1
|
Tan Z, Chen P, Zhang J, Shek HT, Li Z, Zhou X, Zhou Y, Yin S, Dong L, Feng L, Wong JSH, Gao B, To MKT. Multi-omics analyses reveal aberrant differentiation trajectory with WNT1 loss-of-function in type XV osteogenesis imperfecta. J Bone Miner Res 2024; 39:1253-1267. [PMID: 39126373 PMCID: PMC11371906 DOI: 10.1093/jbmr/zjae123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 07/07/2024] [Accepted: 07/17/2024] [Indexed: 08/12/2024]
Abstract
Osteogenesis imperfecta (OI) is a group of severe genetic bone disorders characterized by congenital low bone mass, deformity, and frequent fractures. Type XV OI is a moderate to severe form of skeletal dysplasia caused by WNT1 variants. In this cohort study from southern China, we summarized the clinical phenotypes of patients with WNT1 variants and found that the proportion of type XV patients was around 10.3% (25 out of 243) with a diverse spectrum of phenotypes. Functional assays indicated that variants of WNT1 significantly impaired its secretion and effective activity, leading to moderate to severe clinical manifestations, porous bone structure, and enhanced osteoclastic activities. Analysis of proteomic data from human skeleton indicated that the expression of SOST (sclerostin) was dramatically reduced in type XV patients compared to patients with COL1A1 quantitative variants. Single-cell transcriptome data generated from human tibia samples of patients diagnosed with type XV OI and leg-length discrepancy, respectively, revealed aberrant differentiation trajectories of skeletal progenitors and impaired maturation of osteocytes with loss of WNT1, resulting in excessive CXCL12+ progenitors, fewer mature osteocytes, and the existence of abnormal cell populations with adipogenic characteristics. The integration of multi-omics data from human skeleton delineates how WNT1 regulates the differentiation and maturation of skeletal progenitors, which will provide a new direction for the treatment strategy of type XV OI and relative low bone mass diseases such as early onset osteoporosis.
Collapse
Affiliation(s)
- Zhijia Tan
- Department of Orthopaedics and Traumatology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, 518053, China
- Clinical Research Center for Rare Diseases, The University of Hong Kong-Shenzhen Hospital, Shenzhen, 518083, China
- Department of Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Peikai Chen
- Department of Orthopaedics and Traumatology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, 518053, China
- Clinical Research Center for Rare Diseases, The University of Hong Kong-Shenzhen Hospital, Shenzhen, 518083, China
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- The AI and Big Data Lab, The University of Hong Kong-Shenzhen Hospital, Shenzhen, 518053, China
| | - Jianan Zhang
- Department of Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Hiu Tung Shek
- Department of Orthopaedics and Traumatology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, 518053, China
- Clinical Research Center for Rare Diseases, The University of Hong Kong-Shenzhen Hospital, Shenzhen, 518083, China
| | - Zeluan Li
- Department of Orthopaedics and Traumatology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, 518053, China
- Clinical Research Center for Rare Diseases, The University of Hong Kong-Shenzhen Hospital, Shenzhen, 518083, China
| | - Xinlin Zhou
- Department of Orthopaedics and Traumatology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, 518053, China
| | - Yapeng Zhou
- Department of Orthopaedics and Traumatology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, 518053, China
- Clinical Research Center for Rare Diseases, The University of Hong Kong-Shenzhen Hospital, Shenzhen, 518083, China
| | - Shijie Yin
- Department of Orthopaedics and Traumatology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, 518053, China
- Clinical Research Center for Rare Diseases, The University of Hong Kong-Shenzhen Hospital, Shenzhen, 518083, China
| | - Lina Dong
- Department of Orthopaedics and Traumatology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, 518053, China
- Clinical Research Center for Rare Diseases, The University of Hong Kong-Shenzhen Hospital, Shenzhen, 518083, China
| | - Lin Feng
- Department of Orthopaedics and Traumatology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, 518053, China
- Clinical Research Center for Rare Diseases, The University of Hong Kong-Shenzhen Hospital, Shenzhen, 518083, China
| | - Janus Siu Him Wong
- Department of Orthopaedics and Traumatology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, 518053, China
- Clinical Research Center for Rare Diseases, The University of Hong Kong-Shenzhen Hospital, Shenzhen, 518083, China
- Department of Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Bo Gao
- Department of Orthopaedics and Traumatology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, 518053, China
- Clinical Research Center for Rare Diseases, The University of Hong Kong-Shenzhen Hospital, Shenzhen, 518083, China
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Michael Kai Tsun To
