange of calcium (Ca) in times of physiologic need and the site-specific characteristics of Tb may explain why certain sites are more vulnerable to osteoporosis. We hypothesized that peak trabecular bone mass (PTBM) and Tb microarchitecture are differentially regulated by dietary Ca intake, genetics, or Gene-by-Diet (GxD) interactions at the distal femur and the fifth lumbar (L5) vertebra. Male mice from 62 genetically distinct lines were fed basal (0.5%) or low (0.25%) Ca diets from 4 to 12 wks of age. Afterwards, the right femur and L5 vertebra were removed and trabecular bone was analyzed by μCT. In mice fed the basal diet, bone volume fraction (BV/TV), trabecular number (Tb.N), and connectivity density (Conn.D) were significantly higher in the L5 vertebra than femur. Femur Tb had a weaker, more rod-like structure than the L5 vertebrae while mice fed the low Ca diet developed rod-like structures at both sites. Dietary Ca restriction also caused a greater relative reduction of Tb.N and Conn.D in the femur than L5 vertebra, i.e. it was more harmful to the integrity of Tb microarchitecture in femur. Genetics was a major determinant of Tb at both sites, e.g. heritability of BV/TV on the basal diet = 0.65 (femur) and 0.68 (L5 vertebra). However, while GxD interactions altered the impact of dietary Ca restriction on Tb parameters at both sites, the effect was not uniform, e.g. some lines had site-specific responses to Ca restriction. The significance of our work is that there are site-specific effects of dietary Ca restriction and genetics that work independently and interactively to influence the attainment of PTBM and Tb microarchitecture.
Collapse
Affiliation(s)
- Krittikan Chanpaisaeng
- Department of Nutrition Science, Purdue University, USA; Interdepartmental Graduate Nutrition Program (INP), Purdue University, USA
| | - Perla C Reyes Fernandez
- Department of Nutrition Science, Purdue University, USA; Interdepartmental Graduate Nutrition Program (INP), Purdue University, USA
| | - James C Fleet
- Department of Nutrition Science, Purdue University, USA; Interdepartmental Graduate Nutrition Program (INP), Purdue University, USA.
| |
Collapse
|
31
|
Väänänen SP, Grassi L, Venäläinen MS, Matikka H, Zheng Y, Jurvelin JS, Isaksson H. Automated segmentation of cortical and trabecular bone to generate finite element models for femoral bone mechanics. Med Eng Phys 2019; 70:19-28. [PMID: 31280927 DOI: 10.1016/j.medengphy.2019.06.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 05/16/2019] [Accepted: 06/23/2019] [Indexed: 02/02/2023]
Abstract
Finite element (FE) models based on quantitative computed tomography (CT) images are better predictors of bone strength than conventional areal bone mineral density measurements. However, FE models require manual segmentation of the femur, which is not clinically applicable. This study developed a method for automated FE analyses from clinical CT images. Clinical in-vivo CT images of 13 elderly female subjects were collected to evaluate the method. Secondly, proximal cadaver femurs were harvested and imaged with clinical CT (N = 17). Of these femurs, 14 were imaged with µCT and three had earlier been tested experimentally in stance-loading, while collecting surface deformations with digital image correlation. Femurs were segmented from clinical CT images using an automated method, based on the segmentation tool Stradwin. The method automatically distinguishes trabecular and cortical bone, corrects partial volume effect and generates input for FE analysis. The manual and automatic segmentations agreed within about one voxel for in-vivo subjects (0.99 ± 0.23 mm) and cadaver femurs (0.21 ± 0.07 mm). The strains from the FE predictions closely matched with the experimentally measured strains (R2 = 0.89). The method can automatically generate meshes suitable for FE analysis. The method may bring us one step closer to enable clinical usage of patient-specific FE analyses.
Collapse
Affiliation(s)
- Sami P Väänänen
- Department of Applied Physics, University of Eastern Finland, POB 1627, FIN-70211 Kuopio, Finland; Department of Clinical Radiology, Diagnostic Imaging Center, Kuopio University Hospital, POB 100, 70029 Kuopio, Finland; Department of Orthopaedics, Traumatology and Hand Surgery, Kuopio University Hospital, POB 100, FIN-70029 Kuopio, Finland; Department of Medical Physics, Central Finland Central Hospital, Keskussairaalantie 19, FIN-40620 Jyväskylä, Finland.
| | - Lorenzo Grassi
- Department of Biomedical Engineering, Lund University, BMC D13, 221 84 Lund, Sweden.
| | - Mikko S Venäläinen
- Department of Applied Physics, University of Eastern Finland, POB 1627, FIN-70211 Kuopio, Finland; Turku Bioscience Centre, University of Turku and Åbo Akademi University, Tykistökatu 6, FIN-20520 Turku, Finland.
| | - Hanna Matikka
- Department of Clinical Radiology, Diagnostic Imaging Center, Kuopio University Hospital, POB 100, 70029 Kuopio, Finland.
| | - Yi Zheng
- Department of Physics, Technical University of Denmark, Fysikvej, building 311, 2800 Kgs. Lyngby, Denmark.
| | - Jukka S Jurvelin
- Department of Applied Physics, University of Eastern Finland, POB 1627, FIN-70211 Kuopio, Finland.
| | - Hanna Isaksson
- Department of Biomedical Engineering, Lund University, BMC D13, 221 84 Lund, Sweden.
