1
|
Ivanjko N, Stokovic N, Milesevic M, Rumenovic V, Windhager R, Sampath KT, Kovacic N, Grcevic D, Vukicevic S. rhBMP6 in autologous blood coagulum is a preferred osteoinductive device to rhBMP2 on bovine collagen sponge in the rat ectopic bone formation assay. Biomed Pharmacother 2023; 169:115844. [PMID: 37948990 DOI: 10.1016/j.biopha.2023.115844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/02/2023] [Accepted: 11/05/2023] [Indexed: 11/12/2023] Open
Abstract
Osteoinductive BMPs require a suitable delivery system for treating various pathological conditions of the spine and segmental bone defects. INFUSE, the only commercially available BMP-based osteoinductive device, consisting of rhBMP2 on bovine absorbable collagen sponge (ACS) showed major disadvantages due to serious side effects. A novel osteoinductive device, OSTEOGROW, comprised of rhBMP6 dispersed within autologous blood coagulum (ABC) is a promising therapy for bone regeneration, subjected to several clinical trials for diaphysial bone repair and spinal fusion. In the present study, we have examined the release dynamics showing that the ABC carrier provided a slower, more steady BMP release in comparison to the ACS. Rat subcutaneous assay was employed to evaluate cellular events and the time course of ectopic osteogenesis. The host cellular response to osteoinductive implants was evaluated by flow cytometry, while dynamics of bone formation and maintenance in time were evaluated by histology, immunohistochemistry and micro CT analyses. Flow cytometry revealed that the recruitment of lymphoid cell populations was significantly higher in rhBMP6/ABC implants, while rhBMP2/ACS implants recruited more myeloid populations. Furthermore, rhBMP6/ABC implants more efficiently attracted early and committed progenitor cells. Dynamics of bone formation induced by rhBMP2/ACS was characterized by a delayed endochondral ossification process in comparison to rhBMP6/ABC implants. Besides, rhBMP6/ABC implants induced more ectopic bone volume in all observed time points in comparison to rhBMP2/ACS implants. These results indicate that OSTEOGROW was superior to INFUSE due to ABC's advantages as a carrier and rhBMP6 superior efficacy in inducing bone.
Collapse
Affiliation(s)
- Natalia Ivanjko
- Laboratory for Mineralized Tissues, School of Medicine, University of Zagreb, Zagreb, Croatia; Scientific Center of Excellence for Reproductive and Regenerative Medicine, Zagreb, Croatia
| | - Nikola Stokovic
- Laboratory for Mineralized Tissues, School of Medicine, University of Zagreb, Zagreb, Croatia; Scientific Center of Excellence for Reproductive and Regenerative Medicine, Zagreb, Croatia
| | - Marina Milesevic
- Laboratory for Mineralized Tissues, School of Medicine, University of Zagreb, Zagreb, Croatia; Scientific Center of Excellence for Reproductive and Regenerative Medicine, Zagreb, Croatia
| | - Viktorija Rumenovic
- Laboratory for Mineralized Tissues, School of Medicine, University of Zagreb, Zagreb, Croatia; Scientific Center of Excellence for Reproductive and Regenerative Medicine, Zagreb, Croatia
| | - Reinhard Windhager
- Department of Orthopedics and Trauma Surgery, Medical University of Vienna, Vienna, Austria
| | | | - Natasa Kovacic
- Croatian Institute for Brain Research, Laboratory for Molecular Immunology, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Danka Grcevic
- Croatian Institute for Brain Research, Laboratory for Molecular Immunology, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Slobodan Vukicevic
- Laboratory for Mineralized Tissues, School of Medicine, University of Zagreb, Zagreb, Croatia; Scientific Center of Excellence for Reproductive and Regenerative Medicine, Zagreb, Croatia.
| |
Collapse
|
2
|
Ivanjko N, Stokovic N, Pecin M, Vnuk D, Smajlovic A, Ivkic N, Capak H, Javor A, Vrbanac Z, Maticic D, Vukicevic S. Calcium phosphate ceramics combined with rhBMP6 within autologous blood coagulum promote posterolateral lumbar fusion in sheep. Sci Rep 2023; 13:22079. [PMID: 38086987 PMCID: PMC10716416 DOI: 10.1038/s41598-023-48878-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 11/30/2023] [Indexed: 12/18/2023] Open
Abstract
Posterolateral spinal fusion (PLF) is a procedure used for the treatment of degenerative spine disease. In this study we evaluated Osteogrow-C, a novel osteoinductive device comprised of recombinant human Bone morphogenetic protein 6 (rhBMP6) dispersed in autologous blood coagulum with synthetic ceramic particles, in the sheep PLF model. Osteogrow-C implants containing 74-420 or 1000-1700 µm ceramic particles (TCP/HA 80/20) were implanted between L4-L5 transverse processes in sheep (Ovis Aries, Merinolaandschaf breed). In the first experiment (n = 9 sheep; rhBMP6 dose 800 µg) the follow-up period was 27 weeks while in the second experiment (n = 12 sheep; rhBMP6 dose 500 µg) spinal fusion was assessed by in vivo CT after 9 weeks and at the end of the experiment after 14 (n = 6 sheep) and 40 (n = 6 sheep) weeks. Methods of evaluation included microCT, histological analyses and biomechanical testing. Osteogrow-C implants containing both 74-420 and 1000-1700 µm ceramic particles induced radiographic solid fusion 9 weeks following implantation. Ex-vivo microCT and histological analyses revealed complete osseointegration of newly formed bone with adjacent transverse processes. Biomechanical testing confirmed that fusion between transverse processes was complete and successful. Osteogrow-C implants induced spinal fusion in sheep PLF model and therefore represent a novel therapeutic solution for patients with degenerative disc disease.
Collapse
Affiliation(s)
- Natalia Ivanjko
- Laboratory for Mineralized Tissues, Center for Translational and Clinical Research, School of Medicine, University of Zagreb, Salata 11, 10000, Zagreb, Croatia
- Center of Excellence for Reproductive and Regenerative Medicine, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Nikola Stokovic
- Laboratory for Mineralized Tissues, Center for Translational and Clinical Research, School of Medicine, University of Zagreb, Salata 11, 10000, Zagreb, Croatia
- Center of Excellence for Reproductive and Regenerative Medicine, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Marko Pecin
- Clinics for Surgery, Orthopedics and Ophthalmology, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
| | - Drazen Vnuk
- Clinics for Surgery, Orthopedics and Ophthalmology, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
| | - Ana Smajlovic
- Clinics for Surgery, Orthopedics and Ophthalmology, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
| | - Niko Ivkic
- Clinics for Surgery, Orthopedics and Ophthalmology, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
| | - Hrvoje Capak
- Department of Radiology, Ultrasound Diagnostics and Physical Therapy, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
| | - Ana Javor
- Department of Radiology, Ultrasound Diagnostics and Physical Therapy, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
| | - Zoran Vrbanac
- Department of Radiology, Ultrasound Diagnostics and Physical Therapy, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
| | - Drazen Maticic
- Clinics for Surgery, Orthopedics and Ophthalmology, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
| | - Slobodan Vukicevic
- Laboratory for Mineralized Tissues, Center for Translational and Clinical Research, School of Medicine, University of Zagreb, Salata 11, 10000, Zagreb, Croatia.
