1
|
Fredlund E, Andersson S, Hilgert E, Monferrer E, Álvarez-Hernán G, Karakaya S, Loontiens S, Bek JW, Gregor T, Lecomte E, Magnusson E, Miltenyte E, Cabirol M, Kyknas M, Engström N, Henriksson MA, Hammarlund E, Rosenblum JS, Noguera R, Speleman F, van Nes J, Mohlin S. MOXD1 is a lineage-specific gene and a tumor suppressor in neuroblastoma. SCIENCE ADVANCES 2024; 10:eado1583. [PMID: 38905335 PMCID: PMC11192077 DOI: 10.1126/sciadv.ado1583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 05/14/2024] [Indexed: 06/23/2024]
Abstract
Neuroblastoma is a childhood developmental cancer; however, its embryonic origins remain poorly understood. Moreover, in-depth studies of early tumor-driving events are limited because of the lack of appropriate models. Herein, we analyzed RNA sequencing data obtained from human neuroblastoma samples and found that loss of expression of trunk neural crest-enriched gene MOXD1 associates with advanced disease and worse outcome. Further, by using single-cell RNA sequencing data of human neuroblastoma cells and fetal adrenal glands and creating in vivo models of zebrafish, chick, and mouse, we show that MOXD1 is a determinate of tumor development. In addition, we found that MOXD1 expression is highly conserved and restricted to mesenchymal neuroblastoma cells and Schwann cell precursors during healthy development. Our findings identify MOXD1 as a lineage-restricted tumor-suppressor gene in neuroblastoma, potentiating further stratification of these tumors and development of novel therapeutic interventions.
Collapse
Affiliation(s)
- Elina Fredlund
- Division of Pediatrics, Department of Clinical Sciences, Lund University, Lund, Sweden
- Lund University Cancer Center, Lund University, Lund, Sweden
- Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Stina Andersson
- Division of Pediatrics, Department of Clinical Sciences, Lund University, Lund, Sweden
- Lund University Cancer Center, Lund University, Lund, Sweden
- Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Elien Hilgert
- Center for Medical Genetics, Ghent University, Ghent, Belgium
| | - Ezequiel Monferrer
- Department of Pathology, Medical School, University of Valencia-INCLIVA Biomedical Health Research Institute, Valencia, Spain
- Low Prevalence Tumors, Centro de Investigación Biomédica En Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
| | - Guadalupe Álvarez-Hernán
- Division of Pediatrics, Department of Clinical Sciences, Lund University, Lund, Sweden
- Lund University Cancer Center, Lund University, Lund, Sweden
- Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Sinan Karakaya
- Division of Pediatrics, Department of Clinical Sciences, Lund University, Lund, Sweden
- Lund University Cancer Center, Lund University, Lund, Sweden
- Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Siebe Loontiens
- Center for Medical Genetics, Ghent University, Ghent, Belgium
| | - Jan Willem Bek
- Center for Medical Genetics, Ghent University, Ghent, Belgium
| | - Tomas Gregor
- Division of Pediatrics, Department of Clinical Sciences, Lund University, Lund, Sweden
- Lund University Cancer Center, Lund University, Lund, Sweden
- Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Estelle Lecomte
- Division of Pediatrics, Department of Clinical Sciences, Lund University, Lund, Sweden
- Lund University Cancer Center, Lund University, Lund, Sweden
- Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Emma Magnusson
- Division of Pediatrics, Department of Clinical Sciences, Lund University, Lund, Sweden
- Lund University Cancer Center, Lund University, Lund, Sweden
- Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Enrika Miltenyte
- Division of Pediatrics, Department of Clinical Sciences, Lund University, Lund, Sweden
- Lund University Cancer Center, Lund University, Lund, Sweden
- Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Marie Cabirol
- Division of Pediatrics, Department of Clinical Sciences, Lund University, Lund, Sweden
- Lund University Cancer Center, Lund University, Lund, Sweden
- Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Michail Kyknas
- Division of Pediatrics, Department of Clinical Sciences, Lund University, Lund, Sweden
- Lund University Cancer Center, Lund University, Lund, Sweden
- Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Niklas Engström
- Division of Pediatrics, Department of Clinical Sciences, Lund University, Lund, Sweden
- Lund University Cancer Center, Lund University, Lund, Sweden
- Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Marie Arsenian Henriksson
- Department of Microbiology, Tumor and Cell Biology (MTC), Biomedicum B7, Karolinska Institute, Stockholm, Sweden
- Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Emma Hammarlund
- Lund University Cancer Center, Lund University, Lund, Sweden
- Lund Stem Cell Center, Lund University, Lund, Sweden
- Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Jared S. Rosenblum
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Rosa Noguera
- Department of Pathology, Medical School, University of Valencia-INCLIVA Biomedical Health Research Institute, Valencia, Spain
- Low Prevalence Tumors, Centro de Investigación Biomédica En Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
| | - Frank Speleman
- Center for Medical Genetics, Ghent University, Ghent, Belgium
| | - Johan van Nes
- Department of Oncogenomics, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Sofie Mohlin
- Division of Pediatrics, Department of Clinical Sciences, Lund University, Lund, Sweden
- Lund University Cancer Center, Lund University, Lund, Sweden
- Lund Stem Cell Center, Lund University, Lund, Sweden
| |
Collapse
|
2
|
Ke KX, Gao X, Liu L, He WG, Jiang Y, Long CB, Zhong G, Xu ZH, Deng ZL, He BC, Hu N. Leptin attenuates the osteogenic induction potential of BMP9 by increasing β-catenin malonylation modification via Sirt5 down-regulation. Aging (Albany NY) 2024; 16:7870-7888. [PMID: 38709288 PMCID: PMC11131982 DOI: 10.18632/aging.205790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 03/29/2024] [Indexed: 05/07/2024]
Abstract
BMP9 has demonstrated significant osteogenic potential. In this study, we investigated the effect of Leptin on BMP9-induced osteogenic differentiation. Firstly, we found Leptin was decreased during BMP9-induced osteogenic differentiation and serum Leptin concentrations were increased in the ovariectomized (OVX) rats. Both in vitro and in vivo, exogenous expression of Leptin inhibited the process of osteogenic differentiation, whereas silencing Leptin enhanced. Exogenous Leptin could increase the malonylation of β-catenin. However, BMP9 could increase the level of Sirt5 and subsequently decrease the malonylation of β-catenin; the BMP9-induced osteogenic differentiation was inhibited by silencing Sirt5. These data suggested that Leptin can inhibit the BMP9-induced osteogenic differentiation, which may be mediated through reducing the activity of Wnt/β-catenin signalling via down-regulating Sirt5 to increase the malonylation level of β-catenin partly.