- Department of Orthopaedics and Traumatology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, 518053, China
- Clinical Research Center for Rare Diseases, The University of Hong Kong-Shenzhen Hospital, Shenzhen, 518083, China
- Department of Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
2
|
Wu Z, Li W, Jiang K, Lin Z, Qian C, Wu M, Xia Y, Li N, Zhang H, Xiao H, Bai J, Geng D. Regulation of bone homeostasis: signaling pathways and therapeutic targets. MedComm (Beijing) 2024; 5:e657. [PMID: 39049966 PMCID: PMC11266958 DOI: 10.1002/mco2.657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 06/22/2024] [Accepted: 06/25/2024] [Indexed: 07/27/2024] Open
Abstract
As a highly dynamic tissue, bone is continuously rebuilt throughout life. Both bone formation by osteoblasts and bone resorption by osteoclasts constitute bone reconstruction homeostasis. The equilibrium of bone homeostasis is governed by many complicated signaling pathways that weave together to form an intricate network. These pathways coordinate the meticulous processes of bone formation and resorption, ensuring the structural integrity and dynamic vitality of the skeletal system. Dysregulation of the bone homeostatic regulatory signaling network contributes to the development and progression of many skeletal diseases. Significantly, imbalanced bone homeostasis further disrupts the signaling network and triggers a cascade reaction that exacerbates disease progression and engenders a deleterious cycle. Here, we summarize the influence of signaling pathways on bone homeostasis, elucidating the interplay and crosstalk among them. Additionally, we review the mechanisms underpinning bone homeostatic imbalances across diverse disease landscapes, highlighting current and prospective therapeutic targets and clinical drugs. We hope that this review will contribute to a holistic understanding of the signaling pathways and molecular mechanisms sustaining bone homeostasis, which are promising to contribute to further research on bone homeostasis and shed light on the development of targeted drugs.
Collapse
Affiliation(s)
- Zebin Wu
- Department of OrthopedicsThe First Affiliated Hospital of Soochow UniversitySuzhouJiangsuChina
| | - Wenming Li
- Department of OrthopedicsThe First Affiliated Hospital of Soochow UniversitySuzhouJiangsuChina
| | - Kunlong Jiang
- Department of OrthopedicsThe First Affiliated Hospital of Soochow UniversitySuzhouJiangsuChina
| | - Zhixiang Lin
- Department of OrthopedicsThe First Affiliated Hospital of Soochow UniversitySuzhouJiangsuChina
| | - Chen Qian
- Department of OrthopedicsThe First Affiliated Hospital of Soochow UniversitySuzhouJiangsuChina
| | - Mingzhou Wu
- Department of OrthopedicsThe First Affiliated Hospital of Soochow UniversitySuzhouJiangsuChina
| | - Yu Xia
- Department of OrthopedicsThe First Affiliated Hospital of Soochow UniversitySuzhouJiangsuChina
| | - Ning Li
- Department of OrthopedicsCentre for Leading Medicine and Advanced Technologies of IHMDivision of Life Sciences and MedicineThe First Affiliated Hospital of USTCUniversity of Science and Technology of ChinaHefeiChina
| | - Hongtao Zhang
- Department of OrthopedicsThe First Affiliated Hospital of Soochow UniversitySuzhouJiangsuChina
| | - Haixiang Xiao
- Department of OrthopedicsThe First Affiliated Hospital of Soochow UniversitySuzhouJiangsuChina
- Department of OrthopedicsJingjiang People's HospitalSeventh Clinical Medical School of Yangzhou UniversityJingjiangJiangsu ProvinceChina
| | - Jiaxiang Bai
- Department of OrthopedicsCentre for Leading Medicine and Advanced Technologies of IHMDivision of Life Sciences and MedicineThe First Affiliated Hospital of USTCUniversity of Science and Technology of ChinaHefeiChina
| | - Dechun Geng
- Department of OrthopedicsThe First Affiliated Hospital of Soochow UniversitySuzhouJiangsuChina
| |
Collapse
|
3
|
Guo DG, Zhu J, Wang HJ, Pan BW. Investigating the Effects and Mechanisms of Cyclomorusin on Osteoclasts in a High Glucose Environment. Chem Biodivers 2024; 21:e202301741. [PMID: 38477870 DOI: 10.1002/cbdv.202301741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 03/09/2024] [Accepted: 03/11/2024] [Indexed: 03/14/2024]
Abstract
Diabetes mellitus is an endocrine disease characterized by prolonged hyperglycemia. Prolonged high blood sugar levels interfere with the differentiation and maturation process of OBs and OCs, leading to the onset of osteoporosis. However, OCs differentiation and maturation is a complex regulatory process. In this study, we used a co-culture system of RAW264.7 and MC3T3-E1 cells under HG concentration to explore the effect of CYM on OCs in a HG environment. The effects of CYM on the formation and function of OCs were observed using TRAP-positive cell counts and bone resorption pits. Then, mRNA and protein expression levels of OCs-related genes were detected by real-time qPCR and western blotting. The results showed that CYM had an inhibitory effect on OCs differentiation and bone resorption, reduced mRNAs expression of OCs-associated genes, and downregulated RANKL/RANK/TRAF6 pathway that mediates OCs differentiation. CYM could be a promising natural compound against diabetic osteoporosis.