- Center of Excellence for Reproductive and Regenerative Medicine, School of Medicine, University of Zagreb, Zagreb, Croatia.
| |
Collapse
|
3
|
Omi M, Koneru T, Lyu Y, Haraguchi A, Kamiya N, Mishina Y. Increased BMP-Smad signaling does not affect net bone mass in long bones. Front Physiol 2023; 14:1145763. [PMID: 37064883 PMCID: PMC10101206 DOI: 10.3389/fphys.2023.1145763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 03/21/2023] [Indexed: 04/03/2023] Open
Abstract
Bone morphogenetic proteins (BMPs) have been used for orthopedic and dental application due to their osteoinductive properties; however, substantial numbers of adverse reactions such as heterotopic bone formation, increased bone resorption and greater cancer risk have been reported. Since bone morphogenetic proteins signaling exerts pleiotropic effects on various tissues, it is crucial to understand tissue-specific and context-dependent functions of bone morphogenetic proteins. We previously reported that loss-of-function of bone morphogenetic proteins receptor type IA (BMPR1A) in osteoblasts leads to more bone mass in mice partly due to inhibition of bone resorption, indicating that bone morphogenetic protein signaling in osteoblasts promotes osteoclast function. On the other hand, hemizygous constitutively active (ca) mutations for BMPR1A (caBmpr1awt/+) in osteoblasts result in higher bone morphogenetic protein signaling activity and no overt skeletal changes in adult mice. Here, we further bred mice for heterozygous null for Bmpr1a (Bmpr1a+/−) and homozygous mutations of caBmpr1a (caBmpr1a+/+) crossed with Osterix-Cre transgenic mice to understand how differences in the levels of bone morphogenetic protein signaling activity specifically in osteoblasts contribute to bone phenotype. We found that Bmpr1a+/−, caBmpr1awt/+ and caBmpr1a+/+ mice at 3 months of age showed no overt bone phenotypes in tibiae compared to controls by micro-CT and histological analysis although BMP-Smad signaling is increased in both caBmpr1awt/+ and caBmpr1a+/+ tibiae and decreased in the Bmpr1a+/− mice compared to controls. Gene expression analysis demonstrated that slightly higher levels of bone formation markers and resorption markers along with levels of bone morphogenetic protein-Smad signaling, however, there was no significant changes in TRAP positive cells in tibiae. These findings suggest that changes in bone morphogenetic protein signaling activity within differentiating osteoblasts does not affect net bone mass in the adult stage, providing insights into the concerns in the clinical setting such as high-dose and unexpected side effects of bone morphogenetic protein application.
Collapse
Affiliation(s)
- Maiko Omi
- Department of Biologic and Materials Sciences and Prosthodontics, University of Michigan School of Dentistry, Ann Arbor, MI, United States
| | - Tejaswi Koneru
- Department of Biologic and Materials Sciences and Prosthodontics, University of Michigan School of Dentistry, Ann Arbor, MI, United States
| | - Yishan Lyu
- Department of Biologic and Materials Sciences and Prosthodontics, University of Michigan School of Dentistry, Ann Arbor, MI, United States
| | - Ai Haraguchi
- Department of Biologic and Materials Sciences and Prosthodontics, University of Michigan School of Dentistry, Ann Arbor, MI, United States
| | - Nobuhiro Kamiya
- Department of Budo and Sport Studies, Faculty of Budo and Sport Studies, Tenri University, Nara, Japan
| | - Yuji Mishina
- Department of Biologic and Materials Sciences and Prosthodontics, University of Michigan School of Dentistry, Ann Arbor, MI, United States
- *Correspondence: Yuji Mishina,
| |
Collapse
|
4
|
Woloszyk A, Aguilar L, Perez L, Salinas EL, Glatt V. Biomimetic hematoma delivers an ultra-low dose of rhBMP-2 to successfully regenerate large femoral bone defects in rats. BIOMATERIALS ADVANCES 2023; 148:213366. [PMID: 36905826 DOI: 10.1016/j.bioadv.2023.213366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 02/10/2023] [Accepted: 02/26/2023] [Indexed: 03/06/2023]
Abstract
Successful repair of large bone defects remains a clinical challenge. Following fractures, a bridging hematoma immediately forms as a crucial step that initiates bone healing. In larger bone defects the micro-architecture and biological properties of this hematoma are compromised, and spontaneous union cannot occur. To address this need, we developed an ex vivo Biomimetic Hematoma that resembles naturally healing fracture hematoma, using whole blood and the natural coagulants calcium and thrombin, as an autologous delivery vehicle for a very reduced dose of rhBMP-2. When implanted into a rat femoral large defect model, complete and consistent bone regeneration with superior bone quality was achieved with 10-20× less rhBMP-2 compared to that required with the collagen sponges currently used. Moreover, calcium and rhBMP-2 demonstrated a synergistic effect enhancing osteogenic differentiation, and fully restored mechanical strength 8 weeks after surgery. Collectively, these findings suggest the Biomimetic Hematoma provides a natural reservoir for rhBMP-2, and that retention of the protein within the scaffold rather than its sustained release might be responsible for more robust and rapid bone healing. Clinically, this new implant, using FDA-approved components, would not only reduce the risk of adverse events associated with BMPs, but also decrease treatment costs and nonunion rates.
Collapse
Affiliation(s)
- Anna Woloszyk
- Department of Orthopaedics, University of Texas Health Science Center, San Antonio 78229, TX, USA
| | - Leonardo Aguilar
- Department of Orthopaedics, University of Texas Health Science Center, San Antonio 78229, TX, USA
| | - Louis Perez
- Department of Orthopaedics, University of Texas Health Science Center, San Antonio 78229, TX, USA
| | - Emily L Salinas
- Department of Orthopaedics, University of Texas Health Science Center, San Antonio 78229, TX, USA
| | - Vaida Glatt
- Department of Orthopaedics, University of Texas Health Science Center, San Antonio 78229, TX, USA; Sam and Ann Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center, San Antonio 78229, TX, USA.
| |
Collapse
|
5
|
Ma T, Chen Y, Yi ZG, Liu J, Li YH, Bai J, Tie WT, Huang M, Zhu XF, Wang J, Du J, Zuo XQ, Li Q, Lin FL, Tang L, Guo J, Xiao HW, Lei Q, Ma XL, Li LJ, Zhang LS. NORAD promotes multiple myeloma cell progression via BMP6/P-ERK1/2 axis. Cell Signal 2022; 100:110474. [PMID: 36126794 DOI: 10.1016/j.cellsig.2022.110474] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/01/2022] [Accepted: 09/14/2022] [Indexed: 11/03/2022]
Abstract
Multiple myeloma (MM) is one of the most common tumors of the hematological system and remains incurable. Recent studies have shown that long noncoding RNA NORAD is a potential oncogene in a variety of tumors. However, the general biological role and clinical value of NORAD in MM remains unknown. In this study, we measured NORAD expression in bone marrow of 60 newly diagnosed MM, 30 post treatment MM and 17 healthy donors by real-time quantitative polymerase chain reaction (qPCR). The NORAD gene was knockdown by lentiviral transfection in MM cell lines, and the effects of NORAD on apoptosis, cell cycle and cell proliferation in MM cells were examined by flow cytometry, CCK8 assay, EDU assay and Western blot, and the differential genes after knockdown of NORAD were screened by mRNA sequencing, followed by in vivo experiments and immunohistochemical assays. We found that knockdown of NORAD promoted MM cell apoptosis, induced cell cycle G1 phase arrest, and inhibited MM cell apoptosis in in vivo and in vitro experiments. Mechanistically, NORAD plays these roles through the BMP6/P-ERK1/2 axis. We discuss a novel mechanism by which NORAD acts pro-tumorigenically in MM via the BMP6/P-ERK1/2 axis.
Collapse
Affiliation(s)
- Tao Ma
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou 730000, China; Department of Hematology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Yan Chen
- Department of Hematology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Zhi-Gang Yi
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou 730000, China
| | - Jia Liu
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou 730000, China
| | - Yan-Hong Li
- Department of Hematology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Jun Bai
- Department of Hematology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Wen-Ting Tie
- Department of Hematology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Mei Huang
- Department of Hematology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Xiao-Feng Zhu
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou 730000, China; Department of Hematology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Ji Wang
- Department of Hematology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Juan Du
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou 730000, China
| | - Xiu-Qin Zuo
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou 730000, China
| | - Qin Li
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou 730000, China
| | - Fan-Li Lin
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou 730000, China
| | - Liu Tang
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou 730000, China
| | - Jing Guo
- Department of Hematology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Hong-Wen Xiao
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou 730000, China
| | - Qian Lei
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou 730000, China
| | - Xiao-Li Ma
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou 730000, China
| | - Li-Juan Li
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou 730000, China.
| | - Lian-Sheng Zhang
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou 730000, China.