Collapse
Affiliation(s)
- Kai-Xin Ke
- Department of Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing 400016, People’s Republic of China
- Key Laboratory of Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing 400016, People’s Republic of China
| | - Xiang Gao
- Key Laboratory of Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing 400016, People’s Republic of China
- Department of Orthopaedics, The second affiliated hospital of Chongqing Medical University, Chongqing 400016, People’s Republic of China
| | - Lu Liu
- Department of Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing 400016, People’s Republic of China
- Key Laboratory of Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing 400016, People’s Republic of China
| | - Wen-Ge He
- Key Laboratory of Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing 400016, People’s Republic of China
- Department of Orthopaedics, The first affiliated hospital of Chongqing Medical University, Chongqing 400016, People’s Republic of China
| | - Yue Jiang
- Department of Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing 400016, People’s Republic of China
- Key Laboratory of Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing 400016, People’s Republic of China
| | - Cheng-Bin Long
- Department of Orthopaedics, The first affiliated hospital of Chongqing Medical University, Chongqing 400016, People’s Republic of China
- Department of Orthopaedics, Bishan Hospital of Chongqing Medical University, Chongqing 400016, People’s Republic of China
| | - Gan Zhong
- Key Laboratory of Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing 400016, People’s Republic of China
- Department of Orthopaedics, The first affiliated hospital of Chongqing Medical University, Chongqing 400016, People’s Republic of China
| | - Zheng-Hao Xu
- Key Laboratory of Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing 400016, People’s Republic of China
- Department of Orthopaedics, The first affiliated hospital of Chongqing Medical University, Chongqing 400016, People’s Republic of China
| | - Zhong-Liang Deng
- Department of Orthopaedics, The second affiliated hospital of Chongqing Medical University, Chongqing 400016, People’s Republic of China
| | - Bai-Cheng He
- Department of Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing 400016, People’s Republic of China
- Key Laboratory of Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing 400016, People’s Republic of China
| | - Ning Hu
- Department of Orthopaedics, The first affiliated hospital of Chongqing Medical University, Chongqing 400016, People’s Republic of China
| |
Collapse
|
3
|
Meng L, Zhao P, Jiang Y, You J, Xu Z, Yu K, Boccaccini AR, Ma J, Zheng K. Extracellular and intracellular effects of bioactive glass nanoparticles on osteogenic differentiation of bone marrow mesenchymal stem cells and bone regeneration in zebrafish osteoporosis model. Acta Biomater 2024; 174:412-427. [PMID: 38040077 DOI: 10.1016/j.actbio.2023.11.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 10/25/2023] [Accepted: 11/24/2023] [Indexed: 12/03/2023]
Abstract
Bioactive glass nanoparticles (BGNs) are well-recognized multifunctional biomaterials for bone tissue regeneration due to their capability to stimulate various cellular processes through released biologically active ions. Understanding the correlation between BGN composition and cellular responses is key to developing clinically usable BGN-based medical devices. This study investigated the influence of CaO content of binary SiO2-CaO BGNs (CaO ranging from 0 to 10 mol%) on osteogenic differentiation of rat bone marrow mesenchymal stem cells (rBMSCs) and in vivo bone regeneration in zebrafish osteoporosis model. The results showed that BGNs could promote osteogenic differentiation of rBMSCs by indirectly releasing active ions or directly interacting with rBMSCs by internalization. In both situations, BGNs of a higher CaO content could promote the osteogenic differentiation of rBMSCs to a greater extent. The internalized BGNs could activate the transcription factors RUNX2 and OSX, leading to the expression of osteogenesis-related genes. The results in the zebrafish osteoporosis model indicated that the presence of BGNs of higher CaO contents could enhance bone regeneration and rescue dexamethasone-induced osteoporosis to a greater extent. These findings demonstrate that BGNs can stimulate osteogenic differentiation of rBMSCs by releasing active ions or internalization. A higher CaO content facilitates osteogenesis and bone regeneration of zebrafish as well as relieving dexamethasone-induced osteoporosis. The zebrafish osteoporosis model can be a potent tool for evaluating the in vivo bone regeneration effects of bioactive materials. STATEMENT OF SIGNIFICANCE: Bioactive glass nanoparticles (BGNs) are increasingly used as fillers of nanocomposites or as delivery platforms of active ions to regenerate bone tissue. Various studies have shown that BGNs can enhance osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) by releasing active ions. However, the correlation between BGN composition and cellular responses and in vivo bone regeneration effect has still not been well investigated. Establishment of a suitable in vivo animal model for investigating this correlation is also challenging. The present study reports the influence of CaO content in binary SiO2-CaO BGNs on osteogenic differentiation of BMSCs extracellularly and intracellularly. This study also demonstrates the suitability of zebrafish osteoporosis model to investigate in vivo bone regeneration effect of BGNs.
Collapse
Affiliation(s)
- Li Meng
- Jiangsu Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing 210029, China; Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210029, China
| | - Panpan Zhao
- Jiangsu Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing 210029, China; Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210029, China
| | - Yucheng Jiang
- Jiangsu Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing 210029, China
| | - Jiawen You
- Jiangsu Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing 210029, China
| | - Zhiyan Xu
- Institute of Biomaterials, University of Erlangen-Nuremberg, 91058 Erlangen, Germany
| | - Kui Yu
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, 2629 HZ Delft, the Netherlands
| | - Aldo R Boccaccini
- Institute of Biomaterials, University of Erlangen-Nuremberg, 91058 Erlangen, Germany
| | - Junqing Ma
- Jiangsu Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing 210029, China; Department of Orthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing 210029, China; Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210029, China.
| | - Kai Zheng
- Jiangsu Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing 210029, China; Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210029, China.
| |
Collapse
|
4
|
Ben-Zvi I, Karasik D, Ackert-Bicknell CL. Zebrafish as a Model for Osteoporosis: Functional Validations of Genome-Wide Association Studies. Curr Osteoporos Rep 2023; 21:650-659. [PMID: 37971665 DOI: 10.1007/s11914-023-00831-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/02/2023] [Indexed: 11/19/2023]
Abstract
PURPOSE OF REVIEW GWAS, as a largely correlational analysis, requires in vitro or in vivo validation. Zebrafish (Danio rerio) have many advantages for studying the genetics of human diseases. Since gene editing in zebrafish has been highly valuable for studying embryonic skeletal developmental processes that are prenatally or perinatally lethal in mammalian models, we are reviewing pros and cons of this model. RECENT FINDINGS The true power for the use of zebrafish is the ease by which the genome can be edited, especially using the CRISPR/Cas9 system. Gene editing, followed by phenotyping, for complex traits such as BMD, is beneficial, but the major physiological differences between the fish and mammals must be considered. Like mammals, zebrafish do have main bone cells; thus, both in vivo stem cell analyses and in vivo imaging are doable. Yet, the "long" bones of fish are peculiar, and their bone cavities do not contain bone marrow. Partial duplication of the zebrafish genome should be taken into account. Overall, small fish toolkit can provide unmatched opportunities for genetic modifications and morphological investigation as a follow-up to human-first discovery.
Collapse
Affiliation(s)
- Inbar Ben-Zvi
- The Musculoskeletal Genetics Laboratory, The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - David Karasik
- The Musculoskeletal Genetics Laboratory, The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel.