Collapse
Affiliation(s)
- Dong-Gui Guo
- College of Food and Pharmaceutical Engineering, Guizhou Institute of Technology, Guiyang, 550025, China
| | - Jun Zhu
- National & Local Joint Engineering Research Center for the Exploition of Homology Resources of Southwest Medicine and Food, Guizhou University, Guiyang, 550025, China
| | - Hui-Juan Wang
- National & Local Joint Engineering Research Center for the Exploition of Homology Resources of Southwest Medicine and Food, Guizhou University, Guiyang, 550025, China
| | - Bo-Wen Pan
- College of pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| |
Collapse
|
4
|
Doolittle ML, Saul D, Kaur J, Rowsey JL, Eckhardt B, Vos S, Grain S, Kroupova K, Ruan M, Weivoda M, Oursler MJ, Farr JN, Monroe DG, Khosla S. Skeletal Effects of Inducible ERα Deletion in Osteocytes in Adult Mice. J Bone Miner Res 2022; 37:1750-1760. [PMID: 35789113 PMCID: PMC9474695 DOI: 10.1002/jbmr.4644] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 06/28/2022] [Accepted: 07/02/2022] [Indexed: 11/12/2022]
Abstract
Estrogen is known to regulate bone metabolism in both women and men, but substantial gaps remain in our knowledge of estrogen and estrogen receptor alpha (ERα) regulation of adult bone metabolism. Studies using global ERα-knockout mice were confounded by high circulating sex-steroid levels, and osteocyte/osteoblast-specific ERα deletion may be confounded by ERα effects on growth versus the adult skeleton. Thus, we developed mice expressing the tamoxifen-inducible CreERT2 in osteocytes using the 8-kilobase (kb) Dmp1 promoter (Dmp1CreERT2 ). These mice were crossed with ERαfl//fl mice to create ERαΔOcy mice, permitting inducible osteocyte-specific ERα deletion in adulthood. After intermittent tamoxifen treatment of adult 4-month-old mice for 1 month, female, but not male, ERαΔOcy mice exhibited reduced spine bone volume fraction (BV/TV (-20.1%, p = 0.004) accompanied by decreased trabecular bone formation rate (-18.9%, p = 0.0496) and serum P1NP levels (-38.9%, p = 0.014). Periosteal (+65.6%, p = 0.004) and endocortical (+64.1%, p = 0.003) expansion were higher in ERαΔOcy mice compared to control (Dmp1CreERT2 ) mice at the tibial diaphysis, reflecting the known effects of estrogen to inhibit periosteal apposition and promote endocortical formation. Increases in Sost (2.1-fold, p = 0.001) messenger RNA (mRNA) levels were observed in trabecular bone at the spine in ERαΔOcy mice, consistent with previous reports that estrogen deficiency is associated with increased circulating sclerostin as well as bone SOST mRNA levels in humans. Further, the biological consequences of increased Sost expression were reflected in significant overall downregulation in panels of osteoblast and Wnt target genes in osteocyte-enriched bones from ERαΔOcy mice. These findings thus establish that osteocytic ERα is critical for estrogen action in female, but not male, adult bone metabolism. Moreover, the reduction in bone formation accompanied by increased Sost, decreased osteoblast, and decreased Wnt target gene expression in ERαΔOcy mice provides a direct link in vivo between ERα and Wnt signaling. © 2022 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Madison L. Doolittle
- Robert and Arlene Kogod Center on Aging and Division of Endocrinology, Mayo Clinic College of Medicine, Rochester, MN
| | - Dominik Saul
- Robert and Arlene Kogod Center on Aging and Division of Endocrinology, Mayo Clinic College of Medicine, Rochester, MN