| |
Collapse
|
6
|
Stokovic N, Ivanjko N, Rumenovic V, Breski A, Sampath KT, Peric M, Pecina M, Vukicevic S. Comparison of synthetic ceramic products formulated with autologous blood coagulum containing rhBMP6 for induction of bone formation. INTERNATIONAL ORTHOPAEDICS 2022; 46:2693-2704. [PMID: 35994064 DOI: 10.1007/s00264-022-05546-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 08/08/2022] [Indexed: 06/15/2023]
Abstract
PURPOSE Osteogrow, an osteoinductive device containing recombinant human Bone Morphogenetic Protein 6 (rhBMP6) in autologous blood coagulum, is a novel therapeutic solution for bone regeneration. This study aimed to evaluate different commercially available calcium phosphate synthetic ceramic particles as a compression-resistant matrix (CRM) added to Osteogrow implants to enhance their biomechanical properties. METHODS Osteogrow implants with the addition of Vitoss, ChronOs, BAM, and Dongbo ceramics (Osteogrow-C, where C stands for ceramics) were evaluated in the rodent subcutaneous ectopic bone formation assay. Osteogrow-C device was prepared as follows: rhBMP6 was added to blood, and blood was mixed with ceramics and left to coagulate. Osteogrow-C was implanted subcutaneously in the axillary region of Sprague-Dawley rats and the outcome was analyzed 21 days following implantation using microCT, histology, morphometric analyses, and immunohistochemistry. RESULTS Osteogrow-C implants with all tested ceramic particles induced the formation of the bone-ceramic structure containing cortical bone, the bone between the particles, and bone at the ceramic surfaces. The amount of newly formed bone was significant in all experimental groups; however, the highest bone volume was measured in Osteogrow-C implants with highly porous Vitoss ceramics. The trabecular number was highest in Osteogrow-C implants with Vitoss and ChronOs ceramics while trabeculae were thicker in implants containing BAM and Dongbo ceramics. The immunological response and inflammation were comparable among ceramic particles evaluated in this study. CONCLUSION Osteogrow-C bone regenerative device was effective with a broad range of commercially available synthetic ceramics providing a promising therapeutic solution for the regeneration of long bone fracture nonunion, large segmental defects, and spinal fusion surgeries.
Collapse
Affiliation(s)
- Nikola Stokovic
- Laboratory for Mineralized Tissues, Center for Translational and Clinical Research, School of Medicine, University of Zagreb, Zagreb, Croatia
- Scientific Center of Excellence for Reproductive and Regenerative Medicine, Zagreb, Croatia
| | - Natalia Ivanjko
- Laboratory for Mineralized Tissues, Center for Translational and Clinical Research, School of Medicine, University of Zagreb, Zagreb, Croatia
- Scientific Center of Excellence for Reproductive and Regenerative Medicine, Zagreb, Croatia
| | - Viktorija Rumenovic
- Laboratory for Mineralized Tissues, Center for Translational and Clinical Research, School of Medicine, University of Zagreb, Zagreb, Croatia
- Scientific Center of Excellence for Reproductive and Regenerative Medicine, Zagreb, Croatia
| | - Anita Breski
- Department of Pathology and Cytology, University Hospital Centre Zagreb, Zagreb, Croatia
| | | | - Mihaela Peric
- Scientific Center of Excellence for Reproductive and Regenerative Medicine, Zagreb, Croatia
- Department for Intracellular Communication, Center for Translational and Clinical Research, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Marko Pecina
- Department of Orthopaedic Surgery, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Slobodan Vukicevic
- Laboratory for Mineralized Tissues, Center for Translational and Clinical Research, School of Medicine, University of Zagreb, Zagreb, Croatia.
- Scientific Center of Excellence for Reproductive and Regenerative Medicine, Zagreb, Croatia.
| |
Collapse
|
7
|
Ishibashi K, Sasaki E, Wijaya E, Yamauchi S, Sasaki S, Kimura Y, Yamamoto Y, Shimbo T, Tamai K, Ishibashi Y. A Novel Quantitative Evaluation of Bone Formation After Opening Wedge High Tibial Osteotomy Using Tomosynthesis. J Digit Imaging 2022; 35:1373-1381. [PMID: 35419665 PMCID: PMC9582182 DOI: 10.1007/s10278-022-00630-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/17/2022] [Accepted: 04/03/2022] [Indexed: 11/24/2022] Open
Abstract
This study aimed to establish and validate a novel evaluation method using digital tomosynthesis to quantify bone formation in the gap after opening wedge high tibial osteotomy (OW-HTO). We retrospectively analyzed bone formation in the gap in 22 patients who underwent OW-HTO using digital tomosynthesis at 1, 2, 3, 6, 9, and 12 months postoperatively. Bone formation was semi-quantitatively assessed using the modified van Hemert's score and density measurements on digital tomosynthesis images. The gap filling value (GFV) was calculated as the ratio of the intensities of the opening gap and the tibial shaft. In addition, the relationship between the modified van Hemert's score and GFV was evaluated. The reproducibility of GFV had an interclass correlation coefficient (ICC [1,2]) of 0.958 for intraobserver reliability and an ICC (2,1) of 0.975 for interobserver reliability. The GFV increased in a time-dependent manner and was moderately correlated with the modified van Hemert's score (r = 0.630, p < 0.001). The GFV plateaued at 6 months postoperatively. In addition, the GFV was higher in patients with a modified van Hemert's score of 2 than in patients with a modified van Hemert's score of 3 (p = 0.008). The GFVs obtained using digital tomosynthesis can be used to assess postoperative bone formation in the opening gap after OW-HTO with high accuracy and reproducibility.
Collapse
Affiliation(s)
- Kyota Ishibashi
- Department of Orthopedic Surgery, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori, 036-8562, Japan.
- Department of Stem Cell Therapy Science, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan.
| | - Eiji Sasaki
- Department of Orthopedic Surgery, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori, 036-8562, Japan
| | | | - Shohei Yamauchi
- Department of Orthopedic Surgery, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori, 036-8562, Japan
| | - Shizuka Sasaki
- Department of Orthopedic Surgery, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori, 036-8562, Japan
| | - Yuka Kimura
- Department of Orthopedic Surgery, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori, 036-8562, Japan
| | - Yuji Yamamoto
- Department of Orthopedic Surgery, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori, 036-8562, Japan
| | - Takashi Shimbo
- Department of Stem Cell Therapy Science, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
- StemRIM Institute of Regeneration-Inducing Medicine, Osaka University, Suita, Japan
| | - Katsuto Tamai
- Department of Stem Cell Therapy Science, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Yasuyuki Ishibashi
- Department of Orthopedic Surgery, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori, 036-8562, Japan
| |
Collapse
|
8
|
Long-term posterolateral spinal fusion in rabbits induced by rhBMP6 applied in autologous blood coagulum with synthetic ceramics. Sci Rep 2022; 12:11649. [PMID: 35803983 PMCID: PMC9270325 DOI: 10.1038/s41598-022-14931-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 06/15/2022] [Indexed: 11/21/2022] Open
Abstract
Autologous bone graft substitute (ABGS) containing rhBMP6 in autologous blood coagulum (Osteogrow) is a novel therapeutic solution for bone regeneration. This study is aimed to investigate the long-term outcome of ABGS with synthetic ceramics (Osteogrow-C) in rabbit posterolateral spinal fusion (PLF) model. Osteogrow-C implants were implanted bilaterally between rabbit lumbar transverse processes. We compared the outcome following implantation of ABGS with ceramic particles of different chemical composition (TCP and biphasic ceramics containing both TCP and HA) and size (500–1700 µm and 74–420 µm). Outcome was analyzed after 14 and 27 weeks by microCT, histology, and biomechanical analyses. Successful bilateral spinal fusion was observed in all animals at the end of observation period. Chemical composition of ceramic particles has impact on the PLF outcome via resorption of TCP ceramics, while ceramics containing HA were only partially resorbed. Moreover, persistence of ceramic particles subsequently resulted with an increased bone volume in implants with small particles containing high proportion of HA. ABGS (rhBMP6/ABC) with various synthetic ceramic particles promoted spinal fusion in rabbits. This is the first presentation of BMP-mediated ectopic bone formation in rabbit PLF model with radiological, histological, and biomechanical features over a time course of up to 27 weeks.