| | | |
Collapse
|
5
|
Guillemyn B, De Saffel H, Bek JW, Tapaneeyaphan P, De Clercq A, Jarayseh T, Debaenst S, Willaert A, De Rycke R, Byers PH, Rosseel T, Coucke P, Blaumeiser B, Syx D, Malfait F, Symoens S. Syntaxin 18 Defects in Human and Zebrafish Unravel Key Roles in Early Cartilage and Bone Development. J Bone Miner Res 2023; 38:1718-1730. [PMID: 37718532 DOI: 10.1002/jbmr.4914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 08/08/2023] [Accepted: 09/09/2023] [Indexed: 09/19/2023]
Abstract
SNARE proteins comprise a conserved protein family responsible for catalyzing membrane fusion during vesicle traffic. Syntaxin18 (STX18) is a poorly characterized endoplasmic reticulum (ER)-resident t-SNARE. Recently, together with TANGO1 and SLY1, its involvement was shown in ER to Golgi transport of collagen II during chondrogenesis. We report a fetus with a severe osteochondrodysplasia in whom we identified a homozygous substitution of the highly conserved p.Arg10 to Pro of STX18. CRISPR/Cas9-mediated Stx18 deficiency in zebrafish reveals a crucial role for Stx18 in cartilage and bone development. Furthermore, increased expression of multiple components of the Stx18 SNARE complex and of COPI and COPII proteins suggests that Stx18 deficiency impairs antero- and retrograde vesicular transport in the crispant stx18 zebrafish. Taken together, our studies highlight a new candidate gene for a recessive form of osteochondrodysplasia, thereby possibly broadening the SNAREopathy phenotypic spectrum and opening new doors toward future research avenues. © 2023 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Brecht Guillemyn
- Department of Biomolecular Medicine, Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium
| | - Hanna De Saffel
- Department of Biomolecular Medicine, Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium
| | - Jan Willem Bek
- Department of Biomolecular Medicine, Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium
| | - Piyanoot Tapaneeyaphan
- Department of Biomolecular Medicine, Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium
| | - Adelbert De Clercq
- Department of Biomolecular Medicine, Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium
| | - Tamara Jarayseh
- Department of Biomolecular Medicine, Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium
| | - Sophie Debaenst
- Department of Biomolecular Medicine, Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium
| | - Andy Willaert
- Department of Biomolecular Medicine, Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium
| | - Riet De Rycke
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- VIB Center for Inflammation Research and Bioimaging Core, Ghent, Belgium
| | - Peter H Byers
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
- Department of Medicine (Medical Genetics), University of Washington, Seattle, WA, USA
| | - Toon Rosseel
- Department of Biomolecular Medicine, Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium
| | - Paul Coucke
- Department of Biomolecular Medicine, Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium
| | - Bettina Blaumeiser
- Department of Medical Genetics, University and University Hospital of Antwerp, Antwerp, Belgium
| | - Delfien Syx
- Department of Biomolecular Medicine, Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium
| | - Fransiska Malfait
- Department of Biomolecular Medicine, Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium
| | - Sofie Symoens
- Department of Biomolecular Medicine, Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium
| |
Collapse
|
6
|
Medina-Gomez C, Mullin BH, Chesi A, Prijatelj V, Kemp JP, Shochat-Carvalho C, Trajanoska K, Wang C, Joro R, Evans TE, Schraut KE, Li-Gao R, Ahluwalia TS, Zillikens MC, Zhu K, Mook-Kanamori DO, Evans DS, Nethander M, Knol MJ, Thorleifsson G, Prokic I, Zemel B, Broer L, McGuigan FE, van Schoor NM, Reppe S, Pawlak MA, Ralston SH, van der Velde N, Lorentzon M, Stefansson K, Adams HHH, Wilson SG, Ikram MA, Walsh JP, Lakka TA, Gautvik KM, Wilson JF, Orwoll ES, van Duijn CM, Bønnelykke K, Uitterlinden AG, Styrkársdóttir U, Akesson KE, Spector TD, Tobias JH, Ohlsson C, Felix JF, Bisgaard H, Grant SFA, Richards JB, Evans DM, van der Eerden B, van de Peppel J, Ackert-Bicknell C, Karasik D, Kague E, Rivadeneira F. Bone mineral density loci specific to the skull portray potential pleiotropic effects on craniosynostosis. Commun Biol 2023; 6:691. [PMID: 37402774 PMCID: PMC10319806 DOI: 10.1038/s42003-023-04869-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 04/25/2023] [Indexed: 07/06/2023] Open
Abstract
Skull bone mineral density (SK-BMD) provides a suitable trait for the discovery of key genes in bone biology, particularly to intramembranous ossification, not captured at other skeletal sites. We perform a genome-wide association meta-analysis (n ~ 43,800) of SK-BMD, identifying 59 loci, collectively explaining 12.5% of the trait variance. Association signals cluster within gene-sets involved in skeletal development and osteoporosis. Among the four novel loci (ZIC1, PRKAR1A, AZIN1/ATP6V1C1, GLRX3), there are factors implicated in intramembranous ossification and as we show, inherent to craniosynostosis processes. Functional follow-up in zebrafish confirms the importance of ZIC1 on cranial suture patterning. Likewise, we observe abnormal cranial bone initiation that culminates in ectopic sutures and reduced BMD in mosaic atp6v1c1 knockouts. Mosaic prkar1a knockouts present asymmetric bone growth and, conversely, elevated BMD. In light of this evidence linking SK-BMD loci to craniofacial abnormalities, our study provides new insight into the pathophysiology, diagnosis and treatment of skeletal diseases.
Collapse
Grants
- UL1 TR000128 NCATS NIH HHS
- U01 AG042124 NIA NIH HHS
- U01 AG042145 NIA NIH HHS
- U01 AG042168 NIA NIH HHS
- U01 AG042140 NIA NIH HHS
- U24 AG051129 NIA NIH HHS
- R01 AR051124 NIAMS NIH HHS
- U01 AG027810 NIA NIH HHS
- U01 AR066160 NIAMS NIH HHS
- MC_UU_00007/10 Medical Research Council
- R01 HD058886 NICHD NIH HHS
- RC2 AR058973 NIAMS NIH HHS
- Wellcome Trust
- M01 RR000240 NCRR NIH HHS
- U01 AG042143 NIA NIH HHS
- UL1 RR026314 NCRR NIH HHS
- U01 AG042139 NIA NIH HHS
- EC | EU Framework Programme for Research and Innovation H2020 | H2020 Priority Excellent Science | H2020 European Research Council (H2020 Excellent Science - European Research Council)
- European Cooperation in Science and Technology (COST)
- Wellcome Trust (Wellcome)
- Department of Health | National Health and Medical Research Council (NHMRC)
- U.S. Department of Health & Human Services | NIH | Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD)
- ZonMw (Netherlands Organisation for Health Research and Development)
- EC | EC Seventh Framework Programm | FP7 Ideas: European Research Council (FP7-IDEAS-ERC - Specific Programme: "Ideas" Implementing the Seventh Framework Programme of the European Community for Research, Technological Development and Demonstration Activities (2007 to 2013))
- Vetenskapsrådet (Swedish Research Council)
- U.S. Department of Health & Human Services | NIH | National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS)
- Gouvernement du Canada | Canadian Institutes of Health Research (Instituts de Recherche en Santé du Canada)
- Nederlandse Organisatie voor Wetenschappelijk Onderzoek (Netherlands Organisation for Scientific Research)
- NCHA (Netherlands Consortium Healthy Ageing) Leiden/ Rotterdam; Dutch Ministry of Economic Affairs, Agriculture and Innovation (project KB-15-004-003); the Research Institute for Diseases in the Elderly [Netherlands] (014-93-015; RIDE2)
- Clinical and Translational Research Center (5-MO1-RR-000240 and UL1 RR-026314); U.S. Department of Health & Human Services | NIH | Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD) GrantRecipient="Au50"
- European Commission FP6 STRP grant number 018947 (LSHG-CT-2006-01947); Netherlands Organization for Scientific Research and the Russian Foundation for Basic Research (NWO-RFBR 047.017.043); Netherlands Brain Foundation (project number F2013(1)-28) GrantRecipient="Au40"
- Chief Scientist Office of the Scottish Government (CZB/4/276, CZB/4/710) GrantRecipient="Au28"
- Chief Scientist Office of the Scottish Government (CZB/4/276, CZB/4/710) GrantRecipient="Au38"
- The Pawsey Supercomputing Centre (with Funding from the Australian Government and the Government of Western Australia; PG 16/0162, PG 17/director2025) GrantRecipient="Au45”
- European Commission (EC)
- U.S. Department of Health & Human Services | NIH | National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS);NIH Roadmap for Medical Research [USA]: U01 AG027810, U01 AG042124, U01 AG042139, U01 AG042140, U01 AG042143, U01 AG042145, U01 AG042168, U01 AR066160, and UL1 TR000128 GrantRecipient="Au39”
- Versus Arthritis [USA] 21937 GrantRecipient="Au57”
Collapse
Affiliation(s)
- Carolina Medina-Gomez
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, 3000 CA, Rotterdam, The Netherlands
| | - Benjamin H Mullin
- Department of Endocrinology and Diabetes, Sir Charles Gairdner Hospital, Nedlands, WA, 6009, Australia