| | - Japneet Kaur
- Robert and Arlene Kogod Center on Aging and Division of Endocrinology, Mayo Clinic College of Medicine, Rochester, MN
| | - Jennifer L. Rowsey
- Robert and Arlene Kogod Center on Aging and Division of Endocrinology, Mayo Clinic College of Medicine, Rochester, MN
| | - Brittany Eckhardt
- Robert and Arlene Kogod Center on Aging and Division of Endocrinology, Mayo Clinic College of Medicine, Rochester, MN
| | - Stephanie Vos
- Robert and Arlene Kogod Center on Aging and Division of Endocrinology, Mayo Clinic College of Medicine, Rochester, MN
| | - Sarah Grain
- Robert and Arlene Kogod Center on Aging and Division of Endocrinology, Mayo Clinic College of Medicine, Rochester, MN
| | - Kveta Kroupova
- Robert and Arlene Kogod Center on Aging and Division of Endocrinology, Mayo Clinic College of Medicine, Rochester, MN
- University Hospital Hradec Kralove and the Faculty of Medicine in Hradec Kralove, Czech Republic
| | - Ming Ruan
- Robert and Arlene Kogod Center on Aging and Division of Endocrinology, Mayo Clinic College of Medicine, Rochester, MN
| | - Megan Weivoda
- Robert and Arlene Kogod Center on Aging and Division of Hematology, Mayo Clinic College of Medicine, Rochester, MN
| | - Merry Jo Oursler
- Robert and Arlene Kogod Center on Aging and Division of Endocrinology, Mayo Clinic College of Medicine, Rochester, MN
| | - Joshua N. Farr
- Robert and Arlene Kogod Center on Aging and Division of Endocrinology, Mayo Clinic College of Medicine, Rochester, MN
| | - David G. Monroe
- Robert and Arlene Kogod Center on Aging and Division of Endocrinology, Mayo Clinic College of Medicine, Rochester, MN
| | - Sundeep Khosla
- Robert and Arlene Kogod Center on Aging and Division of Endocrinology, Mayo Clinic College of Medicine, Rochester, MN
| |
Collapse
|
5
|
Martínez-Gil N, Ugartondo N, Grinberg D, Balcells S. Wnt Pathway Extracellular Components and Their Essential Roles in Bone Homeostasis. Genes (Basel) 2022; 13:genes13010138. [PMID: 35052478 PMCID: PMC8775112 DOI: 10.3390/genes13010138] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/10/2022] [Accepted: 01/11/2022] [Indexed: 12/11/2022] Open
Abstract
The Wnt pathway is involved in several processes essential for bone development and homeostasis. For proper functioning, the Wnt pathway is tightly regulated by numerous extracellular elements that act by both activating and inhibiting the pathway at different moments. This review aims to describe, summarize and update the findings regarding the extracellular modulators of the Wnt pathway, including co-receptors, ligands and inhibitors, in relation to bone homeostasis, with an emphasis on the animal models generated, the diseases associated with each gene and the bone processes in which each member is involved. The precise knowledge of all these elements will help us to identify possible targets that can be used as a therapeutic target for the treatment of bone diseases such as osteoporosis.
Collapse
|
6
|
Wang X, Tian Y, Liang X, Yin C, Huai Y, Zhao Y, Huang Q, Chu X, Wang W, Qian AR. Bergamottin promotes osteoblast differentiation and bone formation via activating Wnt/β-catenin signaling pathway. Food Funct 2022; 13:2913-2924. [DOI: 10.1039/d1fo02755g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Osteoporosis is one of the most common bone disorders that seriously affect the health and life quality of elderly individuals. Reduced osteoblast differentiation and bone formation lead to changes in...