Collapse
|
9
|
Bordukalo-Nikšić T, Kufner V, Vukičević S. The Role Of BMPs in the Regulation of Osteoclasts Resorption and Bone Remodeling: From Experimental Models to Clinical Applications. Front Immunol 2022; 13:869422. [PMID: 35558080 PMCID: PMC9086899 DOI: 10.3389/fimmu.2022.869422] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 03/28/2022] [Indexed: 11/18/2022] Open
Abstract
In response to mechanical forces and the aging process, bone in the adult skeleton is continuously remodeled by a process in which old and damaged bone is removed by bone-resorbing osteoclasts and subsequently is replaced by new bone by bone-forming cells, osteoblasts. During this essential process of bone remodeling, osteoclastic resorption is tightly coupled to osteoblastic bone formation. Bone-resorbing cells, multinuclear giant osteoclasts, derive from the monocyte/macrophage hematopoietic lineage and their differentiation is driven by distinct signaling molecules and transcription factors. Critical factors for this process are Macrophage Colony Stimulating Factor (M-CSF) and Receptor Activator Nuclear Factor-κB Ligand (RANKL). Besides their resorption activity, osteoclasts secrete coupling factors which promote recruitment of osteoblast precursors to the bone surface, regulating thus the whole process of bone remodeling. Bone morphogenetic proteins (BMPs), a family of multi-functional growth factors involved in numerous molecular and signaling pathways, have significant role in osteoblast-osteoclast communication and significantly impact bone remodeling. It is well known that BMPs help to maintain healthy bone by stimulating osteoblast mineralization, differentiation and survival. Recently, increasing evidence indicates that BMPs not only help in the anabolic part of bone remodeling process but also significantly influence bone catabolism. The deletion of the BMP receptor type 1A (BMPRIA) in osteoclasts increased osteoblastic bone formation, suggesting that BMPR1A signaling in osteoclasts regulates coupling to osteoblasts by reducing bone-formation activity during bone remodeling. The dual effect of BMPs on bone mineralization and resorption highlights the essential role of BMP signaling in bone homeostasis and they also appear to be involved in pathological processes in inflammatory disorders affecting bones and joints. Certain BMPs (BMP2 and -7) were approved for clinical use; however, increased bone resorption rather than formation were observed in clinical applications, suggesting the role BMPs have in osteoclast activation and subsequent osteolysis. Here, we summarize the current knowledge of BMP signaling in osteoclasts, its role in osteoclast resorption, bone remodeling, and osteoblast–osteoclast coupling. Furthermore, discussion of clinical application of recombinant BMP therapy is based on recent preclinical and clinical studies.
Collapse
Affiliation(s)
- Tatjana Bordukalo-Nikšić
- Laboratory for Mineralized Tissues, Center for Translational and Clinical Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Vera Kufner
- Laboratory for Mineralized Tissues, Center for Translational and Clinical Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Slobodan Vukičević
- Laboratory for Mineralized Tissues, Center for Translational and Clinical Research, University of Zagreb School of Medicine, Zagreb, Croatia
| |
Collapse
|
10
|
Zhao XW, Fan ZR, Ma JX, Ma XL, Wang Y, Bai HH, Lu B, Sun L. Reinforcement strategy for medial open-wedge high tibial osteotomy: a finite element evaluation of the additional opposite screw technique and bone grafts. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2022; 213:106523. [PMID: 34808530 DOI: 10.1016/j.cmpb.2021.106523] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 11/06/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND AND OBJECTIVE bone grafts (bgs) and the opposite screw insertion technique are reported to enhance initial stability after medial open-wedge high tibial osteotomy (OWHTO); however, it is unclear how the general and local biomechanical stability of the proximal tibia is affected by these reinforcement strategies. In this study, we aimed to assess the biomechanical differences among different fixation configurations for OWHTO under two loading conditions using finite element analysis, and to assess the biomechanical contribution of an opposite screw insertion. METHODS Models of the proximal tibia with three different gap defects were created to simulate different distraction heights in OWHTO. Four groups of models were then assembled with different fixation configurations, including the no BG (NBG) group, BG group, partially threaded screw (PT) group, and fully threaded screw (FT) group. Testing loads were applied to simulate the static forces on the knee joint during double-limb and single-limb standing. For each group, the stresses of the lateral hinge area (LHA) and the medial implant area (MIA), the maximum displacement of the tibia and the relative displacement (RD) of the medial gap were evaluated. RESULTS Compared to NBG group, bone block grafting effectively reduced the stress of the tibia and implant, as well as the maximum displacement of the tibia and the RD of the medial gap. The opposite screw group showed similar trends in alleviating the stress concentration on the LHA and MIA, and contributing to the maintaining the medial gap reduction, especially in the FT group; however, additional stresses were concentrated on the opposite screw itself, which indicated the potential risk of screw breakage. CONCLUSIONS Compared to NBG group, the BG group bone graft showed superior biomechanical advantages in decreasing the risk of implant failure and lateral hinge fracture, and maintaining the reduction in OWHTO. The additional opposite screw provided an extra support to the proximal tibia, with similar contributions to improve the structural stability after osteotomy, especially in the FT group.
Collapse
Affiliation(s)
- Xing-Wen Zhao
- Tianjin Medical University, No. 22 Qixiang Tai Street, Heping District, Tianjin 300070, China; Tianjin Hospital, No. 406, Jiefang Nan Street, Hexi District, Tianjin 300211, China
| | - Zheng-Rui Fan
- Tianjin Medical University, No. 22 Qixiang Tai Street, Heping District, Tianjin 300070, China; Tianjin Hospital, No. 406, Jiefang Nan Street, Hexi District, Tianjin 300211, China
| | - Jian-Xiong Ma
- Tianjin Hospital, No. 406, Jiefang Nan Street, Hexi District, Tianjin 300211, China.
| | - Xin-Long Ma
- Tianjin Medical University, No. 22 Qixiang Tai Street, Heping District, Tianjin 300070, China; Tianjin Hospital, No. 406, Jiefang Nan Street, Hexi District, Tianjin 300211, China.
| | - Ying Wang
- Tianjin Hospital, No. 406, Jiefang Nan Street, Hexi District, Tianjin 300211, China
| | - Hao-Hao Bai
- Tianjin Hospital, No. 406, Jiefang Nan Street, Hexi District, Tianjin 300211, China
| | - Bin Lu
- Tianjin Hospital, No. 406, Jiefang Nan Street, Hexi District, Tianjin 300211, China
| | - Lei Sun
- Tianjin Hospital, No. 406, Jiefang Nan Street, Hexi District, Tianjin 300211, China
| |
Collapse
|
11
|
Zhang Y, Jiang Y, Zou D, Yuan B, Ke HZ, Li W. Therapeutics for enhancement of spinal fusion: A mini review. J Orthop Translat 2021; 31:73-79. [PMID: 34934624 DOI: 10.1016/j.jot.2021.11.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 10/29/2021] [Accepted: 11/01/2021] [Indexed: 10/19/2022] Open
Abstract
Objective With the advances in biological technologies over the past 20 years, a number of new therapies to promote bone healing have been introduced. Particularly in the spinal surgery field, more unprecedented biological therapeutics become available to enhance spinal fusion success rate along with advanced instrumentation approaches. Yet surgeons may not have been well informed about their safety and efficacy profiles in order to improve clinical practices. Therefore there is a need to summarize the evidence and bring the latest progress to surgeons for better clinical services for patients. Methods We comprehensively reviewed the literatures in regard to the biological therapeutics for enhancement of spinal fusion published in the last two decades. Results Autograft bone is still the gold standard for bone grafting in spinal fusion surgery due to its good osteoconductive, osteoinductive, and osteogenic abilities. Accumulating evidence suggests that adding rhBMPs in combination with autograft effectively promotes the fusion rate and improves surgical outcomes. However, the stimulating effect on spinal fusion of other growth factors, including PDGF, VEGF, TGF-beta, and FGF, is not convincing, while Nell-1 and activin A exhibited preliminary efficacy. In terms of systemic therapeutic approaches, the osteoporosis drug Teriparatide has played a positive role in promoting bone healing after spinal surgery, while new medications such as denosumab and sclerostin antibodies still need further validation. Currently, other treatment, such as controlled-release formulations and carriers, are being studied for better releasing profile and the administration convenience of the active ingredients. Conclusion As the world's population continues to grow older, the number of spinal fusion cases grows substantially due to increased surgical needs for spinal degenerative disease (SDD). Critical advancements in biological therapeutics that promote spinal fusion have brought better clinical outcomes to patients lately. With the accumulation of higher-level evidence, the safety and efficacy of present and emerging products are becoming more evident. These emerging therapeutics will shift the landscape of perioperative therapy for the enhancement of spinal fusion.