| |
Collapse
|
32
|
Tang T, Wagermaier W, Schuetz R, Wang Q, Eltit F, Fratzl P, Wang R. Hypermineralization in the femoral neck of the elderly. Acta Biomater 2019; 89:330-342. [PMID: 30872111 DOI: 10.1016/j.actbio.2019.03.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 03/06/2019] [Accepted: 03/09/2019] [Indexed: 01/04/2023]
Abstract
Hip fragility depends on the decline in bone mass as well as changes in bone microstructure and the properties of bone mineral and organic matrix. Although it is well-established that low bone mass or osteoporosis is a key factor in hip fracture risk, it is striking to observe that 92% of 24 patients who have sustained an intracapsular hip fracture showed hypermineralization at the superior-anterior quadrant, a critical region associated with increased hip fracture risk. In-depth material studies on a total of 12 human cadaver femurs revealed increased degree of mineralization in the hypermineralized tissue: calcium weight percentage as measured by quantitative backscattered electron imaging increased by approximately 15% compared with lamellar bone; mineral-to-matrix ratio obtained by Raman microspectroscopy imaging also increased. Immunohistochemistry revealed localized type II collagen in the hypermineralized region, implying its cartilaginous nature. At the ultrastructural level, X-ray scattering revealed significantly smaller (on average 2.3 nm thick and 15.6 nm long) and less ordered bone minerals in the hypermineralized tissue. Finally, the hypermineralized tissue was more brittle than lamellar bone under hydrated state - cracks propagated easily in the hypermineralized region but stopped at the lamellar boundary. This study demonstrates that hypermineralization of femoral neck cortical bone is a source of bone fragility which is worth considering in future fracture risk assessment when the origin of hip fracture is unclear based on current evaluation standards. STATEMENT OF SIGNIFICANCE: Hypermineralization of femoral cortical bone in older adults might occur in many more hip fracture cases than presently known. Yet, this tissue remains largely unknown to the orthopedic community possibly due to coarse resolution of clinical imaging. The current study showed the hypermineralized tissue had reduced fracture resistance which could be attributed to the material changes in mineral content, organic matrix, and mineral platelets properties. It thus could be a source for fracture initiation. Consequently, we believe hypermineralization of femoral neck cortical bone should be considered in hip fragility assessment, especially when low bone mass cannot be identified as a primary contributor to hip fracture.
Collapse
Affiliation(s)
- Tengteng Tang
- Department of Materials Engineering, University of British Columbia, Vancouver, BC, Canada; Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany; Centre for Hip Health and Mobility, Vancouver, BC, Canada
| | - Wolfgang Wagermaier
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| | - Roman Schuetz
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| | - Qiong Wang
- Department of Materials Engineering, University of British Columbia, Vancouver, BC, Canada; School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada; Centre for Hip Health and Mobility, Vancouver, BC, Canada
| | - Felipe Eltit
- Department of Materials Engineering, University of British Columbia, Vancouver, BC, Canada; School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada; Centre for Hip Health and Mobility, Vancouver, BC, Canada
| | - Peter Fratzl
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany.
| | - Rizhi Wang
- Department of Materials Engineering, University of British Columbia, Vancouver, BC, Canada; School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada; Centre for Hip Health and Mobility, Vancouver, BC, Canada.
| |
Collapse
|
33
|
Patton DM, Bigelow EMR, Schlecht SH, Kohn DH, Bredbenner TL, Jepsen KJ. The relationship between whole bone stiffness and strength is age and sex dependent. J Biomech 2019; 83:125-133. [PMID: 30527634 PMCID: PMC6338331 DOI: 10.1016/j.jbiomech.2018.11.030] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 11/20/2018] [Accepted: 11/21/2018] [Indexed: 01/11/2023]
Abstract
Accurately estimating whole bone strength is critical for identifying individuals that may benefit from prophylactic treatments aimed at reducing fracture risk. Strength is often estimated from stiffness, but it is not known whether the relationship between stiffness and strength varies with age and sex. Cadaveric proximal femurs (44 Male: 18-78 years; 40 Female: 24-95 years) and radial (36 Male: 18-89 years; 19 Female: 24-95 years) and femoral diaphyses (34 Male: 18-89 years; 19 Female: 24-95 years) were loaded to failure to evaluate how the stiffness-strength relationship varies with age and sex. Strength correlated significantly with stiffness at all sites and for both sexes, as expected. However, females exhibited significantly less strength for the proximal femur (58% difference, p < 0.001). Multivariate regressions revealed that stiffness, age and PYD were significant negative independent predictors of strength for the proximal femur (Age: M: p = 0.005, F: p < 0.001, PYD: M: p = 0.022, F: p = 0.025), radial diaphysis (Age: M = 0.055, PYD: F = 0.024), and femoral diaphysis (Age: M: p = 0.014, F: p = 0.097, PYD: M: p = 0.003, F: p = 0.091). These results indicated that older bones tended to be significantly weaker for a given stiffness than younger bones. These results suggested that human bones exhibit diminishing strength relative to stiffness with aging and with decreasing PYD. Incorporating these age- and sex-specific factors may help to improve the accuracy of strength estimates.