- School of Biomedical Sciences, University of Western Australia, Nedlands, WA, 6009, Australia
| | - Alessandra Chesi
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Vid Prijatelj
- Department of Oral and Maxillofacial Surgery, Erasmus MC, University Medical Center Rotterdam, 3000 CA, Rotterdam, The Netherlands
| | - John P Kemp
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia
- The University of Queensland Diamantina Institute, The University of Queensland, Brisbane, QLD, 4102, Australia
- MRC Integrative Epidemiology Unit, Bristol Medical School, University of Bristol, Bristol, BS8 2BN, UK
| | | | - Katerina Trajanoska
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, 3000 CA, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, 3000 CA, Rotterdam, The Netherlands
| | - Carol Wang
- School of Women's and Infants' Health, University of Western Australia, Crawley, WA, 6009, Australia
| | - Raimo Joro
- Institute of Biomedicine, Physiology, University of Eastern Finland, Kuopio, 70211, Finland
| | - Tavia E Evans
- Department of Clinical Genetics, Erasmus MC, University Medical Center Rotterdam, 3000 CA, Rotterdam, The Netherlands
- Department of Radiology & Nuclear Medicine, Erasmus MC, University Medical Center Rotterdam, 3000 CA, Rotterdam, The Netherlands
| | - Katharina E Schraut
- Centre for Global Health Research, Usher Institute, University of Edinburgh, Edinburgh, EH16 4UX, Scotland
- Centre for Cardiovascular Sciences, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, EH8 9AG, Scotland
| | - Ruifang Li-Gao
- Department of Clinical Epidemiology, Leiden University Medical Centre, 2333 ZA, Leiden, The Netherlands
| | - Tarunveer S Ahluwalia
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, 2820, Denmark
- Steno Diabetes Center Copenhagen, Herlev, 2820, Denmark
- The Bioinformatics Center, Department of Biology, University of Copenhagen, Copenhagen, 2200, Denmark
| | - M Carola Zillikens
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, 3000 CA, Rotterdam, The Netherlands
| | - Kun Zhu
- Department of Endocrinology and Diabetes, Sir Charles Gairdner Hospital, Nedlands, WA, 6009, Australia
- Medical School, University of Western Australia, Perth, WA, 6009, Australia
| | - Dennis O Mook-Kanamori
- Department of Clinical Epidemiology, Leiden University Medical Centre, 2333 ZA, Leiden, The Netherlands
- Department of Public Health and Primary Care, Leiden University Medical Centre, 2333 ZA, Leiden, The Netherlands
| | - Daniel S Evans
- California Pacific Medical Center Research Institute, San Francisco, CA, 94107, USA
| | - Maria Nethander
- Bioinformatics Core Facility, Sahlgrenska Academy, University of Gothenburg, 413 90, Gothenburg, Sweden
- Center for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, 413 90, Gothenburg, Sweden
| | - Maria J Knol
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, 3000 CA, Rotterdam, The Netherlands
| | | | - Ivana Prokic
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, 3000 CA, Rotterdam, The Netherlands
| | - Babette Zemel
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Division of GI, Hepatology, and Nutrition, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Linda Broer
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, 3000 CA, Rotterdam, The Netherlands
| | - Fiona E McGuigan
- Clinical and Molecular Osteoporosis Research Unit, Department of Clinical Sciences Malmö, Lund University, 205 02, Malmö, Sweden
| | - Natasja M van Schoor
- Department of Epidemiology and Data Science, Amsterdam UMC, 1081 HV, Amsterdam, The Netherlands
| | - Sjur Reppe
- Department of Plastic and Reconstructive Surgery, Oslo University Hospital, 0372, Oslo, Norway
- Department of Medical Biochemistry, Oslo University Hospital, 0372, Oslo, Norway
- Unger-Vetlesen Institute, Lovisenberg Diaconal Hospital, 0456, Oslo, Norway
| | - Mikolaj A Pawlak
- Department of Clinical Genetics, Erasmus MC, University Medical Center Rotterdam, 3000 CA, Rotterdam, The Netherlands
- Department of Neurology, Poznan University of Medical Sciences, 61-701, Poznan, Poland
| | - Stuart H Ralston
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XU, Scotland
| | - Nathalie van der Velde
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, 3000 CA, Rotterdam, The Netherlands
- Department of Geriatric Medicine, Amsterdam Public Health Research Institute, Amsterdam UMC, 1105 AZ, Amsterdam, The Netherlands
| | - Mattias Lorentzon
- Center for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, 413 90, Gothenburg, Sweden
- Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC, 3000, Australia
| | | | - Hieab H H Adams
- Department of Clinical Genetics, Erasmus MC, University Medical Center Rotterdam, 3000 CA, Rotterdam, The Netherlands
- Department of Radiology & Nuclear Medicine, Erasmus MC, University Medical Center Rotterdam, 3000 CA, Rotterdam, The Netherlands
- Latin American Brain Health (BrainLat), Universidad Adolfo Ibáñez, Santiago, Chile
| | - Scott G Wilson
- Department of Endocrinology and Diabetes, Sir Charles Gairdner Hospital, Nedlands, WA, 6009, Australia
- School of Biomedical Sciences, University of Western Australia, Nedlands, WA, 6009, Australia
- Department of Twin Research & Genetic Epidemiology, King's College London, London, SE1 7EH, UK
| | - M Arfan Ikram
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, 3000 CA, Rotterdam, The Netherlands
| | - John P Walsh
- Department of Endocrinology and Diabetes, Sir Charles Gairdner Hospital, Nedlands, WA, 6009, Australia
- Medical School, University of Western Australia, Perth, WA, 6009, Australia
| | - Timo A Lakka
- Institute of Biomedicine, Physiology, University of Eastern Finland, Kuopio, 70211, Finland
- Kuopio Research Institute of Exercise Medicine, Kuopio, 70100, Finland
- Department of Clinical Physiology and Nuclear Medicine, University of Eastern Finland, Kuopio, 70210, Finland
| | - Kaare M Gautvik
- Unger-Vetlesen Institute, Lovisenberg Diaconal Hospital, 0456, Oslo, Norway
| | - James F Wilson
- Centre for Global Health Research, Usher Institute, University of Edinburgh, Edinburgh, EH16 4UX, Scotland
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XU, Scotland
| | - Eric S Orwoll
- Department of Public Health & Preventive Medicine, Oregon Health & Science University, Portland, OR, OR97239, USA
| | - Cornelia M van Duijn
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, 3000 CA, Rotterdam, The Netherlands
| | - Klaus Bønnelykke
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, 2820, Denmark
| | - Andre G Uitterlinden
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, 3000 CA, Rotterdam, The Netherlands
| | | | - Kristina E Akesson
- Clinical and Molecular Osteoporosis Research Unit, Department of Clinical Sciences Malmö, Lund University, 205 02, Malmö, Sweden
- Department of Orthopedics Malmö, Skåne University Hospital, S-21428, Malmö, Sweden
| | - Timothy D Spector
- Department of Twin Research & Genetic Epidemiology, King's College London, London, SE1 7EH, UK
| | - Jonathan H Tobias
- MRC Integrative Epidemiology Unit, Bristol Medical School, University of Bristol, Bristol, BS8 2BN, UK
- Musculoskeletal Research Unit, Translational Health Sciences, Bristol Medical School, Bristol, BS10 5NB, UK
| | - Claes Ohlsson
- Center for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, 413 90, Gothenburg, Sweden
- Department of Drug Treatment, Sahlgrenska University Hospital, Region Västra Götaland, SE-413 45, Gothenburg, Sweden
| | - Janine F Felix
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, 3000 CA, Rotterdam, The Netherlands
- Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, 3000 CA, Rotterdam, The Netherlands
| | - Hans Bisgaard
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, 2820, Denmark
| | - Struan F A Grant
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Division of Endocrinology, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - J Brent Richards
- Department of Twin Research & Genetic Epidemiology, King's College London, London, SE1 7EH, UK
- Lady Davis Institute, Jewish General Hospital, Montreal, H3T 1E2, QC, Canada
| | - David M Evans
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia
- The University of Queensland Diamantina Institute, The University of Queensland, Brisbane, QLD, 4102, Australia
- MRC Integrative Epidemiology Unit, Bristol Medical School, University of Bristol, Bristol, BS8 2BN, UK
| | - Bram van der Eerden
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, 3000 CA, Rotterdam, The Netherlands
| | - Jeroen van de Peppel
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, 3000 CA, Rotterdam, The Netherlands
| | | | - David Karasik
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, 1311502, Israel
- Marcus Institute for Aging Research, Hebrew SeniorLife, Roslindale, MA, 02131, USA
| | - Erika Kague
- The School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences, University of Bristol, Bristol, BS8 1TD, UK
| | - Fernando Rivadeneira
- Department of Oral and Maxillofacial Surgery, Erasmus MC, University Medical Center Rotterdam, 3000 CA, Rotterdam, The Netherlands.