Collapse
Affiliation(s)
- Yidan Zhang
- Angitia Biopharmaceuticals, Guangzhou, China
| | - Yu Jiang
- Orthopaedic Department, Peking University Third Hospital, Beijing, China.,Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Peking University Third Hospital, Beijing, China.,Beijing Key Laboratory of Spinal Disease Research, Peking University Third Hospital, Beijing, China
| | - Da Zou
- Orthopaedic Department, Peking University Third Hospital, Beijing, China.,Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Peking University Third Hospital, Beijing, China.,Beijing Key Laboratory of Spinal Disease Research, Peking University Third Hospital, Beijing, China
| | - Baozhi Yuan
- Angitia Biopharmaceuticals, Guangzhou, China
| | - Hua Zhu Ke
- Angitia Biopharmaceuticals, Guangzhou, China
| | - Weishi Li
- Orthopaedic Department, Peking University Third Hospital, Beijing, China.,Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Peking University Third Hospital, Beijing, China.,Beijing Key Laboratory of Spinal Disease Research, Peking University Third Hospital, Beijing, China
| |
Collapse
|
12
|
Stokovic N, Ivanjko N, Erjavec I, Breski A, Peric M, Vukicevic S. Zoledronate Bound to Ceramics Increases Ectopic Bone Volume Induced by rhBMP6 Delivered in Autologous Blood Coagulum in Rats. Biomedicines 2021; 9:biomedicines9101487. [PMID: 34680604 PMCID: PMC8533060 DOI: 10.3390/biomedicines9101487] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/08/2021] [Accepted: 10/13/2021] [Indexed: 11/29/2022] Open
Abstract
Autologous bone graft substitute (ABGS) containing rhBMP6 in autologous blood coagulum (ABC) with synthetic ceramics is a novel therapeutic solution for bone repair. The aim of this study was to investigate whether the application of Zoledronate (ZOL) with ABGS might enhance the properties of newly formed bone. The effect of ZOL on bone induction was tested in a rat subcutaneous implant model. ZOL bound to synthetic ceramics was added into ABGS implants, and the quantity, quality, and longevity of the induced bone were assessed by micro-CT, histomorphometry, and histology over a period of 365 days. Local use of ZOL in the ABGS implants with ceramics had no influence on the bone volume (BV) on day 14 but subsequently significantly increased BV on days 35, 50, 105, 140, and 365 compared to the control implants. Locally applied ZOL had a similar effect in all of the applied doses (2–20 µg), while its systemic use on stimulating the BV of newly induced bone by ABGS depended on the time of application. BV was increased when ZOL was applied systemically on day 14 but had no effect when applied on day 35. The administration of ZOL bound to ceramics in ABGS increased and maintained the BV over a period of one year, offering a novel bone tissue engineering strategy for treating bone defects and spinal fusions.
Collapse
Affiliation(s)
- Nikola Stokovic
- Laboratory for Mineralized Tissues, Centre for Translational and Clinical Research, University of Zagreb School of Medicine, 10000 Zagreb, Croatia; (N.S.); (N.I.); (I.E.)
| | - Natalia Ivanjko
- Laboratory for Mineralized Tissues, Centre for Translational and Clinical Research, University of Zagreb School of Medicine, 10000 Zagreb, Croatia; (N.S.); (N.I.); (I.E.)
| | - Igor Erjavec
- Laboratory for Mineralized Tissues, Centre for Translational and Clinical Research, University of Zagreb School of Medicine, 10000 Zagreb, Croatia; (N.S.); (N.I.); (I.E.)
| | - Anita Breski
- Department of Pathology and Cytology, University Hospital Centre Zagreb, 10000 Zagreb, Croatia;
| | - Mihaela Peric
- Department for Intracellular Communication, Centre for Translational and Clinical Research, University of Zagreb School of Medicine, 10000 Zagreb, Croatia;
| | - Slobodan Vukicevic
- Laboratory for Mineralized Tissues, Centre for Translational and Clinical Research, University of Zagreb School of Medicine, 10000 Zagreb, Croatia; (N.S.); (N.I.); (I.E.)
- Correspondence:
| |
Collapse
|
13
|
Bone Morphogenetic Proteins, Carriers, and Animal Models in the Development of Novel Bone Regenerative Therapies. MATERIALS 2021; 14:ma14133513. [PMID: 34202501 PMCID: PMC8269575 DOI: 10.3390/ma14133513] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/17/2021] [Accepted: 06/21/2021] [Indexed: 12/26/2022]
Abstract
Bone morphogenetic proteins (BMPs) possess a unique ability to induce new bone formation. Numerous preclinical studies have been conducted to develop novel, BMP-based osteoinductive devices for the management of segmental bone defects and posterolateral spinal fusion (PLF). In these studies, BMPs were combined with a broad range of carriers (natural and synthetic polymers, inorganic materials, and their combinations) and tested in various models in mice, rats, rabbits, dogs, sheep, and non-human primates. In this review, we summarized bone regeneration strategies and animal models used for the initial, intermediate, and advanced evaluation of promising therapeutical solutions for new bone formation and repair. Moreover, in this review, we discuss basic aspects to be considered when planning animal experiments, including anatomical characteristics of the species used, appropriate BMP dosing, duration of the observation period, and sample size.
Collapse
|
14
|
Pecin M, Stokovic N, Ivanjko N, Smajlovic A, Kreszinger M, Capak H, Vrbanac Z, Oppermann H, Maticic D, Vukicevic S. A novel autologous bone graft substitute containing rhBMP6 in autologous blood coagulum with synthetic ceramics for reconstruction of a large humerus segmental gunshot defect in a dog: The first veterinary patient to receive a novel osteoinductive therapy. Bone Rep 2021; 14:100759. [PMID: 33732816 PMCID: PMC7937538 DOI: 10.1016/j.bonr.2021.100759] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 02/01/2021] [Accepted: 02/22/2021] [Indexed: 12/20/2022] Open
Abstract
Background Management of large segmental defects is one of the most challenging issues in bone repair biology. Autologous bone graft substitute (ABGS) containing rhBMP6 within autologous blood coagulum (ABC) with synthetic ceramics is a novel biocompatible therapeutic solution for bone regeneration. Case presentation A 2-year old dog was brought to the veterinary clinics due to pain and bleeding from the right front leg after being unintendedly hit by a gunshot. Radiological examination revealed a large, 3 cm long multisegmental defect of the humerus on the right front leg with a loss of anatomical structure in the distal portion of the bone. The defect was treated surgically and an external fixator was inserted to ensure immobilization. Complete lack of bone formation 3 months following surgery required a full reconstruction of the defect site with a novel ABGS (rhBMP6 in ABC with ceramic particles) to avoid front leg amputation. The healing was then followed for the next 16 months. The callus formation was observed on x-ray images 2 months following ABGS implantation. The bone segments progressively fused together leading to the defect rebridgment allowing removal of the external fixator by 4 months after the reconstruction surgery. At the end of the observation period, the function of the leg was almost fully restored while analyses of the humeral CT sections revealed restoration and cortices rebridgment with a renewal of uniform medullary canal including structural reconstruction of the distal humerus. Conclusion This large humeral gunshot segmental defect of the front leg in a dog was saved from amputation via inducing bone regeneration using a novel ABGS osteoinductive device containing BMP6 in ABC.
Collapse
Affiliation(s)
- Marko Pecin
- Clinics for Surgery, Orthopedics and Ophthalmology, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
| | - Nikola Stokovic
- Laboratory for Mineralized Tissues, Centre for Translational and Clinical Research, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Natalia Ivanjko
- Laboratory for Mineralized Tissues, Centre for Translational and Clinical Research, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Ana Smajlovic
- Clinics for Surgery, Orthopedics and Ophthalmology, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
| | - Mario Kreszinger
- Clinics for Surgery, Orthopedics and Ophthalmology, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
| | - Hrvoje Capak
- Department of Radiology, Ultrasound Diagnostics and Physical Therapy, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
| | - Zoran Vrbanac
- Department of Radiology, Ultrasound Diagnostics and Physical Therapy, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
| | | | - Drazen Maticic
- Clinics for Surgery, Orthopedics and Ophthalmology, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
| | - Slobodan Vukicevic
- Laboratory for Mineralized Tissues, Centre for Translational and Clinical Research, School of Medicine, University of Zagreb, Zagreb, Croatia
- Corresponding author at: Laboratory for Mineralized Tissues, Center for Translational and Clinical Research, University of Zagreb School of Medicine, Salata 11, 10000 Zagreb, Croatia.
| |
Collapse
|
15
|
Sampath TK, Vukicevic S. Biology of bone morphogenetic protein in bone repair and regeneration: A role for autologous blood coagulum as carrier. Bone 2020; 141:115602. [PMID: 32841742 DOI: 10.1016/j.bone.2020.115602] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/10/2020] [Accepted: 08/11/2020] [Indexed: 12/12/2022]
Abstract
BMPs were purified from demineralized bone matrix based on their ability to induce new bone in vivo and they represent a large member of the TGF-β superfamily of proteins. BMPs serve as morphogenic signals for mesenchymal stem cell migration, proliferation and subsequently differentiation into cartilage and bone during embryonic development. A BMP when implanted with a collagenous carrier in a rat subcutaneous site is capable of inducing new bone by mimicking the cellular events of embryonic bone formation. Based on this biological principle, BMP2 and BMP7 containing collagenous matrix as carrier have been developed as bone graft substitutes for spine fusion and long bone fractures. Here, we describe a novel autologous bone graft substitute that contains BMP6 delivered within an autologous blood coagulum as carrier and summarize the biology of osteogenic BMPs in the context of bone repair and regeneration specifically the critical role that carrier plays to support osteogenesis.