Collapse
|
7
|
A regulatory role of circRNA-miRNA-mRNA network in osteoblast differentiation. Biochimie 2021; 193:137-147. [PMID: 34742858 DOI: 10.1016/j.biochi.2021.11.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 10/29/2021] [Accepted: 11/02/2021] [Indexed: 02/07/2023]
Abstract
Osteoblast differentiation is an important process in skeletal development and bone remodelling. Serious bone diseases occur from any delay, defect, or imbalance in osteoblastic differentiation. Non-coding RNAs (ncRNAs) play a regulatory role in controlling the expression of proteins under physiological and pathological conditions via inhibiting mRNA translation or degrading mRNA. Circular RNAs (circRNAs) and microRNAs (miRNAs) are the long and small ncRNAs, respectively, which have been reported to regulate the expression of osteoblast marker genes directly or indirectly. Also, recent studies identified the regulatory mechanisms involving the crosstalk among circRNAs, miRNAs, and mRNAs during osteoblast differentiation. Understanding these regulatory mechanisms behind osteoblastic differentiation would help to diagnose or treat bone and bone-related disorders. Hence, the current review comprehensively discussed the regulatory relationship of circRNAs, miRNAs and mRNAs, and their functional role as circRNA-miRNA-mRNA axis in osteoblast differentiation.
Collapse
|
8
|
Yao Y, Cai X, Ren F, Ye Y, Wang F, Zheng C, Qian Y, Zhang M. The Macrophage-Osteoclast Axis in Osteoimmunity and Osteo-Related Diseases. Front Immunol 2021; 12:664871. [PMID: 33868316 PMCID: PMC8044404 DOI: 10.3389/fimmu.2021.664871] [Citation(s) in RCA: 126] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 03/17/2021] [Indexed: 12/11/2022] Open
Abstract
Osteoimmunity is involved in regulating the balance of bone remodeling and resorption, and is essential for maintaining normal bone morphology. The interaction between immune cells and osteoclasts in the bone marrow or joint cavity is the basis of osteoimmunity, in which the macrophage-osteoclast axis plays a vital role. Monocytes or tissue-specific macrophages (macrophages resident in tissues) are an important origin of osteoclasts in inflammatory and immune environment. Although there are many reports on macrophages and osteoclasts, there is still a lack of systematic reviews on the macrophage-osteoclast axis in osteoimmunity. Elucidating the role of the macrophage-osteoclast axis in osteoimmunity is of great significance for the research or treatment of bone damage caused by inflammation and immune diseases. In this article, we introduced in detail the concept of osteoimmunity and the mechanism and regulators of the differentiation of macrophages into osteoclasts. Furthermore, we described the role of the macrophage-osteoclast axis in typical bone damage caused by inflammation and immune diseases. These provide a clear knowledge framework for studying macrophages and osteoclasts in inflammatory and immune environments. And targeting the macrophage-osteoclast axis may be an effective strategy to treat bone damage caused by inflammation and immune diseases.
Collapse
Affiliation(s)
- Yao Yao
- Department of Pharmacy, Women's Hospital School of Medicine Zhejiang University, Hangzhou, China
| | - Xiaoyu Cai
- Department of Clinical Pharmacology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Cancer Center, Zhejiang University School of Medicine, Hangzhou, China
| | - Fujia Ren
- Department of Pharmacy, Hangzhou Women's Hospital, Hangzhou, China
| | - Yiqing Ye
- Department of Pharmacy, Women's Hospital School of Medicine Zhejiang University, Hangzhou, China
| | - Fengmei Wang
- Department of Pharmacy, Women's Hospital School of Medicine Zhejiang University, Hangzhou, China
| | - Caihong Zheng
- Department of Pharmacy, Women's Hospital School of Medicine Zhejiang University, Hangzhou, China
| | - Ying Qian
- Department of Pharmacy, Women's Hospital School of Medicine Zhejiang University, Hangzhou, China
| | - Meng Zhang
- Department of Pharmacy, Women's Hospital School of Medicine Zhejiang University, Hangzhou, China
| |
Collapse
|
9
|
Anti-Sclerostin Antibodies in Osteoporosis and Other Bone Diseases. J Clin Med 2020; 9:jcm9113439. [PMID: 33114755 PMCID: PMC7694131 DOI: 10.3390/jcm9113439] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 10/19/2020] [Accepted: 10/20/2020] [Indexed: 12/11/2022] Open
Abstract
The Wnt pathway is a key element of bone remodeling; its activation stimulates bone formation and inhibits bone resorption. The discovery of sclerostin, a natural antagonist of the Wnt pathway, promoted the development of romosozumab, a human monoclonal antibody directed against sclerostin, as well as other anti-sclerostin antibodies. Phase 3 studies have shown the efficacy of romosozumab in the prevention of fractures in postmenopausal women, against placebo but also against alendronate or teriparatide and this treatment also allows bone mineral density (BMD) increase in men. Romosozumab induces the uncoupling of bone remodeling, leading to both an increase in bone formation and a decrease in bone resorption during the first months of treatment. The effect is attenuated over time and reversible when stopped but transition with anti-resorbing agents allows the maintenance or reinforcement of BMD improvements. Some concerns were raised about cardiovascular events. Therefore, romosozumab was recently approved in several countries for the treatment of severe osteoporosis in postmenopausal women with high fracture risk and without a history of heart attack, myocardial infarction or stroke. This review aims to outline the role of sclerostin, the efficacy and safety of anti-sclerostin therapies and in particular romosozumab and their place in therapeutic strategies against osteoporosis or other bone diseases.