| |
Collapse
|
7
|
Bradford YM, Van Slyke CE, Howe DG, Fashena D, Frazer K, Martin R, Paddock H, Pich C, Ramachandran S, Ruzicka L, Singer A, Taylor R, Tseng WC, Westerfield M. From multiallele fish to nonstandard environments, how ZFIN assigns phenotypes, human disease models, and gene expression annotations to genes. Genetics 2023; 224:iyad032. [PMID: 36864549 PMCID: PMC10158835 DOI: 10.1093/genetics/iyad032] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 02/13/2023] [Indexed: 03/04/2023] Open
Abstract
Danio rerio is a model organism used to investigate vertebrate development. Manipulation of the zebrafish genome and resultant gene products by mutation or targeted knockdown has made the zebrafish a good system for investigating gene function, providing a resource to investigate genetic contributors to phenotype and human disease. Phenotypic outcomes can be the result of gene mutation, targeted knockdown of gene products, manipulation of experimental conditions, or any combination thereof. Zebrafish have been used in various genetic and chemical screens to identify genetic and environmental contributors to phenotype and disease outcomes. The Zebrafish Information Network (ZFIN, zfin.org) is the central repository for genetic, genomic, and phenotypic data that result from research using D. rerio. Here we describe how ZFIN annotates phenotype, expression, and disease model data across various experimental designs, how we computationally determine wild-type gene expression, the phenotypic gene, and how these results allow us to propagate gene expression, phenotype, and disease model data to the correct gene, or gene related entity.
Collapse
Affiliation(s)
- Yvonne M Bradford
- The Institute of Neuroscience, University of Oregon, Eugene, OR 97403-1254, USA
| | - Ceri E Van Slyke
- The Institute of Neuroscience, University of Oregon, Eugene, OR 97403-1254, USA
| | - Douglas G Howe
- The Institute of Neuroscience, University of Oregon, Eugene, OR 97403-1254, USA
| | - David Fashena
- The Institute of Neuroscience, University of Oregon, Eugene, OR 97403-1254, USA
| | - Ken Frazer
- The Institute of Neuroscience, University of Oregon, Eugene, OR 97403-1254, USA
| | - Ryan Martin
- The Institute of Neuroscience, University of Oregon, Eugene, OR 97403-1254, USA
| | - Holly Paddock
- The Institute of Neuroscience, University of Oregon, Eugene, OR 97403-1254, USA
| | - Christian Pich
- The Institute of Neuroscience, University of Oregon, Eugene, OR 97403-1254, USA
| | | | - Leyla Ruzicka
- The Institute of Neuroscience, University of Oregon, Eugene, OR 97403-1254, USA
| | - Amy Singer
- The Institute of Neuroscience, University of Oregon, Eugene, OR 97403-1254, USA
| | - Ryan Taylor
- The Institute of Neuroscience, University of Oregon, Eugene, OR 97403-1254, USA
| | - Wei-Chia Tseng
- The Institute of Neuroscience, University of Oregon, Eugene, OR 97403-1254, USA
| | - Monte Westerfield
- The Institute of Neuroscience, University of Oregon, Eugene, OR 97403-1254, USA
| |
Collapse
|
8
|
Raterman ST, Von Den Hoff JW, Dijkstra S, De Vriend C, Te Morsche T, Broekman S, Zethof J, De Vrieze E, Wagener FADTG, Metz JR. Disruption of the foxe1 gene in zebrafish reveals conserved functions in development of the craniofacial skeleton and the thyroid. Front Cell Dev Biol 2023; 11:1143844. [PMID: 36994096 PMCID: PMC10040582 DOI: 10.3389/fcell.2023.1143844] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 02/28/2023] [Indexed: 03/14/2023] Open
Abstract
Introduction: Mutations in the FOXE1 gene are implicated in cleft palate and thyroid dysgenesis in humans.Methods: To investigate whether zebrafish could provide meaningful insights into the etiology of developmental defects in humans related to FOXE1, we generated a zebrafish mutant that has a disruption in the nuclear localization signal in the foxe1 gene, thereby restraining nuclear access of the transcription factor. We characterized skeletal development and thyroidogenesis in these mutants, focusing on embryonic and larval stages.Results: Mutant larvae showed aberrant skeletal phenotypes in the ceratohyal cartilage and had reduced whole body levels of Ca, Mg and P, indicating a critical role for foxe1 in early skeletal development. Markers of bone and cartilage (precursor) cells were differentially expressed in mutants in post-migratory cranial neural crest cells in the pharyngeal arch at 1 dpf, at induction of chondrogenesis at 3 dpf and at the start of endochondral bone formation at 6 dpf. Foxe1 protein was detected in differentiated thyroid follicles, suggesting a role for the transcription factor in thyroidogenesis, but thyroid follicle morphology or differentiation were unaffected in mutants.Discussion: Taken together, our findings highlight the conserved role of Foxe1 in skeletal development and thyroidogenesis, and show differential signaling of osteogenic and chondrogenic genes related to foxe1 mutation.
Collapse
Affiliation(s)
- Sophie T. Raterman
- Department of Dentistry—Orthodontics and Craniofacial Biology, Radboud Institute of Molecular Life Sciences (RIMLS), Radboud University Medical Center, Nijmegen, Netherlands
- Department of Animal Ecology and Physiology, Radboud Institute for Biological and Environmental Sciences (RIBES), Radboud University, Nijmegen, Netherlands
- *Correspondence: Sophie T. Raterman,
| | - Johannes W. Von Den Hoff
- Department of Dentistry—Orthodontics and Craniofacial Biology, Radboud Institute of Molecular Life Sciences (RIMLS), Radboud University Medical Center, Nijmegen, Netherlands
| | - Sietske Dijkstra
- Department of Animal Ecology and Physiology, Radboud Institute for Biological and Environmental Sciences (RIBES), Radboud University, Nijmegen, Netherlands
| | - Cheyenne De Vriend
- Department of Animal Ecology and Physiology, Radboud Institute for Biological and Environmental Sciences (RIBES), Radboud University, Nijmegen, Netherlands
| | - Tim Te Morsche
- Department of Animal Ecology and Physiology, Radboud Institute for Biological and Environmental Sciences (RIBES), Radboud University, Nijmegen, Netherlands
| | - Sanne Broekman
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, Netherlands
| | - Jan Zethof
- Department of Animal Ecology and Physiology, Radboud Institute for Biological and Environmental Sciences (RIBES), Radboud University, Nijmegen, Netherlands
| | - Erik De Vrieze
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, Netherlands
| | - Frank A. D. T. G. Wagener
- Department of Dentistry—Orthodontics and Craniofacial Biology, Radboud Institute of Molecular Life Sciences (RIMLS), Radboud University Medical Center, Nijmegen, Netherlands
| | - Juriaan R. Metz
- Department of Animal Ecology and Physiology, Radboud Institute for Biological and Environmental Sciences (RIBES), Radboud University, Nijmegen, Netherlands
| |
Collapse
|
9
|
Henke K, Farmer DT, Niu X, Kraus JM, Galloway JL, Youngstrom DW. Genetically engineered zebrafish as models of skeletal development and regeneration. Bone 2023; 167:116611. [PMID: 36395960 PMCID: PMC11080330 DOI: 10.1016/j.bone.2022.116611] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/01/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022]
Abstract
Zebrafish (Danio rerio) are aquatic vertebrates with significant homology to their terrestrial counterparts. While zebrafish have a centuries-long track record in developmental and regenerative biology, their utility has grown exponentially with the onset of modern genetics. This is exemplified in studies focused on skeletal development and repair. Herein, the numerous contributions of zebrafish to our understanding of the basic science of cartilage, bone, tendon/ligament, and other skeletal tissues are described, with a particular focus on applications to development and regeneration. We summarize the genetic strengths that have made the zebrafish a powerful model to understand skeletal biology. We also highlight the large body of existing tools and techniques available to understand skeletal development and repair in the zebrafish and introduce emerging methods that will aid in novel discoveries in skeletal biology. Finally, we review the unique contributions of zebrafish to our understanding of regeneration and highlight diverse routes of repair in different contexts of injury. We conclude that zebrafish will continue to fill a niche of increasing breadth and depth in the study of basic cellular mechanisms of skeletal biology.