Collapse
Affiliation(s)
- T Kuber Sampath
- perForm Biologics Inc., Holliston, MA 01746, United States of America.
| | - Slobodan Vukicevic
- Laboratory for Mineralized Tissues, Center for Translational and Clinical Research, University of Zagreb School of Medicine, 10000 Zagreb, Croatia
| |
Collapse
|
16
|
Stokovic N, Ivanjko N, Erjavec I, Milosevic M, Oppermann H, Shimp L, Sampath KT, Vukicevic S. Autologous bone graft substitute containing rhBMP6 within autologous blood coagulum and synthetic ceramics of different particle size determines the quantity and structural pattern of bone formed in a rat subcutaneous assay. Bone 2020; 141:115654. [PMID: 32977068 DOI: 10.1016/j.bone.2020.115654] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 09/16/2020] [Accepted: 09/16/2020] [Indexed: 01/10/2023]
Abstract
Bone morphogenetic proteins (BMPs) are potent osteoinductive agents for bone tissue engineering. In order to define optimal properties of a novel autologous bone graft substitute (ABGS) containing rhBMP6 within the autologous blood coagulum (ABC) and ceramic particles as a compression resistant matrix (CRM), we explored the influence of their amount, chemical composition and particle size on the quantity and quality of bone formation in the rat subcutaneous assay. Tested ceramic particles included tricalcium phosphate (TCP), hydroxyapatite (HA) and biphasic calcium phosphate ceramic (BCP), containing TCP and HA in 80/20 ratio of different particle sizes (small 74-420 μm, medium 500-1700 μm and large 1000-4000 μm). RhBMP6 was either mixed with ABC or lyophilized on CRM prior to use with ABC. The experiments were terminated on day 21 and implants were analysed by microCT, histology and histomorphometry. Addition of CRM to ABGS containing rhBMP6 in ABC significantly increased the amount of newly formed bone and the optimal CRM/ABC ratio was found to be around 100 mg/500 μL. MicroCT analyses revealed that all tested ABGS formulations induced an extensive new bone formation and there were no differences between the two methods of rhBMP6 application as determined by the bone volume. However, the particle size played a significant role in the quantity and quality of newly formed bone. ABGS containing small particles induced new bone forming a dense trabecular network, cortical bone at the rim, bone and bone marrow in apposition to and in between ceramic particles. ABGS containing medium and large particles also resulted in new bone on the surface of particles as well as inside the pores. Histomorphometric analysis revealed that the ceramics particle size correlated with the quality of trabecular pattern of newly formed bone, bone/bone marrow ratio as observed in apposition and between particles, and the ratio between the cortical and trabecular bone. By employing rat subcutaneous implant assay, we showed for the first time that the size of synthetic ceramics particles affected the osteogenesis as defined by both the quantity and quality of ectopic bone.
Collapse
Affiliation(s)
- Nikola Stokovic
- Laboratory for Mineralized Tissues, School of Medicine, University of Zagreb, Zagreb, Croatia; Scientific Center of Excellence for Reproductive and Regenerative Medicine, Croatia
| | - Natalia Ivanjko
- Laboratory for Mineralized Tissues, School of Medicine, University of Zagreb, Zagreb, Croatia; Scientific Center of Excellence for Reproductive and Regenerative Medicine, Croatia
| | - Igor Erjavec
- Laboratory for Mineralized Tissues, School of Medicine, University of Zagreb, Zagreb, Croatia; Scientific Center of Excellence for Reproductive and Regenerative Medicine, Croatia
| | - Milan Milosevic
- Department for Environmental Health, Occupational and Sports Medicine, Andrija Štampar School of Public Health, School of Medicine, University of Zagreb, Zagreb, Croatia
| | | | | | | | - Slobodan Vukicevic
- Laboratory for Mineralized Tissues, School of Medicine, University of Zagreb, Zagreb, Croatia; Scientific Center of Excellence for Reproductive and Regenerative Medicine, Croatia.
| |
Collapse
|
17
|
Sampath TK, Reddi AH. Discovery of bone morphogenetic proteins - A historical perspective. Bone 2020; 140:115548. [PMID: 32730937 DOI: 10.1016/j.bone.2020.115548] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/03/2020] [Accepted: 07/06/2020] [Indexed: 12/20/2022]
Abstract
Bone morphogenetic proteins (BMPs) were purified from demineralized bone matrix by their ability to induce new bone formation in vivo. BMPs represent a large sub-family of proteins structurally related to TGF-beta and activins. Two BMP bone graft substitutes, BMP2 (InFuse®) and BMP7 (OP1®) have been developed as products for the repair of long bone non-union fractures and lumbar spinal fusion in humans. The approval of BMP2 and BMP7 based products for use in the clinic supports that the signals responsible for bone formation at ectopic sites can form a basis as therapeutics for bone repair and regeneration. This article describes a historical perspective of the discovery BMPs.
Collapse
Affiliation(s)
- T Kuber Sampath
- perForm biologics Inc., Holliston, MA, United States of America.
| | - A Hari Reddi
- Lawrence Ellison Center for Musculoskeletal Regeneration, Department of Orthopedic Surgery, School of Medicine, University of California at Davis, Sacramento, CA, United States of America
| |
Collapse
|
18
|
Durdevic D, Vlahovic T, Pehar S, Miklic D, Oppermann H, Bordukalo-Niksic T, Gavrankapetanovic I, Jamakosmanovic M, Milosevic M, Martinovic S, Sampath TK, Peric M, Grgurevic L, Vukicevic S. A novel autologous bone graft substitute comprised of rhBMP6 blood coagulum as carrier tested in a randomized and controlled Phase I trial in patients with distal radial fractures. Bone 2020; 140:115551. [PMID: 32730930 DOI: 10.1016/j.bone.2020.115551] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/20/2020] [Accepted: 07/22/2020] [Indexed: 12/26/2022]
Abstract
Bone morphogenetic proteins (BMPs) are known to induce new bone formation in vivo but treating trabecular bone defects with a BMP based therapeutic remains controversial. Here, we evaluated the safety and efficacy of a novel Autologous Bone Graft Substitute (ABGS) comprised of recombinant human BMP6 (rhBMP6) dispersed within an autologous blood coagulum (ABC) as a physiological natural carrier in patients with a closed distal radial fracture (DRF). We enrolled 32 patients in a randomized, standard of care (SoC) and placebo (PBO) controlled, double-blinded Phase I First in Human (FiH) clinical trial. ABGS was prepared from peripheral blood as 250 μg rhBMP6/mL ABC or PBO (1 mL ABC containing excipients only) and was administered dorsally via a syringe injection into the fracture site following closed fracture fixation with 3 Kirschner wires. Patients carried an immobilization for 5 weeks and were followed-up for 0 to 26 weeks by clinical examination, safety, serial radiographic analyses and CT. During the 13 weeks follow-up and at 26 weeks post study there were no serious adverse reactions recorded. The results showed that there were no detectable anti-rhBMP6 antibodies in the blood of any of the 32 patients at 13- and 26-weeks following treatment. Pharmacokinetic analyses of plasma from patients treated with ABGS showed no detectable rhBMP6 at any time point within the first 24 h following administration. The CT image and radiographic analyses score from patients treated with AGBS showed significantly accelerated bone healing as compared to PBO and SoC at 5 and 9 weeks (with high effect sizes and P = 0.027), while at week 13 all patients had similar healing outcomes. In conclusion, we show that intraosseous administration of ABGS (250 μg rhBMP6/mL ABC) into the distal radial fracture site demonstrated a good tolerability with no serious adverse reactions as well as early accelerated trabecular bone healing as compared to control PBO and SoC patients.