Collapse
Affiliation(s)
- Daniella M Patton
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Erin M R Bigelow
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Stephen H Schlecht
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, USA; Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - David H Kohn
- Department of Biologic and Materials Sciences, University of Michigan, Ann Arbor, MI, USA
| | - Todd L Bredbenner
- Department of Mechanical and Aerospace Engineering, University of Colorado Colorado Springs, Colorado Springs, CO, USA
| | - Karl J Jepsen
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
34
|
Dragomir-Daescu D, Rossman TL, Rezaei A, Carlson KD, Kallmes DF, Skinner JA, Khosla S, Amin S. Factors associated with proximal femur fracture determined in a large cadaveric cohort. Bone 2018; 116:196-202. [PMID: 30096469 PMCID: PMC6342454 DOI: 10.1016/j.bone.2018.08.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 08/02/2018] [Accepted: 08/07/2018] [Indexed: 12/16/2022]
Abstract
Many researchers have used cadaveric fracture tests to determine the relationship between proximal femur (hip) fracture strength and a multitude of possible explanatory variables, typically considered one or two at a time. These variables include subject-specific proximal femur variables such as femoral neck areal bone mineral density (aBMD), sex, age, and geometry, as well as physiological hip fracture event variables such as fall speed and angle of impact. However, to our knowledge, no study has included all of these variables simultaneously in the same experimental dataset. To address this gap, the present study simultaneously included all of these subject-specific and fracture event variables in multivariate models to understand their contributions to femoral strength and fracture type. The primary aim of this study was to determine not only whether each of these variables contributed to the prediction of femoral strength, but also to determine the relative importance of each variable in strength prediction. A secondary aim was to similarly characterize the importance of these variables for the prediction of fracture type. To accomplish these aims, we characterized 197 proximal femurs (covering a wide range of subject-specific variables) with DXA and CT scans, and then tested the femurs to fracture in a sideways fall on the hip configuration. Each femur was tested using one of three fall speed conditions and one of four angles of impact (bone orientations). During each test, we acquired measurements of relevant force and displacement data. We then reduced the test data to determine femoral strength, and we used post-fracture CT scans to classify the fracture type (e.g., trochanteric, cervical). Using these results, the explanatory variables were analyzed with mixed statistical models to explain variations in hip fracture strength and fracture type, respectively. Five explanatory variables were statistically significant in explaining the variability in femoral strength: aBMD, sex, age, fall speed, and neck-shaft angle (P ≤ 0.0135). These five variables, including significant interactions, explained 80% of the variability in hip fracture strength. Additionally, when only aBMD, sex, and age (P < 0.0001) were considered in the model, again including significant interactions, these three variables alone explained 79% of the variability in hip fracture strength. So while fall speed (P = 0.0135) and neck-shaft angle (P = 0.0041) were statistically significant, the inclusion of these variables did not appreciably improve the prediction of hip fracture strength compared to the model that considered only aBMD, sex and age. For the variables we included in this study, in the ranges we considered, our findings indicate that the clinically-available information of patient age, sex and aBMD are sufficient for femoral strength assessment. These findings also suggest that there is little value in the extra effort required to characterize the effect of femoral geometry on strength, or to account for the probabilistic nature of fall-related factors such as fall speed and angle of impact. For fracture type, the only explanatory variable found to be significant was aBMD (P ≤ 0.0099). We found that the odds of having intertrochanteric fractures increased by 47% when aBMD decreased by one standard deviation (0.2 g/cm2).
Collapse
Affiliation(s)
- Dan Dragomir-Daescu
- Department of Physiology and Biomedical Engineering, Mayo Clinic, United States.
| | | | - Asghar Rezaei
- Department of Physiology and Biomedical Engineering, Mayo Clinic, United States
| | - Kent D Carlson
- Department of Physiology and Biomedical Engineering, Mayo Clinic, United States
| | | | | | - Sundeep Khosla
- Robert and Arlene Kogod Center on Aging and Endocrine Research Unit, Mayo Clinic, United States
| | - Shreyasee Amin
- Division of Rheumatology, Mayo Clinic, United States; Division of Epidemiology, Department of Health Sciences Research, Mayo Clinic, United States
| |
Collapse
|
35
|
Fleps I, Enns-Bray WS, Guy P, Ferguson SJ, Cripton PA, Helgason B. On the internal reaction forces, energy absorption, and fracture in the hip during simulated sideways fall impact. PLoS One 2018; 13:e0200952. [PMID: 30114192 PMCID: PMC6095517 DOI: 10.1371/journal.pone.0200952] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 07/04/2018] [Indexed: 11/25/2022] Open
Abstract
The majority of hip fractures have been reported to occur as a result of a fall with impact to the greater trochanter of the femur. Recently, we developed a novel cadaveric pendulum-based hip impact model and tested two cadaveric femur-pelvis constructs, embedded in a soft tissue surrogate. The outcome was a femoral neck fracture in a male specimen while a female specimen had no fracture. The aim of the present study was, first, to develop a methodology for constructing and assessing the accuracy of explicit Finite Element Models (FEMs) for simulation of sideways falls to the hip based on the experimental model. Second, to use the FEMs for quantifying the internal reaction forces and energy absorption in the hip during impact. Third, to assess the potential of the FEMs in terms of separating a femoral fracture endpoint from a non-fracture endpoint. Using a non-linear, strain rate dependent, and heterogeneous material mapping strategy for bone tissue in these models, we found the FEM-derived results to closely match the experimental test results in terms of impact forces and displacements of pelvic video markers up to the time of peak impact force with errors below 10%. We found the internal reaction forces in the femoral neck on the impact side to be approximately 35% lower than the impact force measured between soft tissue and ground for both specimens. In addition, we found the soft tissue to be the component that absorbed the largest part of the energy of the tissue types in the hip region. Finally, we found surface strain patterns derived from FEM results to match the fracture location and extent based on post testing x-rays of the specimens. This is the first study with quantitative data on the energy absorption in the pelvic region during a sideways fall.