Collapse
Affiliation(s)
- Katrin Henke
- Department of Orthopaedics, Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA.
| | - D'Juan T Farmer
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA 90095, USA; Department of Orthopaedic Surgery, University of California, Los Angeles, CA 90095, USA.
| | - Xubo Niu
- Center for Regenerative Medicine, Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| | - Jessica M Kraus
- Department of Orthopaedic Surgery, University of Connecticut Health Center, Farmington, CT 06030, USA.
| | - Jenna L Galloway
- Center for Regenerative Medicine, Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| | - Daniel W Youngstrom
- Department of Orthopaedic Surgery, University of Connecticut Health Center, Farmington, CT 06030, USA.
| |
Collapse
|
10
|
Venditti M, Pedalino C, Rosello M, Fasano G, Serafini M, Revenu C, Del Bene F, Tartaglia M, Lauri A. A minimally invasive fin scratching protocol for fast genotyping and early selection of zebrafish embryos. Sci Rep 2022; 12:22597. [PMID: 36585409 PMCID: PMC9803660 DOI: 10.1038/s41598-022-26822-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 12/20/2022] [Indexed: 12/31/2022] Open
Abstract
Current genetic modification and phenotyping methods in teleost fish allow detailed investigation of vertebrate mechanisms of development, modeling of specific aspects of human diseases and efficient testing of drugs at an organ/organismal level in an unparalleled fast and large-scale mode. Fish-based experimental approaches have boosted the in vivo verification and implementation of scientific advances, offering the quality guaranteed by animal models that ultimately benefit human health, and are not yet fully replaceable by even the most sophisticated in vitro alternatives. Thanks to highly efficient and constantly advancing genetic engineering as well as non-invasive phenotyping methods, the small zebrafish is quickly becoming a popular alternative to large animals' experimentation. This approach is commonly associated to invasive procedures and increased burden. Here, we present a rapid and minimally invasive method to obtain sufficient genomic material from single zebrafish embryos by simple and precise tail fin scratching that can be robustly used for at least two rounds of genotyping already from embryos within 48 h of development. The described protocol betters currently available methods (such as fin clipping), by minimizing the relative animal distress associated with biopsy at later or adult stages. It allows early selection of embryos with desired genotypes for strategizing culturing or genotype-phenotype correlation experiments, resulting in a net reduction of "surplus" animals used for mutant line generation.
Collapse
Affiliation(s)
- Martina Venditti
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146, Rome, Italy
| | - Catia Pedalino
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146, Rome, Italy
| | - Marion Rosello
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 Rue Moreau, 75012, Paris, France
- Institut Curie, PSL Research University, INSERM U934, CNRS UMR3215, 75005, Paris, France
| | - Giulia Fasano
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146, Rome, Italy
| | - Malo Serafini
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 Rue Moreau, 75012, Paris, France
| | - Céline Revenu
- Institut Curie, PSL Research University, INSERM U934, CNRS UMR3215, 75005, Paris, France
| | - Filippo Del Bene
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 Rue Moreau, 75012, Paris, France
- Institut Curie, PSL Research University, INSERM U934, CNRS UMR3215, 75005, Paris, France
| | - Marco Tartaglia
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146, Rome, Italy
| | - Antonella Lauri
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146, Rome, Italy.
| |
Collapse
|
11
|
Hopkins CE, Brock T, Caulfield TR, Bainbridge M. Phenotypic screening models for rapid diagnosis of genetic variants and discovery of personalized therapeutics. Mol Aspects Med 2022; 91:101153. [PMID: 36411139 PMCID: PMC10073243 DOI: 10.1016/j.mam.2022.101153] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/22/2022] [Accepted: 10/23/2022] [Indexed: 11/19/2022]
Abstract
Precision medicine strives for highly individualized treatments for disease under the notion that each individual's unique genetic makeup and environmental exposures imprints upon them not only a disposition to illness, but also an optimal therapeutic approach. In the realm of rare disorders, genetic predisposition is often the predominant mechanism driving disease presentation. For such, mostly, monogenic disorders, a causal gene to phenotype association is likely. As a result, it becomes important to query the patient's genome for the presence of pathogenic variations that are likely to cause the disease. Determining whether a variant is pathogenic or not is critical to these analyses and can be challenging, as many disease-causing variants are novel and, ergo, have no available functional data to help categorize them. This problem is exacerbated by the need for rapid evaluation of pathogenicity, since many genetic diseases present in young children who will experience increased morbidity and mortality without rapid diagnosis and therapeutics. Here, we discuss the utility of animal models, with a focus mainly on C. elegans, as a contrast to tissue culture and in silico approaches, with emphasis on how these systems are used in determining pathogenicity of variants with uncertain significance and then used to screen for novel therapeutics.
Collapse
Affiliation(s)
| | | | - Thomas R Caulfield
- Mayo Clinic, Department of Neuroscience, Department of Computational Biology, Department of Clinical Genomics, Jacksonville, FL, 32224, Rochester, MN, 55905, USA
| | | |
Collapse
|
12
|
Ha J, Kim BS, Min B, Nam J, Lee JG, Lee M, Yoon BH, Choi YH, Im I, Park JS, Choi H, Baek A, Cho SM, Lee MO, Nam KH, Mun JY, Kim M, Kim SY, Son MY, Kang YK, Lee JS, Kim JK, Kim J. Intermediate cells of in vitro cellular reprogramming and in vivo tissue regeneration require desmoplakin. SCIENCE ADVANCES 2022; 8:eabk1239. [PMID: 36306352 PMCID: PMC9616504 DOI: 10.1126/sciadv.abk1239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 08/29/2022] [Indexed: 06/16/2023]
Abstract
Amphibians and fish show considerable regeneration potential via dedifferentiation of somatic cells into blastemal cells. In terms of dedifferentiation, in vitro cellular reprogramming has been proposed to share common processes with in vivo tissue regeneration, although the details are elusive. Here, we identified the cytoskeletal linker protein desmoplakin (Dsp) as a common factor mediating both reprogramming and regeneration. Our analysis revealed that Dsp expression is elevated in distinct intermediate cells during in vitro reprogramming. Knockdown of Dsp impedes in vitro reprogramming into induced pluripotent stem cells and induced neural stem/progenitor cells as well as in vivo regeneration of zebrafish fins. Notably, reduced Dsp expression impairs formation of the intermediate cells during cellular reprogramming and tissue regeneration. These findings suggest that there is a Dsp-mediated evolutionary link between cellular reprogramming in mammals and tissue regeneration in lower vertebrates and that the intermediate cells may provide alternative approaches for mammalian regenerative therapy.