Collapse
Affiliation(s)
- Dragan Durdevic
- Clinical Hospital Center "Sisters of Mercy", Clinic of Traumatology, Draskoviceva 19, 10000 Zagreb, Croatia
| | - Tomislav Vlahovic
- Clinical Hospital Center "Sisters of Mercy", Clinic of Traumatology, Draskoviceva 19, 10000 Zagreb, Croatia
| | - Sanja Pehar
- Laboratory for Mineralized Tissues, Centre for Translational and Clinical Research, University of Zagreb School of Medicine, Salata 11, 10000 Zagreb, Croatia
| | - Dina Miklic
- Clinical Hospital Center "Sisters of Mercy", Clinic of Traumatology, Draskoviceva 19, 10000 Zagreb, Croatia
| | - Hermann Oppermann
- Genera Research, Svetonedeljska 2, Kalinovica, 10436, Rakov Potok, Croatia
| | - Tatjana Bordukalo-Niksic
- Laboratory for Mineralized Tissues, Centre for Translational and Clinical Research, University of Zagreb School of Medicine, Salata 11, 10000 Zagreb, Croatia
| | - Ismet Gavrankapetanovic
- University Clinical Center Sarajevo, Clinic of Orthopedics and Traumatology, Bolnicka 25, 71000 Sarajevo, Bosnia and Herzegovina
| | - Mehmed Jamakosmanovic
- University Clinical Center Sarajevo, Clinic of Orthopedics and Traumatology, Bolnicka 25, 71000 Sarajevo, Bosnia and Herzegovina
| | - Milan Milosevic
- School of Public Health "Andrija Stampar", University of Zagreb School of Medicine, Rockefellerova 4, 10000 Zagreb, Croatia
| | | | | | - Mihaela Peric
- Department for Intracellular Communication, Centre for Translational and Clinical Research, University of Zagreb School of Medicine, Salata 2, 10000 Zagreb, Croatia
| | - Lovorka Grgurevic
- Laboratory for Mineralized Tissues, Centre for Translational and Clinical Research, University of Zagreb School of Medicine, Salata 11, 10000 Zagreb, Croatia
| | - Slobodan Vukicevic
- Laboratory for Mineralized Tissues, Centre for Translational and Clinical Research, University of Zagreb School of Medicine, Salata 11, 10000 Zagreb, Croatia.
| |
Collapse
|
19
|
Influence of the TGF-β Superfamily on Osteoclasts/Osteoblasts Balance in Physiological and Pathological Bone Conditions. Int J Mol Sci 2020; 21:ijms21207597. [PMID: 33066607 PMCID: PMC7589189 DOI: 10.3390/ijms21207597] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/09/2020] [Accepted: 10/10/2020] [Indexed: 12/19/2022] Open
Abstract
The balance between bone forming cells (osteoblasts/osteocytes) and bone resorbing cells (osteoclasts) plays a crucial role in tissue homeostasis and bone repair. Several hormones, cytokines, and growth factors-in particular the members of the TGF-β superfamily such as the bone morphogenetic proteins-not only regulate the proliferation, differentiation, and functioning of these cells, but also coordinate the communication between them to ensure an appropriate response. Therefore, this review focuses on TGF-β superfamily and its influence on bone formation and repair, through the regulation of osteoclastogenesis, osteogenic differentiation of stem cells, and osteoblasts/osteoclasts balance. After introducing the main types of bone cells, their differentiation and cooperation during bone remodeling and fracture healing processes are discussed. Then, the TGF-β superfamily, its signaling via canonical and non-canonical pathways, as well as its regulation by Wnt/Notch or microRNAs are described and discussed. Its important role in bone homeostasis, repair, or disease is also highlighted. Finally, the clinical therapeutic uses of members of the TGF-β superfamily and their associated complications are debated.
Collapse
|
20
|
Stokovic N, Ivanjko N, Milesevic M, Matic Jelic I, Bakic K, Rumenovic V, Oppermann H, Shimp L, Sampath TK, Pecina M, Vukicevic S. Synthetic ceramic macroporous blocks as a scaffold in ectopic bone formation induced by recombinant human bone morphogenetic protein 6 within autologous blood coagulum in rats. INTERNATIONAL ORTHOPAEDICS 2020; 45:1097-1107. [PMID: 33052447 DOI: 10.1007/s00264-020-04847-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 10/02/2020] [Indexed: 12/29/2022]
Abstract
PURPOSE We have recently developed an autologous bone graft substitute (ABGS) containing recombinant human bone morphogenetic protein 6 (rhBMP6) in autologous blood coagulum (ABC) that induces new bone formation in vivo. In order to improve biomechanical properties of the implant, compression resistant matrix (CRM) consisting of synthetic ceramics in the form of macroporous cylinders was added to the ABGS and we evaluated the biomechanical properties and the quantity and quality of bone formation following subcutaneous implantation in rats. METHODS ABGS implants containing rhBMP6 in ABC with cylindrical ceramic blocks were implanted subcutaneously (n = 6 per time point) in the axillary region of Sprague-Dawley rats and removed at specified time points (7, 14, 21, 35, and 50 days). The quantity and quality of newly formed bone were analyzed by microCT, histology, and histomorphometric analyses. Biomechanical properties of ABGS formulations were determined by employing the cut test. RESULTS MicroCT analyses revealed that ABGS implants induced formation of new bone within ceramic blocks. Histological analysis revealed that on day seven following implantation, the endochondral ossification occupied the peripheral part of implants. On days 14 and 21, newly formed bone was present both around the ceramic block and through the pores inside the block. On both days 35 and 50, cortical bone encircled the ceramic block while inside the block, bone covered the ceramic surface surrounding the pores. Within the osseous circles, there were few trabeculae and bone marrow containing adipocytes. ABGS containing cylindrical ceramic blocks were more rigid and had significantly increased stiffness compared with implants containing ceramic particles as CRM. CONCLUSION We demonstrated that macroporous ceramic blocks in a form of cylinders are promising CRMs with good handling and enhanced biomechanical properties, supporting bone formation with ABGS containing rhBMP6 within autologous blood coagulum. Hence, ABGS containing ceramic blocks should be tested in preclinical models including diaphyseal segmental defects and non-unions in larger animals.
Collapse
Affiliation(s)
- Nikola Stokovic
- Laboratory for Mineralized Tissues, Center for Translational and Clinical Research, University of Zagreb School of Medicine, Zagreb, Croatia.,Scientific Center of Excellence for Reproductive and Regenerative Medicine, Zagreb, Croatia
| | - Natalia Ivanjko
- Laboratory for Mineralized Tissues, Center for Translational and Clinical Research, University of Zagreb School of Medicine, Zagreb, Croatia.,Scientific Center of Excellence for Reproductive and Regenerative Medicine, Zagreb, Croatia
| | - Marina Milesevic
- Laboratory for Mineralized Tissues, Center for Translational and Clinical Research, University of Zagreb School of Medicine, Zagreb, Croatia.,Scientific Center of Excellence for Reproductive and Regenerative Medicine, Zagreb, Croatia
| | - Ivona Matic Jelic
- Laboratory for Mineralized Tissues, Center for Translational and Clinical Research, University of Zagreb School of Medicine, Zagreb, Croatia.,Scientific Center of Excellence for Reproductive and Regenerative Medicine, Zagreb, Croatia
| | - Kristian Bakic
- Laboratory for Mineralized Tissues, Center for Translational and Clinical Research, University of Zagreb School of Medicine, Zagreb, Croatia.,Scientific Center of Excellence for Reproductive and Regenerative Medicine, Zagreb, Croatia
| | - Viktorija Rumenovic
- Laboratory for Mineralized Tissues, Center for Translational and Clinical Research, University of Zagreb School of Medicine, Zagreb, Croatia.,Scientific Center of Excellence for Reproductive and Regenerative Medicine, Zagreb, Croatia
| | | | | | | | - Marko Pecina
- Department of Orthopaedic Surgery, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Slobodan Vukicevic
- Laboratory for Mineralized Tissues, Center for Translational and Clinical Research, University of Zagreb School of Medicine, Zagreb, Croatia. .,Scientific Center of Excellence for Reproductive and Regenerative Medicine, Zagreb, Croatia.