Collapse
Affiliation(s)
- Ingmar Fleps
- Institute for Biomechanics, ETH Zürich, Zürich, Switzerland
- * E-mail:
| | | | - Pierre Guy
- Division of Orthopaedic Trauma, Department of Orthopaedics, University of British Columbia, Vancouver, Canada
| | | | - Peter A. Cripton
- Orthopaedics and Injury Biomechanics Group, Department of Mechanical Engineering and Orthopaedics and School of Biomedical Engineering, University of British Columbia, Vancouver, Canada
| | - Benedikt Helgason
- Institute for Biomechanics, ETH Zürich, Zürich, Switzerland
- School of Science and Engineering, Reykjavik University, Reykjavik, Iceland
| |
Collapse
|
36
|
Martelli S, Perilli E. Time-elapsed synchrotron-light microstructural imaging of femoral neck fracture. J Mech Behav Biomed Mater 2018; 84:265-272. [PMID: 29852314 DOI: 10.1016/j.jmbbm.2018.05.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 12/16/2017] [Accepted: 05/09/2018] [Indexed: 11/29/2022]
|
37
|
Adams AL, Fischer H, Kopperdahl DL, Lee DC, Black DM, Bouxsein ML, Fatemi S, Khosla S, Orwoll ES, Siris ES, Keaveny TM. Osteoporosis and Hip Fracture Risk From Routine Computed Tomography Scans: The Fracture, Osteoporosis, and CT Utilization Study (FOCUS). J Bone Miner Res 2018; 33:1291-1301. [PMID: 29665068 PMCID: PMC6155990 DOI: 10.1002/jbmr.3423] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 02/19/2018] [Accepted: 03/06/2018] [Indexed: 01/22/2023]
Abstract
Methods now exist for analyzing previously taken clinical computed tomography (CT) scans to measure a dual-energy X-ray absorptiometry (DXA)-equivalent bone mineral density (BMD) at the hip and a finite element analysis-derived femoral strength. We assessed the efficacy of this "biomechanical CT" (BCT) approach for identifying patients at high risk of incident hip fracture in a large clinical setting. Using a case-cohort design sampled from 111,694 women and men aged 65 or older who had a prior hip CT scan, a DXA within 3 years of the CT, and no prior hip fracture, we compared those with subsequent hip fracture (n = 1959) with randomly selected sex-stratified controls (n = 1979) and analyzed their CT scans blinded to all other data. We found that the age-, race-, and body mass index (BMI)-adjusted hazard ratio (HR; per standard deviation) for femoral strength was significant before (women: HR = 2.8, 95% confidence interval [CI] 2.2-3.5; men: 2.8, 2.1-3.7) and after adjusting also for the (lowest) hip BMD T-score by BCT (women: 2.1, 1.4-3.2; men: 2.7, 1.6-4.6). The hazard ratio for the hip BMD T-score was similar between BCT and DXA for both sexes (women: 2.1, 1.8-2.5 BCT versus 2.1, 1.7-2.5 DXA; men: 2.8, 2.1-3.8 BCT versus 2.5, 2.0-3.2 DXA) and was higher than for the (lowest) spine/hip BMD T-score by DXA (women: 1.6, 1.4-1.9; men: 2.1, 1.6-2.7). Compared with the latter as a clinical-practice reference and using both femoral strength and the hip BMD T-score from BCT, sensitivity for predicting hip fracture was higher for BCT (women: 0.66 versus 0.59; men: 0.56 versus 0.48), with comparable respective specificity (women: 0.66 versus 0.67; men: 0.76 versus 0.78). We conclude that BCT analysis of previously acquired routine abdominal or pelvic CT scans is at least as effective as DXA testing for identifying patients at high risk of hip fracture. © 2018 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Annette L Adams
- Department of Research and Evaluation, Kaiser Permanente Southern California, Pasadena, CA, USA
| | - Heidi Fischer
- Department of Research and Evaluation, Kaiser Permanente Southern California, Pasadena, CA, USA
| | | | | | - Dennis M Black
- Departments of Epidemiology and Biostatistics, University of California, San Francisco, CA, USA
| | - Mary L Bouxsein
- Orthopedic Biomechanics Laboratory, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Shireen Fatemi
- Department of Endocrinology, Kaiser Permanente Southern California, Panorama City, CA, USA
| | - Sundeep Khosla
- Kogod Center on Aging and Division of Endocrinology, Mayo Clinic, Rochester, MN, USA
| | - Eric S Orwoll
- Bone and Mineral Unit, Oregon Health and Science University, Portland, OR, USA
| | - Ethel S Siris
- Toni Stabile Osteoporosis Center, Department of Medicine, Columbia University Medical Center, New York, NY, USA
| | - Tony M Keaveny
- Departments of Mechanical Engineering and Bioengineering, University of California, Berkeley, CA, USA
| |
Collapse
|
38
|
Tang T, Cripton PA, Guy P, McKay HA, Wang R. Clinical hip fracture is accompanied by compression induced failure in the superior cortex of the femoral neck. Bone 2018; 108:121-131. [PMID: 29277713 DOI: 10.1016/j.bone.2017.12.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 11/22/2017] [Accepted: 12/20/2017] [Indexed: 10/18/2022]
Abstract
Hip fractures pose a major health problem throughout the world due to their devastating impact. Current theories for why these injuries are so prevalent in the elderly point to an increased propensity to fall and decreases in bone mass with ageing. However, the fracture mechanisms, particularly the stress and strain conditions leading to bone failure at the hip remain unclear. Here, we directly examined the cortical bone from clinical intra-capsular hip fractures at a microscopic level, and found strong evidence of compression induced failure in the superior cortex. A total of 143 sections obtained from 24 femoral neck samples that were retrieved from 24 fracturing patients at surgery were examined using laser scanning confocal microscopy (LSCM) after fluorescein staining. The stained microcracks showed significantly higher density in the superior cortex than in the inferior cortex, indicating a greater magnitude of strain in the superior femoral neck during the failure-associated deformation and fracture process. The predominant stress state for each section was reconstructed based on the unique correlation between the microcrack pattern and the stress state. Specifically, we found clear evidence of longitudinal compression and buckling as the primary failure mechanisms in the superior cortex. These findings demonstrate the importance of microcrack analysis in studying clinical hip fractures, and point to the central role of the superior cortex failure as an important aspect of the failure initiation in clinical intra-capsular hip fractures.