Collapse
Affiliation(s)
- Jeongmin Ha
- Stem Cell Convergence Research Center, Korea Research Institute Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Bum Suk Kim
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology, Daegu 42988, Republic of Korea
| | - Byungkuk Min
- Stem Cell Convergence Research Center, Korea Research Institute Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Juhyeon Nam
- Stem Cell Convergence Research Center, Korea Research Institute Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Jae-Geun Lee
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon 34113, Republic of Korea
- Microbiome Convergence Research Center, KRIBB, Daejeon 34141, Republic of Korea
| | - Minhyung Lee
- Stem Cell Convergence Research Center, Korea Research Institute Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Byoung-Ha Yoon
- Korea Bioinformation Center, KRIBB, Daejeon 34141, Republic of Korea
| | - Yoon Ha Choi
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology, Daegu 42988, Republic of Korea
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Ilkyun Im
- Bio-IT lab, NetTargets Inc., Daejeon 34141, Republic of Korea
| | - Jung Sun Park
- Development and Differentiation Research Center, KRIBB, Daejeon 34141, Republic of Korea
| | - Hyosun Choi
- Nanobioimaging Center, National Instrumentation Center for Environmental Management (NICEM), Seoul National University, Seoul, Republic of Korea
| | - Areum Baek
- Stem Cell Convergence Research Center, Korea Research Institute Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Sang Mi Cho
- Laboratory Animal Resource Center, KRIBB, Cheongju 28116, Republic of Korea
| | - Mi-Ok Lee
- Stem Cell Convergence Research Center, Korea Research Institute Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Ki-Hoan Nam
- Laboratory Animal Resource Center, KRIBB, Cheongju 28116, Republic of Korea
| | - Ji Young Mun
- Neural Circuit Research Group, Korea Brain Research Institute, Daegu 41062, Republic of Korea
| | - Mirang Kim
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon 34113, Republic of Korea
- Personalized Genomic Medicine Research Center, KRIBB, Daejeon 34141, Republic of Korea
| | - Seon-Young Kim
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon 34113, Republic of Korea
- Korea Bioinformation Center, KRIBB, Daejeon 34141, Republic of Korea
- Personalized Genomic Medicine Research Center, KRIBB, Daejeon 34141, Republic of Korea
| | - Mi Young Son
- Stem Cell Convergence Research Center, Korea Research Institute Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Yong-Kook Kang
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon 34113, Republic of Korea
- Development and Differentiation Research Center, KRIBB, Daejeon 34141, Republic of Korea
| | - Jeong-Soo Lee
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon 34113, Republic of Korea
- Microbiome Convergence Research Center, KRIBB, Daejeon 34141, Republic of Korea
- Dementia DTC R&D Convergence Program, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Jong Kyoung Kim
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology, Daegu 42988, Republic of Korea
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Janghwan Kim
- Stem Cell Convergence Research Center, Korea Research Institute Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon 34113, Republic of Korea
- R&D Center, Regeners Inc., Daejeon 34141, Republic of Korea
| |
Collapse
|
13
|
Khrystoforova I, Shochat-Carvalho C, Harari R, Henke K, Woronowicz K, Harris MP, Karasik D. Zebrafish mutants reveal unexpected role of Lrp5 in osteoclast regulation. Front Endocrinol (Lausanne) 2022; 13:985304. [PMID: 36120446 PMCID: PMC9478031 DOI: 10.3389/fendo.2022.985304] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 08/16/2022] [Indexed: 11/24/2022] Open
Abstract
Low-density Lipoprotein Receptor-related Protein 5 (LRP5) functions as a co-receptor for Wnt ligands, controlling expression of genes involved in osteogenesis. In humans, loss-of-function mutations in LRP5 cause Osteoporosis-Pseudoglioma syndrome, a low bone mass disorder, while gain-of-function missense mutations have been observed in individuals with high bone mass. Zebrafish (Danio rerio) is a popular model for human disease research, as genetic determinants that control bone formation are generally conserved between zebrafish and mammals. We generated lrp5- knock-out zebrafish to study its role in skeletogenesis and homeostasis. Loss of lrp5 in zebrafish leads to craniofacial deformities and low bone mineral density (total body and head) at adult ages. To understand the mechanism and consequences of the observed phenotypes, we performed transcriptome analysis of the cranium of adult lrp5 mutants and siblings. Enrichment analysis revealed upregulation of genes significantly associated with hydrolase activity: mmp9, mmp13a, acp5a. acp5a encodes Tartrate-resistant acid phosphatase (TRAP) which is commonly used as an osteoclast marker, while Matrix metalloprotease 9, Mmp9, is known to be secreted by osteoclasts and stimulate bone resorption. These genes point to changes in osteoclast differentiation regulated by lrp5. To analyze these changes functionally, we assessed osteoclast dynamics in mutants and observed increased TRAP staining, significantly larger resorption areas, and developmental skeletal dysmorphologies in the mutant, suggesting higher resorptive activity in the absence of Lrp5 signaling. Our findings support a conserved role of Lrp5 in maintaining bone mineral density and revealed unexpected insights into the function of Lrp5 in bone homeostasis through moderation of osteoclast function.
Collapse
Affiliation(s)
| | | | - Ram Harari
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Katrin Henke
- Department of Orthopedics, Emory University, Atlanta, GA, United States
| | - Katherine Woronowicz
- Department of Orthopaedics, Boston Children’s Hospital, Boston, MA, United States
- Department of Genetics, Harvard Medical School, Boston, MA, United States
| | - Matthew P. Harris
- Department of Orthopaedics, Boston Children’s Hospital, Boston, MA, United States
- Department of Genetics, Harvard Medical School, Boston, MA, United States
| | - David Karasik
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| |
Collapse
|
14
|
Kague E, Medina-Gomez C, Boyadjiev SA, Rivadeneira F. The genetic overlap between osteoporosis and craniosynostosis. Front Endocrinol (Lausanne) 2022; 13:1020821. [PMID: 36225206 PMCID: PMC9548872 DOI: 10.3389/fendo.2022.1020821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 09/08/2022] [Indexed: 11/29/2022] Open
Abstract
Osteoporosis is the most prevalent bone condition in the ageing population. This systemic disease is characterized by microarchitectural deterioration of bone, leading to increased fracture risk. In the past 15 years, genome-wide association studies (GWAS), have pinpointed hundreds of loci associated with bone mineral density (BMD), helping elucidate the underlying molecular mechanisms and genetic architecture of fracture risk. However, the challenge remains in pinpointing causative genes driving GWAS signals as a pivotal step to drawing the translational therapeutic roadmap. Recently, a skull BMD-GWAS uncovered an intriguing intersection with craniosynostosis, a congenital anomaly due to premature suture fusion in the skull. Here, we recapitulate the genetic contribution to both osteoporosis and craniosynostosis, describing the biological underpinnings of this overlap and using zebrafish models to leverage the functional investigation of genes associated with skull development and systemic skeletal homeostasis.