Collapse
|
10
|
Wang F, Li X, Li Z, Wang S, Fan J. Functions of Circular RNAs in Regulating Adipogenesis of Mesenchymal Stem Cells. Stem Cells Int 2020; 2020:3763069. [PMID: 32802080 PMCID: PMC7416283 DOI: 10.1155/2020/3763069] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 07/07/2020] [Accepted: 07/08/2020] [Indexed: 12/17/2022] Open
Abstract
The mesenchymal stem cells (MSCs) are known as highly plastic stem cells and can differentiate into specialized tissues such as adipose tissue, osseous tissue, muscle tissue, and nervous tissue. The differentiation of mesenchymal stem cells is very important in regenerative medicine. Their differentiation process is regulated by signaling pathways of epigenetic, transcriptional, and posttranscriptional levels. Circular RNA (circRNA), a class of noncoding RNAs generated from protein-coding genes, plays a pivotal regulatory role in many biological processes. Accumulated studies have demonstrated that several circRNAs participate in the cell differentiation process of mesenchymal stem cells in vitro and in vivo. In the current review, characteristics and functions of circRNAs in stem cell differentiation will be discussed. The mechanism and key role of circRNAs in regulating mesenchymal stem cell differentiation, especially adipogenesis, will be reviewed and discussed. Understanding the roles of these circRNAs will present us with a more comprehensive signal path network of modulating stem cell differentiation and help us discover potential biomarkers and therapeutic targets in clinic.
Collapse
Affiliation(s)
- Fanglin Wang
- Department of Tissue Engineering, School of Fundamental Science, China Medical University, Shenyang, Liaoning 110122, China
| | - Xiang Li
- Department of Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, And Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, Liaoning 110122, China
| | - Zhiyuan Li
- Department of Tissue Engineering, School of Fundamental Science, China Medical University, Shenyang, Liaoning 110122, China
| | - Shoushuai Wang
- Department of Tissue Engineering, School of Fundamental Science, China Medical University, Shenyang, Liaoning 110122, China
| | - Jun Fan
- Department of Tissue Engineering, School of Fundamental Science, China Medical University, Shenyang, Liaoning 110122, China
| |
Collapse
|
11
|
Chen G, Wang Q, Li Z, Yang Q, Liu Y, Du Z, Zhang G, Song Y. Circular RNA CDR1as promotes adipogenic and suppresses osteogenic differentiation of BMSCs in steroid-induced osteonecrosis of the femoral head. Bone 2020; 133:115258. [PMID: 32018039 DOI: 10.1016/j.bone.2020.115258] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 01/31/2020] [Accepted: 01/31/2020] [Indexed: 12/13/2022]
Abstract
Steroid-induced osteonecrosis of the femoral head (SONFH) is a common debilitating orthopedic disease. The bone marrow mesenchymal stem cells (BMSCs) are a type of mesenchymal stem cells which play crucial roles in bone repair. The adipogenic/osteogenic differentiation disorder of BMSCs has been widely perceived contributing to SONFH. However, the regulatory mechanism of BMSCs differentiation disorder still remains unclear. Circular RNA (circRNA), a kind of stable ncRNA, plays important roles in regulating gene expression via various ways. To date, there are no studies to uncover the circRNA expression profile and screen out the key circRNAs playing crucial roles in adipogenic/osteogenic differentiation disorder of SONFH-BMSCs. In present study, we detected the circRNA expression profiles in SONFH-BMSCs for the first time. A total of 820 circRNAs were differentially expressed in SONFH-BMSCs, including 460 up- and 360 down-regulated circRNAs. Bioinformatics analysis indicates circRNA CDR1as, one up-regulated circRNA, may play crucial role in adipogenic/osteogenic differentiation disorder of SONFH-BMSCs via CDR1as-miR-7-5p-WNT5B axis. Knocking-down CDR1as resulted in increasing of osteogenic differentiation and decreasing of adipogenic differentiation of BMSCs, while over-expressing CDR1as resulted in decreasing of osteogenic differentiation and increasing of adipogenic differentiation of BMSCs. The miR-7-5p binding sites of CDR1as and WNT5B were verified by luciferase reporter gene assay. Our study may provide new insights into the molecular mechanisms of osteogenic/adipogenic differentiation disorder of SONFH-BMSCs and new biomarkers for the diagnosis and treatment of SONFH.