Collapse
Affiliation(s)
- Tengteng Tang
- Department of Materials Engineering, University of British Columbia, Vancouver, BC, Canada; Centre for Hip Health and Mobility, Vancouver, BC, Canada
| | - Peter A Cripton
- Department of Mechanical Engineering, University of British Columbia, Vancouver, BC, Canada; Centre for Hip Health and Mobility, Vancouver, BC, Canada; International Collaboration On Repair Discoveries, Vancouver, BC, Canada
| | - Pierre Guy
- Department of Orthopaedics, University of British Columbia, Vancouver, BC, Canada; Centre for Hip Health and Mobility, Vancouver, BC, Canada
| | - Heather A McKay
- Department of Orthopaedics, University of British Columbia, Vancouver, BC, Canada; Centre for Hip Health and Mobility, Vancouver, BC, Canada
| | - Rizhi Wang
- Department of Materials Engineering, University of British Columbia, Vancouver, BC, Canada; Centre for Hip Health and Mobility, Vancouver, BC, Canada.
| |
Collapse
|
39
|
Enns-Bray W, Bahaloo H, Fleps I, Ariza O, Gilchrist S, Widmer R, Guy P, Pálsson H, Ferguson S, Cripton P, Helgason B. Material mapping strategy to improve the predicted response of the proximal femur to a sideways fall impact. J Mech Behav Biomed Mater 2018; 78:196-205. [DOI: 10.1016/j.jmbbm.2017.10.033] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 09/25/2017] [Accepted: 10/26/2017] [Indexed: 11/29/2022]
|
40
|
Johannesdottir F, Thrall E, Muller J, Keaveny TM, Kopperdahl DL, Bouxsein ML. Comparison of non-invasive assessments of strength of the proximal femur. Bone 2017; 105:93-102. [PMID: 28739416 DOI: 10.1016/j.bone.2017.07.023] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 07/15/2017] [Accepted: 07/20/2017] [Indexed: 12/16/2022]
Abstract
It is not clear which non-invasive method is most effective for predicting strength of the proximal femur in those at highest risk of fracture. The primary aim of this study was to compare the abilities of dual energy X-ray absorptiometry (DXA)-derived aBMD, quantitative computed tomography (QCT)-derived density and volume measures, and finite element analysis (FEA)-estimated strength to predict femoral failure load. We also evaluated the contribution of cortical and trabecular bone measurements to proximal femur strength. We obtained 76 human cadaveric proximal femurs (50 women and 26 men; age 74±8.8years), performed imaging with DXA and QCT, and mechanically tested the femurs to failure in a sideways fall configuration at a high loading rate. Linear regression analysis was used to construct the predictive model between imaging outcomes and experimentally-measured femoral strength for each method. To compare the performance of each method we used 3-fold cross validation repeated 10 times. The bone strength estimated by QCT-based FEA predicted femoral failure load (R2adj=0.78, 95%CI 0.76-0.80; RMSE=896N, 95%CI 830-961) significantly better than femoral neck aBMD by DXA (R2adj=0.69, 95%CI 0.66-0.72; RMSE=1011N, 95%CI 952-1069) and the QCT-based model (R2adj=0.73, 95%CI 0.71-0.75; RMSE=932N, 95%CI 879-985). Both cortical and trabecular bone contribute to femoral strength, the contribution of cortical bone being higher in femurs with lower trabecular bone density. These findings have implications for optimizing clinical approaches to assess hip fracture risk. In addition, our findings provide new insights that will assist in interpretation of the effects of osteoporosis treatments that preferentially impact cortical versus trabecular bone.
Collapse
Affiliation(s)
- Fjola Johannesdottir
- Center for Advanced Orthopedic Studies, Beth Israel Deaconess Medical Center, Boston, MA, USA; Department of Orthopedic Surgery, Harvard Medical School, Boston, MA, USA.
| | - Erica Thrall
- Center for Advanced Orthopedic Studies, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - John Muller
- Center for Advanced Orthopedic Studies, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Tony M Keaveny
- Departments of Mechanical Engineering and Bioengineering, University of California, Berkeley, CA, USA
| | | | - Mary L Bouxsein
- Center for Advanced Orthopedic Studies, Beth Israel Deaconess Medical Center, Boston, MA, USA; Department of Orthopedic Surgery, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
41
|
On the Failure Initiation in the Proximal Human Femur Under Simulated Sideways Fall. Ann Biomed Eng 2017; 46:270-283. [DOI: 10.1007/s10439-017-1952-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 10/30/2017] [Indexed: 11/25/2022]
|
42
|
Ramos-Infante SJ, Pérez MA. In vitro and in silico characterization of open-cell structures of trabecular bone. Comput Methods Biomech Biomed Engin 2017; 20:1562-1570. [DOI: 10.1080/10255842.2017.1390086] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- S. J. Ramos-Infante
- M2BE-Multiscale in Mechanical and Biological Engineering, Instituto de Investigación en Ingeniería de Aragón (I3A), Universidad de Zaragoza Campus Río Ebro, Zaragoza, Spain
| | - M. A. Pérez
- M2BE-Multiscale in Mechanical and Biological Engineering, Instituto de Investigación en Ingeniería de Aragón (I3A), Universidad de Zaragoza Campus Río Ebro, Zaragoza, Spain
| |
Collapse
|
43
|
Yu A, Carballido-Gamio J, Wang L, Lang TF, Su Y, Wu X, Wang M, Wei J, Yi C, Cheng X. Spatial Differences in the Distribution of Bone Between Femoral Neck and Trochanteric Fractures. J Bone Miner Res 2017; 32:1672-1680. [PMID: 28407298 PMCID: PMC5550343 DOI: 10.1002/jbmr.3150] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 03/21/2017] [Accepted: 04/10/2017] [Indexed: 01/08/2023]
Abstract