| |
Collapse
|
21
|
Lammens J, Maréchal M, Delport H, Geris L, Oppermann H, Vukicevic S, Luyten FP. A cell-based combination product for the repair of large bone defects. Bone 2020; 138:115511. [PMID: 32599225 DOI: 10.1016/j.bone.2020.115511] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 06/14/2020] [Accepted: 06/14/2020] [Indexed: 01/19/2023]
Abstract
Regenerative cell-based implants using periosteum-derived stem cells were developed for the treatment of large 3 cm fresh and 4.5 centimeter biological compromised bone gaps in a tibial sheep model and compared with an acellular ceramic-collagen void filler. It was hypothesized that the latter is insufficient to heal large skeletal defects due to reduced endogenous biological potency. To this purpose a comparison was made between the ceramic dicalciumphosphate scaffold (CopiOs®) as such, the same ceramic coated with clinical grade Bone Morphogenetic Protein 2 and 6 (BMP) only or a BMP coated cell-seeded combination product. These implants were evaluated in 2 sheep models, a fresh 3 cm critical size tibial defect and a 4.5 cm biologically exhausted tibial defect. For the groups in which growth factors were applied, BMP-6 was chosen at a dose of 344 μg for 3 cm and 1.500 μg or 3.800 μg for 4.5 cm defects. An additional group in the 4.5 cm defect was tested using BMP-2 in a dose of 1.500 μg. For all the cell based implants autologous periosteum-derived cells were used which were cultured in monolayer during 6 weeks. For the fresh defect 408 million cells and for the biologically exhausted tibial defect 612 million cells were drop-seeded on the BMP coated scaffolds. Bone healing was studied during 16 weeks postimplantation, using standard radiographs. While fresh defects responded to all treatments, regardless the use of cells, the biologically hampered defects responded in half of the cases and only if the BMP-cell combination product was used, supporting the concept that cell-based therapies may become attractive in treating defects with a compromised biological status.
Collapse
Affiliation(s)
- Johan Lammens
- Department of Orthopaedic Surgery, University Hospitals Leuven, Herestraat 49, 3000 Leuven, Belgium; Prometheus, Division of Skeletal Tissue Engineering of the KU Leuven, Herestraat 49, 3000 Leuven, Belgium.
| | - Marina Maréchal
- Prometheus, Division of Skeletal Tissue Engineering of the KU Leuven, Herestraat 49, 3000 Leuven, Belgium; Skeletal Biology and Engineering Research Center, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Hendrik Delport
- Prometheus, Division of Skeletal Tissue Engineering of the KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Liesbet Geris
- Prometheus, Division of Skeletal Tissue Engineering of the KU Leuven, Herestraat 49, 3000 Leuven, Belgium; Skeletal Biology and Engineering Research Center, KU Leuven, Herestraat 49, 3000 Leuven, Belgium; Department of Mechanical Engineering, Biomechanics Section, KU Leuven, Celestijnenlaan 300, 3001 Heverlee (Leuven), Belgium; Biomechanics Research Unit, GIGA In silico medicine, University of Liège, Quartier Hôpital, Avenue de l'Hôpital 1, 4000 Liège 1, Belgium
| | - Hermann Oppermann
- Genera Research, Svetonedeljska cesta 2, 10436 Kalinovica, Sveta Nedelja, Croatia
| | - Slobodan Vukicevic
- Laboratory for Mineralized Tissues, Center for Translational and Clinical Research, School of Medicine, University of Zagreb, Šalata ul. 2, 10000 Zagreb, Croatia
| | - Frank P Luyten
- Prometheus, Division of Skeletal Tissue Engineering of the KU Leuven, Herestraat 49, 3000 Leuven, Belgium; Skeletal Biology and Engineering Research Center, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| |
Collapse
|
22
|
Grgurevic L, Erjavec I, Gupta M, Pecin M, Bordukalo-Niksic T, Stokovic N, Vnuk D, Farkas V, Capak H, Milosevic M, Bubic Spoljar J, Peric M, Vuckovic M, Maticic D, Windhager R, Oppermann H, Sampath TK, Vukicevic S. Autologous blood coagulum containing rhBMP6 induces new bone formation to promote anterior lumbar interbody fusion (ALIF) and posterolateral lumbar fusion (PLF) of spine in sheep. Bone 2020; 138:115448. [PMID: 32450340 DOI: 10.1016/j.bone.2020.115448] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/19/2020] [Accepted: 05/20/2020] [Indexed: 01/08/2023]
Abstract
In the present study, we evaluated an autologous bone graft substitute (ABGS) composed of recombinant human BMP6 (rhBMP6) dispersed within autologous blood coagulum (ABC) used as a physiological carrier for new bone formation in spine fusion sheep models. The application of ABGS included cervical cage for use in the anterior lumbar interbody fusion (ALIF), while for the posterolateral lumbar fusion (PLF) sheep model allograft devitalized bone particles (ALLO) were applied with and without use of instrumentation. In the ALIF model, ABGS (rhBMP6/ABC/cage) implants fused significantly when placed in between the L4-L5 vertebrae as compared to control (ABC/cage) which appears to have a fibrocartilaginous gap, as examined by histology and micro CT analysis at 16 weeks following surgery. In the PLF model, ABGS implants with or without ALLO showed a complete fusion when placed ectopically in the gutter bilaterally between two decorticated L4-L5 transverse processes at a success rate of 88% without instrumentation and at 80% with instrumentation; however the bone volume was 50% lower in the instrumentation group than without, as examined by histology, radiographs, micro CT analyses and biomechanical testing at 27 weeks following surgery. The newly formed bone was uniform within ABGS implants resulting in a biomechanically competent and histologically qualified fusion with an optimum dose in the range of 100 μg rhBMP6 per mL ABC, while in the implants that contained ALLO, the mineralized bone particles were substituted by the newly formed remodeling bone via creeping substitution. These findings demonstrate for the first time that ABGS (rhBMP6/ABC) without and with ALLO particles induced a robust bone formation with a successful fusion in sheep models of ALIF and PLF, and that autologous blood coagulum (ABC) can serve as a preferred physiological native carrier to induce new bone at low doses of rhBMP6 and to achieve a successful spinal fusion.
Collapse
Affiliation(s)
- Lovorka Grgurevic
- Laboratory for Mineralized Tissues, Center for Translational and Clinical Research, University of Zagreb School of Medicine, 10000 Zagreb, Croatia
| | - Igor Erjavec
- Laboratory for Mineralized Tissues, Center for Translational and Clinical Research, University of Zagreb School of Medicine, 10000 Zagreb, Croatia
| | - Munish Gupta
- Department of Orthopedic Surgery, Washington University, St. Louis, MO 63110, USA
| | - Marko Pecin
- Clinics for Surgery, Orthopedics and Ophthalmology, School of Veterinary Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Tatjana Bordukalo-Niksic
- Laboratory for Mineralized Tissues, Center for Translational and Clinical Research, University of Zagreb School of Medicine, 10000 Zagreb, Croatia
| | - Nikola Stokovic
- Laboratory for Mineralized Tissues, Center for Translational and Clinical Research, University of Zagreb School of Medicine, 10000 Zagreb, Croatia
| | - Drazen Vnuk
- Clinics for Surgery, Orthopedics and Ophthalmology, School of Veterinary Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Vladimir Farkas
- Division of Molecular Biology, Rudjer Boskovic Institute, 10000 Zagreb, Croatia
| | - Hrvoje Capak
- Department of Radiology, School of Veterinary Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Milan Milosevic
- Department of Environmental and Occupational Health and Sports, School of Public Health "Andrija Stampar", University of Zagreb School of Medicine, Rockefellerova 4, 10000 Zagreb, Croatia
| | - Jadranka Bubic Spoljar
- Laboratory for Mineralized Tissues, Center for Translational and Clinical Research, University of Zagreb School of Medicine, 10000 Zagreb, Croatia
| | - Mihaela Peric
- Center for Translational and Clinical Research, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Mirta Vuckovic
- Clinics for Surgery, Orthopedics and Ophthalmology, School of Veterinary Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Drazen Maticic
- Clinics for Surgery, Orthopedics and Ophthalmology, School of Veterinary Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Reinhard Windhager
- Department of Orthopedics and Trauma Surgery, Medical University of Vienna, 1090 Vienna, Austria
| | | | | | - Slobodan Vukicevic
- Laboratory for Mineralized Tissues, Center for Translational and Clinical Research, University of Zagreb School of Medicine, 10000 Zagreb, Croatia.
| |
Collapse
|