Collapse
Affiliation(s)
- Gaoyang Chen
- Department of Orthopedics, The Second Hospital of Jilin University, Ziqiang Street 218, Changchun, Jilin 130041, China; Research Centre of the Second Hospital of Jilin University, Ziqiang Street 218, Changchun, Jilin 130041, China; The Engineering Research Centre of Molecular Diagnosis and Cell Treatment for Metabolic Bone Diseases of Jilin Province, Ziqiang Street 218, Changchun, Jilin 130041, China.
| | - Qingyu Wang
- Department of Orthopedics, The Second Hospital of Jilin University, Ziqiang Street 218, Changchun, Jilin 130041, China; Research Centre of the Second Hospital of Jilin University, Ziqiang Street 218, Changchun, Jilin 130041, China; The Engineering Research Centre of Molecular Diagnosis and Cell Treatment for Metabolic Bone Diseases of Jilin Province, Ziqiang Street 218, Changchun, Jilin 130041, China
| | - Zhaoyan Li
- Department of Orthopedics, The Second Hospital of Jilin University, Ziqiang Street 218, Changchun, Jilin 130041, China; Research Centre of the Second Hospital of Jilin University, Ziqiang Street 218, Changchun, Jilin 130041, China; The Engineering Research Centre of Molecular Diagnosis and Cell Treatment for Metabolic Bone Diseases of Jilin Province, Ziqiang Street 218, Changchun, Jilin 130041, China
| | - Qiwei Yang
- Research Centre of the Second Hospital of Jilin University, Ziqiang Street 218, Changchun, Jilin 130041, China; The Engineering Research Centre of Molecular Diagnosis and Cell Treatment for Metabolic Bone Diseases of Jilin Province, Ziqiang Street 218, Changchun, Jilin 130041, China.
| | - Yuzhe Liu
- Department of Orthopedics, The Second Hospital of Jilin University, Ziqiang Street 218, Changchun, Jilin 130041, China; The Engineering Research Centre of Molecular Diagnosis and Cell Treatment for Metabolic Bone Diseases of Jilin Province, Ziqiang Street 218, Changchun, Jilin 130041, China.
| | - Zhenwu Du
- Department of Orthopedics, The Second Hospital of Jilin University, Ziqiang Street 218, Changchun, Jilin 130041, China; Research Centre of the Second Hospital of Jilin University, Ziqiang Street 218, Changchun, Jilin 130041, China; The Engineering Research Centre of Molecular Diagnosis and Cell Treatment for Metabolic Bone Diseases of Jilin Province, Ziqiang Street 218, Changchun, Jilin 130041, China
| | - Guizhen Zhang
- Department of Orthopedics, The Second Hospital of Jilin University, Ziqiang Street 218, Changchun, Jilin 130041, China; Research Centre of the Second Hospital of Jilin University, Ziqiang Street 218, Changchun, Jilin 130041, China; The Engineering Research Centre of Molecular Diagnosis and Cell Treatment for Metabolic Bone Diseases of Jilin Province, Ziqiang Street 218, Changchun, Jilin 130041, China
| | - Yang Song
- Department of Orthopedics, The Second Hospital of Jilin University, Ziqiang Street 218, Changchun, Jilin 130041, China; The Engineering Research Centre of Molecular Diagnosis and Cell Treatment for Metabolic Bone Diseases of Jilin Province, Ziqiang Street 218, Changchun, Jilin 130041, China.
| |
Collapse
|