There is little knowledge about the spatial distribution differences in volumetric bone mineral density and cortical bone structure at the proximal femur between femoral neck fractures and trochanteric fractures. In this case-control study, a total of 93 women with fragility hip fractures, 72 with femoral neck fractures (mean ± SD age: 70.6 ± 12.7 years) and 21 with trochanteric fractures (75.6 ± 9.3 years), and 50 control subjects (63.7 ± 7.0 years) were included for the comparisons. Differences in the spatial distributions of volumetric bone mineral density, cortical bone thickness, cortical volumetric bone mineral density, and volumetric bone mineral density in a layer adjacent to the endosteal surface were investigated using voxel-based morphometry (VBM) and surface-based statistical parametric mapping (SPM). We compared these spatial distributions between controls and both types of fracture, and between the two types of fracture. Using VBM, we found spatially heterogeneous volumetric bone mineral density differences between control subjects and subjects with hip fracture that varied by fracture type. Interestingly, femoral neck fracture subjects, but not subjects with trochanteric fracture, showed significantly lower volumetric bone mineral density in the superior aspect of the femoral neck compared with controls. Using surface-based SPM, we found that compared with controls, both fracture types showed thinner cortices in regions in agreement with the type of fracture. Most outcomes of cortical and endocortical volumetric bone mineral density comparisons were consistent with VBM results. Our results suggest: 1) that the spatial distribution of trabecular volumetric bone mineral density might play a significant role in hip fracture; 2) that focal cortical bone thinning might be more relevant in femoral neck fractures; and 3) that areas of reduced cortical and endocortical volumetric bone mineral density might be more relevant for trochanteric fractures in Chinese women. © 2017 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Aihong Yu
- Department of Radiology, Beijing Jishuitan Hospital, 4th Medical College of Peking University, Beijing, China
| | | | - Ling Wang
- Department of Radiology, Beijing Jishuitan Hospital, 4th Medical College of Peking University, Beijing, China
| | - Thomas F Lang
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA
| | - Yongbin Su
- Department of Radiology, Beijing Jishuitan Hospital, 4th Medical College of Peking University, Beijing, China
| | - Xinbao Wu
- Department of Traumatology and Orthopedic Surgery, Beijing Jishuitan Hospital, 4th Medical College of Peking University, Beijing, China
| | - Manyi Wang
- Department of Traumatology and Orthopedic Surgery, Beijing Jishuitan Hospital, 4th Medical College of Peking University, Beijing, China
| | - Jie Wei
- Department of Traumatology and Orthopedic Surgery, Beijing Jishuitan Hospital, 4th Medical College of Peking University, Beijing, China
| | - Chen Yi
- Department of Traumatology and Orthopedic Surgery, Beijing Jishuitan Hospital, 4th Medical College of Peking University, Beijing, China
| | - Xiaoguang Cheng
- Department of Radiology, Beijing Jishuitan Hospital, 4th Medical College of Peking University, Beijing, China
| |
Collapse
|
44
|
Varga P, Inzana JA, Schwiedrzik J, Zysset PK, Gueorguiev B, Blauth M, Windolf M. New approaches for cement-based prophylactic augmentation of the osteoporotic proximal femur provide enhanced reinforcement as predicted by non-linear finite element simulations. Clin Biomech (Bristol, Avon) 2017; 44:7-13. [PMID: 28282569 DOI: 10.1016/j.clinbiomech.2017.03.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 02/27/2017] [Accepted: 03/01/2017] [Indexed: 02/07/2023]
Abstract
BACKGROUND High incidence and increased mortality related to secondary, contralateral proximal femoral fractures may justify invasive prophylactic augmentation that reinforces the osteoporotic proximal femur to reduce fracture risk. Bone cement-based approaches (femoroplasty) may deliver the required strengthening effect; however, the significant variation in the results of previous studies calls for a systematic analysis and optimization of this method. Our hypothesis was that efficient generalized augmentation strategies can be identified via computational optimization. METHODS This study investigated, by means of finite element analysis, the effect of cement location and volume on the biomechanical properties of fifteen proximal femora in sideways fall. Novel cement cloud locations were developed using the principles of bone remodeling and compared to the "single central" location that was previously reported to be optimal. FINDINGS The new augmentation strategies provided significantly greater biomechanical benefits compared to the "single central" cement location. Augmenting with approximately 12ml of cement in the newly identified location achieved increases of 11% in stiffness, 64% in yield force, 156% in yield energy and 59% in maximum force, on average, compared to the non-augmented state. The weaker bones experienced a greater biomechanical benefit from augmentation than stronger bones. The effect of cement volume on the biomechanical properties was approximately linear. Results of the "single central" model showed good agreement with previous experimental studies. INTERPRETATION These findings indicate enhanced potential of cement-based prophylactic augmentation using the newly developed cementing strategy. Future studies should determine the required level of strengthening and confirm these numerical results experimentally.