Collapse
Affiliation(s)
- Erika Kague
- School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences, University of Bristol, Bristol, United Kingdom
- *Correspondence: Erika Kague,
| | - Carolina Medina-Gomez
- Department of Internal Medicine, Erasmus Medical Center (MC), University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Simeon A. Boyadjiev
- Department of Pediatrics, University of California, Davis, Sacramento, CA, United States
| | - Fernando Rivadeneira
- Department of Oral and Maxillofacial Surgery, Erasmus Medical Center (MC), University Medical Center Rotterdam, Rotterdam, Netherlands
| |
Collapse
|
15
|
Rauner M, Foessl I, Formosa MM, Kague E, Prijatelj V, Lopez NA, Banerjee B, Bergen D, Busse B, Calado Â, Douni E, Gabet Y, Giralt NG, Grinberg D, Lovsin NM, Solan XN, Ostanek B, Pavlos NJ, Rivadeneira F, Soldatovic I, van de Peppel J, van der Eerden B, van Hul W, Balcells S, Marc J, Reppe S, Søe K, Karasik D. Perspective of the GEMSTONE Consortium on Current and Future Approaches to Functional Validation for Skeletal Genetic Disease Using Cellular, Molecular and Animal-Modeling Techniques. Front Endocrinol (Lausanne) 2021; 12:731217. [PMID: 34938269 PMCID: PMC8686830 DOI: 10.3389/fendo.2021.731217] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 09/30/2021] [Indexed: 12/26/2022] Open
Abstract
The availability of large human datasets for genome-wide association studies (GWAS) and the advancement of sequencing technologies have boosted the identification of genetic variants in complex and rare diseases in the skeletal field. Yet, interpreting results from human association studies remains a challenge. To bridge the gap between genetic association and causality, a systematic functional investigation is necessary. Multiple unknowns exist for putative causal genes, including cellular localization of the molecular function. Intermediate traits ("endophenotypes"), e.g. molecular quantitative trait loci (molQTLs), are needed to identify mechanisms of underlying associations. Furthermore, index variants often reside in non-coding regions of the genome, therefore challenging for interpretation. Knowledge of non-coding variance (e.g. ncRNAs), repetitive sequences, and regulatory interactions between enhancers and their target genes is central for understanding causal genes in skeletal conditions. Animal models with deep skeletal phenotyping and cell culture models have already facilitated fine mapping of some association signals, elucidated gene mechanisms, and revealed disease-relevant biology. However, to accelerate research towards bridging the current gap between association and causality in skeletal diseases, alternative in vivo platforms need to be used and developed in parallel with the current -omics and traditional in vivo resources. Therefore, we argue that as a field we need to establish resource-sharing standards to collectively address complex research questions. These standards will promote data integration from various -omics technologies and functional dissection of human complex traits. In this mission statement, we review the current available resources and as a group propose a consensus to facilitate resource sharing using existing and future resources. Such coordination efforts will maximize the acquisition of knowledge from different approaches and thus reduce redundancy and duplication of resources. These measures will help to understand the pathogenesis of osteoporosis and other skeletal diseases towards defining new and more efficient therapeutic targets.
Collapse
Affiliation(s)
- Martina Rauner
- Department of Medicine III, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
- University Hospital Carl Gustav Carus, Dresden, Germany
| | - Ines Foessl
- Department of Internal Medicine, Division of Endocrinology and Diabetology, Endocrine Lab Platform, Medical University of Graz, Graz, Austria
| | - Melissa M. Formosa
- Department of Applied Biomedical Science, Faculty of Health Sciences, University of Malta, Msida, Malta
- Centre for Molecular Medicine and Biobanking, University of Malta, Msida, Malta
| | - Erika Kague
- School of Physiology, Pharmacology, and Neuroscience, Faculty of Life Sciences, University of Bristol, Bristol, United Kingdom
| | - Vid Prijatelj
- Department of Oral and Maxillofacial Surgery, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
- The Generation R Study, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Nerea Alonso Lopez
- Rheumatology and Bone Disease Unit, CGEM, Institute of Genetics and Cancer (IGC), Edinburgh, United Kingdom
| | - Bodhisattwa Banerjee
- Musculoskeletal Genetics Laboratory, Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Dylan Bergen
- School of Physiology, Pharmacology, and Neuroscience, Faculty of Life Sciences, University of Bristol, Bristol, United Kingdom
- Musculoskeletal Research Unit, Translational Health Sciences, Bristol Medical School, Faculty of Health Sciences, University of Bristol, Bristol, United Kingdom
| | - Björn Busse
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ângelo Calado
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Centro Académico de Medicina de Lisboa, Lisbon, Portugal
| | - Eleni Douni
- Department of Biotechnology, Agricultural University of Athens, Athens, Greece
- Institute for Bioinnovation, B.S.R.C. “Alexander Fleming”, Vari, Greece
| | - Yankel Gabet
- Department of Anatomy & Anthropology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Natalia García Giralt
- Musculoskeletal Research Group, IMIM (Hospital del Mar Medical Research Institute), Centro de Investigación Biomédica en Red en Fragilidad y Envejecimiento Saludable (CIBERFES), ISCIII, Barcelona, Spain
| | - Daniel Grinberg
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, Universitat de Barcelona, CIBERER, IBUB, IRSJD, Barcelona, Spain
| | - Nika M. Lovsin
- Department of Clinical Biochemistry, Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Xavier Nogues Solan
- Musculoskeletal Research Group, IMIM (Hospital del Mar Medical Research Institute), Centro de Investigación Biomédica en Red en Fragilidad y Envejecimiento Saludable (CIBERFES), ISCIII, Barcelona, Spain
| | - Barbara Ostanek
- Department of Clinical Biochemistry, Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Nathan J. Pavlos
- Bone Biology & Disease Laboratory, School of Biomedical Sciences, The University of Western Australia, Nedlands, WA, Australia
| | | | - Ivan Soldatovic
- Institute of Medical Statistics and Informatic, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Jeroen van de Peppel
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Bram van der Eerden
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Wim van Hul
- Department of Medical Genetics, University of Antwerp, Antwerp, Belgium
| | - Susanna Balcells
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, Universitat de Barcelona, CIBERER, IBUB, IRSJD, Barcelona, Spain
| | - Janja Marc
- Department of Clinical Biochemistry, Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Sjur Reppe
- Unger-Vetlesen Institute, Lovisenberg Diaconal Hospital, Oslo, Norway
- Department of Plastic and Reconstructive Surgery, Oslo University Hospital, Oslo, Norway
- Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway
| | - Kent Søe
- Clinical Cell Biology, Department of Pathology, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - David Karasik
- Azrieli Faculty of Medicine, Bar-Ilan University, Ramat Gan, Israel
- Marcus Research Institute, Hebrew SeniorLife, Boston, MA, United States
| |
Collapse
|
16
|
Identification of Rare LRP5 Variants in a Cohort of Males with Impaired Bone Mass. Int J Mol Sci 2021; 22:ijms221910834. [PMID: 34639175 PMCID: PMC8509722 DOI: 10.3390/ijms221910834] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 09/30/2021] [Accepted: 10/05/2021] [Indexed: 02/07/2023] Open
Abstract
Osteoporosis is the most common bone disease characterized by reduced bone mass and increased bone fragility. Genetic contribution is one of the main causes of primary osteoporosis; therefore, both genders are affected by this skeletal disorder. Nonetheless, osteoporosis in men has received little attention, thus being underestimated and undertreated. The aim of this study was to identify novel genetic variants in a cohort of 128 males with idiopathic low bone mass using a next-generation sequencing (NGS) panel including genes whose mutations could result in reduced bone mineral density (BMD). Genetic analysis detected in eleven patients ten rare heterozygous variants within the LRP5 gene, which were categorized as VUS (variant of uncertain significance), likely pathogenic and benign variants according to American College of Medical Genetics and Genomics (ACMG) guidelines. Protein structural and Bayesian analysis performed on identified LRP5 variants pointed out p.R1036Q and p.R1135C as pathogenic, therefore suggesting the likely association of these two variants with the low bone mass phenotype. In conclusion, this study expands our understanding on the importance of a functional LRP5 protein in bone formation and highlights the necessity to sequence this gene in subjects with idiopathic low BMD.
Collapse
|