Collapse
Affiliation(s)
| | | | - Jakob Schwiedrzik
- Institute of Surgical Technology and Biomechanics, University of Bern, Switzerland
| | - Philippe K Zysset
- Institute of Surgical Technology and Biomechanics, University of Bern, Switzerland
| | | | - Michael Blauth
- Department for Trauma Surgery, Medical University Innsbruck, Austria
| | | |
Collapse
|
45
|
Poole KES, Skingle L, Gee AH, Turmezei TD, Johannesdottir F, Blesic K, Rose C, Vindlacheruvu M, Donell S, Vaculik J, Dungl P, Horak M, Stepan JJ, Reeve J, Treece GM. Focal osteoporosis defects play a key role in hip fracture. Bone 2017; 94:124-134. [PMID: 27777119 PMCID: PMC5135225 DOI: 10.1016/j.bone.2016.10.020] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Revised: 10/05/2016] [Accepted: 10/20/2016] [Indexed: 02/02/2023]
Abstract
BACKGROUND Hip fractures are mainly caused by accidental falls and trips, which magnify forces in well-defined areas of the proximal femur. Unfortunately, the same areas are at risk of rapid bone loss with ageing, since they are relatively stress-shielded during walking and sitting. Focal osteoporosis in those areas may contribute to fracture, and targeted 3D measurements might enhance hip fracture prediction. In the FEMCO case-control clinical study, Cortical Bone Mapping (CBM) was applied to clinical computed tomography (CT) scans to define 3D cortical and trabecular bone defects in patients with acute hip fracture compared to controls. Direct measurements of trabecular bone volume were then made in biopsies of target regions removed at operation. METHODS The sample consisted of CT scans from 313 female and 40 male volunteers (158 with proximal femoral fracture, 145 age-matched controls and 50 fallers without hip fracture). Detailed Cortical Bone Maps (c.5580 measurement points on the unfractured hip) were created before registering each hip to an average femur shape to facilitate statistical parametric mapping (SPM). Areas where cortical and trabecular bone differed from controls were visualised in 3D for location, magnitude and statistical significance. Measures from the novel regions created by the SPM process were then tested for their ability to classify fracture versus control by comparison with traditional CT measures of areal Bone Mineral Density (aBMD). In women we used the surgical classification of fracture location ('femoral neck' or 'trochanteric') to discover whether focal osteoporosis was specific to fracture type. To explore whether the focal areas were osteoporotic by histological criteria, we used micro CT to measure trabecular bone parameters in targeted biopsies taken from the femoral heads of 14 cases. RESULTS Hip fracture patients had distinct patterns of focal osteoporosis that determined fracture type, and CBM measures classified fracture type better than aBMD parameters. CBM measures however improved only minimally on aBMD for predicting any hip fracture and depended on the inclusion of trabecular bone measures alongside cortical regions. Focal osteoporosis was confirmed on biopsy as reduced sub-cortical trabecular bone volume. CONCLUSION Using 3D imaging methods and targeted bone biopsy, we discovered focal osteoporosis affecting trabecular and cortical bone of the proximal femur, among men and women with hip fracture.
Collapse
Affiliation(s)
- Kenneth E S Poole
- Department of Medicine, University of Cambridge and Addenbrooke's Hospital, Hills Road, Cambridge, UK.
| | - Linda Skingle
- Department of Medicine, University of Cambridge and Addenbrooke's Hospital, Hills Road, Cambridge, UK
| | - Andrew H Gee
- Department of Engineering, University of Cambridge, Cambridge, UK
| | - Thomas D Turmezei
- Department of Medicine, University of Cambridge and Addenbrooke's Hospital, Hills Road, Cambridge, UK
| | - Fjola Johannesdottir
- Department of Medicine, University of Cambridge and Addenbrooke's Hospital, Hills Road, Cambridge, UK
| | - Karen Blesic
- Department of Medicine, University of Cambridge and Addenbrooke's Hospital, Hills Road, Cambridge, UK
| | - Collette Rose
- Department of Medicine, University of Cambridge and Addenbrooke's Hospital, Hills Road, Cambridge, UK
| | | | - Simon Donell
- Department of Orthopaedics, Norfolk & Norwich University Hospital, Norwich, UK
| | - Jan Vaculik
- Department of Orthopaedics, Faculty of Medicine, Charles University and Bulovka Hospital, Prague, Czech Republic
| | - Pavel Dungl
- Department of Orthopaedics, Faculty of Medicine, Charles University and Bulovka Hospital, Prague, Czech Republic
| | - Martin Horak
- Department of Radiology, Homolka Hospital, Prague, Czech Republic
| | - Jan J Stepan
- Faculty of Medicine 1, Charles University and Institute of Rheumatology, Prague, Czech Republic
| | - Jonathan Reeve
- BOTNAR Research Institute, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences University of Oxford, UK
| | - Graham M Treece
- Department of Engineering, University of Cambridge, Cambridge, UK
| |
Collapse
|
46
|
Varga P, Hofmann-Fliri L, Blauth M, Windolf M. Prophylactic augmentation of the osteoporotic proximal femur-mission impossible? BONEKEY REPORTS 2016; 5:854. [PMID: 28018586 DOI: 10.1038/bonekey.2016.86] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 11/01/2016] [Indexed: 11/09/2022]
Abstract
The high incidence of secondary hip fractures and the associated markedly increased mortality call for preventive actions that could help to avoid these injuries. By providing immediate strengthening and not relying on patient compliance, internal prophylactic augmentation of the osteoporotic proximal femur may overcome the main limitations of systemic bone drugs and wearable protective pads. However, such a method would have to provide sufficient and reliable strengthening effect with minimal risks and side effects to justify the need of an invasive treatment. The requirements for an internal reinforcement approach are thus strict and include mechanical, biological, clinical, ethical and financial criteria. Here we first attempt to describe the properties of an ideal augmentation method. Previously published methodologies and techniques developed at our research institute, including approaches using cements, metals, other materials or combined approaches, are then reviewed and evaluated according to these aspects. We conclude that none of the discussed methodologies appears to be able to deliver a sufficiently high gain-versus-risk ratio that could justify the clinical application and thus augmentation of the osteoporotic proximal femur remains a challenge. Finally, we provide suggestions for the development and evaluation of future strategies.
Collapse
Affiliation(s)
- Peter Varga
- AO Research Institute Davos , Davos Platz, Switzerland
| | | | - Michael Blauth
- Department for Trauma Surgery, Medical University Innsbruck , Innsbruck, Austria
| | | |
Collapse
|
47
|
Abstract
Beyond bone mineral density (BMD), bone quality designates the mechanical integrity of bone tissue. In vivo images based on X-ray attenuation, such as CT reconstructions, provide size, shape, and local BMD distribution and may be exploited as input for finite element analysis (FEA) to assess bone fragility. Further key input parameters of FEA are the material properties of bone tissue. This review discusses the main determinants of bone mechanical properties and emphasizes the added value, as well as the important assumptions underlying finite element analysis. Bone tissue is a sophisticated, multiscale composite material that undergoes remodeling but exhibits a rather narrow band of tissue mineralization. Mechanically, bone tissue behaves elastically under physiologic loads and yields by cracking beyond critical strain levels. Through adequate cell-orchestrated modeling, trabecular bone tunes its mechanical properties by volume fraction and fabric. With proper calibration, these mechanical properties may be incorporated in quantitative CT-based finite element analysis that has been validated extensively with ex vivo experiments and has been applied increasingly in clinical trials to assess treatment efficacy against osteoporosis.
Collapse
Affiliation(s)
- Dieter H Pahr
- Institute of Lightweight Design and Structural Biomechanics, Vienna University of Technology, Vienna, Austria
| | - Philippe K Zysset
- Institute for Surgical Technology and Biomechanics, University of Bern, Bern, Switzerland.
| |
Collapse
|
48
|
European Society of Biomechanics S.M. Perren Award 2016: A statistical damage model for bone tissue based on distinct compressive and tensile cracks. J Biomech 2016; 49:3616-3625. [DOI: 10.1016/j.jbiomech.2016.09.045] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 06/05/2016] [Accepted: 09/12/2016] [Indexed: 01/08/2023]
|
49
|
Bjørnerem Å. The clinical contribution of cortical porosity to fragility fractures. BONEKEY REPORTS 2016; 5:846. [PMID: 27818743 PMCID: PMC5081000 DOI: 10.1038/bonekey.2016.77] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Accepted: 09/20/2016] [Indexed: 01/13/2023]
Abstract
Cortical bone is not compact; rather it is penetrated by many Haversian and Volkmann canals for blood supply. The lining of these canals are the intracortical bone surfaces available for bone remodeling. Increasing intracortical bone remodeling increases cortical porosity. However, cortical bone loss occurs more slowly than trabecular loss due to the fact that less surface per unit of bone matrix volume is available for bone remodeling. Nevertheless, most of the bone loss over time is cortical because cortical bone constitutes 80% of the skeleton, and the relative proportion of trabecular bone diminishes with advancing age. Higher serum levels of bone turnover markers are associated with higher cortical porosity of the distal tibia and the proximal femur. Greater porosity of the distal radius is associated with higher odds for forearm fracture, and greater porosity of the proximal femur is associated with higher odds for non-vertebral fracture in postmenopausal women. Measurement of cortical porosity contributes to fracture risk independent of areal bone mineral density and Fracture Risk Assessment Tool. On the other hand, antiresorptive treatment reduces porosity at the distal radius and at the proximal femoral shaft. Thus, porosity is a substantial determinant of the bone fragility that underlies the risk of fractures and may be a target for fracture prevention.
Collapse
Affiliation(s)
- Åshild Bjørnerem
- Department of Clinical Medicine, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway
- Department of Obstetrics and Gynaecology, University Hospital of North Norway, Tromsø, Norway
| |
Collapse
|
50
|
Lee DC, Varela A, Kostenuik PJ, Ominsky MS, Keaveny TM. Finite Element Analysis of Denosumab Treatment Effects on Vertebral Strength in Ovariectomized Cynomolgus Monkeys. J Bone Miner Res 2016; 31:1586-95. [PMID: 27149403 DOI: 10.1002/jbmr.2830] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 03/01/2016] [Accepted: 03/04/2016] [Indexed: 01/22/2023]
Abstract
Finite element analysis has not yet been validated for measuring changes in whole-bone strength at the hip or spine in people after treatment with an osteoporosis agent. Toward that end, we assessed the ability of a clinically approved implementation of finite element analysis to correctly quantify treatment effects on vertebral strength, comparing against direct mechanical testing, in cynomolgus monkeys randomly assigned to one of three 16-month-long treatments: sham surgery with vehicle (Sham-Vehicle), ovariectomy with vehicle (OVX-Vehicle), or ovariectomy with denosumab (OVX-DMAb). After treatment, T12 vertebrae were retrieved, scanned with micro-CT, and mechanically tested to measure compressive strength. Blinded to the strength data and treatment codes, the micro-CT images were coarsened and homogenized to create continuum-type finite element models, without explicit porosity. With clinical translation in mind, these models were then analyzed for strength using the U.S. Food and Drug Administration (FDA)-cleared VirtuOst software application (O.N. Diagnostics, Berkeley, CA, USA), developed for analysis of human bones. We found that vertebral strength by finite element analysis was highly correlated (R(2) = 0.97; n = 52) with mechanical testing, independent of treatment (p = 0.12). Further, the size of the treatment effect on strength (ratio of mean OVX-DMAb to mean OVX-Vehicle, as a percentage) was large and did not differ (p = 0.79) between mechanical testing (+57%; 95% CI [26%, 95%]) and finite element analysis (+51% [20%, 88%]). The micro-CT analysis revealed increases in cortical thickness (+45% [19%, 73%]) and trabecular bone volume fraction (+24% [8%, 42%]). These results show that a preestablished clinical finite element analysis implementation-developed for human bone and clinically validated in fracture-outcome studies-correctly quantified the observed treatment effects of denosumab on vertebral strength in cynomolgus monkeys. One implication is that the treatment effects in this study are well explained by the features contained within these finite element models, namely, the bone geometry and mass and the spatial distribution of bone mass. © 2016 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
| | - Aurore Varela
- Charles River Laboratories Inc., Montréal, QC, Canada
| | | | | | | |
Collapse
|