1
|
Guo X, Lin W, Wen W, Huyghe J, Bien S, Cai Q, Harrison T, Chen Z, Qu C, Bao J, Long J, Yuan Y, Wang F, Bai M, Abecasis GR, Albanes D, Berndt SI, Bézieau S, Bishop DT, Brenner H, Buch S, Burnett-Hartman A, Campbell PT, Castellví-Bel S, Chan AT, Chang-Claude J, Chanock SJ, Cho SH, Conti DV, Chapelle ADL, Feskens EJM, Gallinger SJ, Giles GG, Goodman PJ, Gsur A, Guinter M, Gunter MJ, Hampe J, Hampel H, Hayes RB, Hoffmeister M, Kampman E, Kang HM, Keku TO, Kim HR, Le Marchand L, Lee SC, Li CI, Li L, Lindblom A, Lindor N, Milne RL, Moreno V, Murphy N, Newcomb PA, Nickerson DA, Offit K, Pearlman R, Pharoah PDP, Platz EA, Potter JD, Rennert G, Sakoda LC, Schafmayer C, Schmit SL, Schoen RE, Schumacher FR, Slattery ML, Su YR, Tangen CM, Ulrich CM, van Duijnhoven FJB, Van Guelpen B, Visvanathan K, Vodicka P, Vodickova L, Vymetalkova V, Wang X, White E, Wolk A, Woods MO, Casey G, Hsu L, Jenkins MA, Gruber SB, Peters U, Zheng W. Identifying Novel Susceptibility Genes for Colorectal Cancer Risk From a Transcriptome-Wide Association Study of 125,478 Subjects. Gastroenterology 2021; 160:1164-1178.e6. [PMID: 33058866 PMCID: PMC7956223 DOI: 10.1053/j.gastro.2020.08.062] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 08/20/2020] [Accepted: 08/28/2020] [Indexed: 01/07/2023]
Abstract
BACKGROUND AND AIMS Susceptibility genes and the underlying mechanisms for the majority of risk loci identified by genome-wide association studies (GWAS) for colorectal cancer (CRC) risk remain largely unknown. We conducted a transcriptome-wide association study (TWAS) to identify putative susceptibility genes. METHODS Gene-expression prediction models were built using transcriptome and genetic data from the 284 normal transverse colon tissues of European descendants from the Genotype-Tissue Expression (GTEx), and model performance was evaluated using data from The Cancer Genome Atlas (n = 355). We applied the gene-expression prediction models and GWAS data to evaluate associations of genetically predicted gene-expression with CRC risk in 58,131 CRC cases and 67,347 controls of European ancestry. Dual-luciferase reporter assays and knockdown experiments in CRC cells and tumor xenografts were conducted. RESULTS We identified 25 genes associated with CRC risk at a Bonferroni-corrected threshold of P < 9.1 × 10-6, including genes in 4 novel loci, PYGL (14q22.1), RPL28 (19q13.42), CAPN12 (19q13.2), MYH7B (20q11.22), and MAP1L3CA (20q11.22). In 9 known GWAS-identified loci, we uncovered 9 genes that have not been reported previously, whereas 4 genes remained statistically significant after adjusting for the lead risk variant of the locus. Through colocalization analysis in GWAS loci, we additionally identified 12 putative susceptibility genes that were supported by TWAS analysis at P < .01. We showed that risk allele of the lead risk variant rs1741640 affected the promoter activity of CABLES2. Knockdown experiments confirmed that CABLES2 plays a vital role in colorectal carcinogenesis. CONCLUSIONS Our study reveals new putative susceptibility genes and provides new insight into the biological mechanisms underlying CRC development.
Collapse
Affiliation(s)
- Xingyi Guo
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, and Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee.
| | - Weiqiang Lin
- The Kidney Disease Center, the First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Wanqing Wen
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, and Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Jeroen Huyghe
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Stephanie Bien
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Qiuyin Cai
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, and Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Tabitha Harrison
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Zhishan Chen
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, and Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Conghui Qu
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Jiandong Bao
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, and Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Jirong Long
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, and Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Yuan Yuan
- The Kidney Disease Center, the First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Fangqin Wang
- The Kidney Disease Center, the First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Mengqiu Bai
- The Kidney Disease Center, the First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Goncalo R Abecasis
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, Michigan
| | - Demetrius Albanes
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Sonja I Berndt
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Stéphane Bézieau
- Service de Génétique Médicale, Centre Hospitalier Universitaire, Nantes, France
| | - D Timothy Bishop
- Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, United Kingdom
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center, Heidelberg, Germany; Division of Preventive Oncology, German Cancer Research Center and National Center for Tumor Diseases, Heidelberg, Germany
| | - Stephan Buch
- Department of Medicine I, University Hospital Dresden, Technische Universität Dresden, Dresden, Germany
| | | | - Peter T Campbell
- Behavioral and Epidemiology Research Group, American Cancer Society, Atlanta, Georgia
| | - Sergi Castellví-Bel
- Gastroenterology Department, Hospital Clínic, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, University of Barcelona, Barcelona, Spain
| | - Andrew T Chan
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts; Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Jenny Chang-Claude
- Division of Cancer Epidemiology, German Cancer Research Center, Heidelberg, Germany; University Medical Centre Hamburg-Eppendorf, University Cancer Centre Hamburg, Hamburg, Germany
| | - Stephen J Chanock
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Sang Hee Cho
- Department of Hematology-Oncology, Chonnam National University Hospital, Hwasun, South Korea
| | - David V Conti
- Department of Preventive Medicine and University of Southern California Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Albert de la Chapelle
- Department of Cancer Biology and Genetics and the Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Edith J M Feskens
- Division of Human Nutrition and Health, Wageningen University and Research, Wageningen, the Netherlands
| | - Steven J Gallinger
- Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Graham G Giles
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Victoria, Australia; Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Phyllis J Goodman
- SWOG Statistical Center, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Andrea Gsur
- Institute of Cancer Research, Department of Medicine I, Medical University Vienna, Vienna, Austria
| | - Mark Guinter
- Behavioral and Epidemiology Research Group, American Cancer Society, Atlanta, Georgia
| | - Marc J Gunter
- Nutrition and Metabolism Section, International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - Jochen Hampe
- Department of Medicine I, University Hospital Dresden, Technische Universität Dresden, Dresden, Germany
| | - Heather Hampel
- Division of Human Genetics, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio
| | - Richard B Hayes
- Division of Epidemiology, Department of Population Health, New York University School of Medicine, New York, New York
| | - Michael Hoffmeister
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center, Heidelberg, Germany
| | - Ellen Kampman
- Division of Human Nutrition and Health, Wageningen University and Research, Wageningen, the Netherlands
| | - Hyun Min Kang
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, Michigan
| | - Temitope O Keku
- Center for Gastrointestinal Biology and Disease, University of North Carolina, Chapel Hill, North Carolina
| | - Hyeong Rok Kim
- Department of Surgery, Chonnam National University Hwasun Hospital and Medical School, Hwasun, Korea
| | | | - Soo Chin Lee
- National University Cancer Institute, Singapore; Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Christopher I Li
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Li Li
- Department of Family Medicine, University of Virginia, Charlottesville, Virginia
| | - Annika Lindblom
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden; Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | | | - Roger L Milne
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Victoria, Australia; Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Victor Moreno
- Oncology Data Analytics Program, Catalan Institute of Oncology-IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain; CIBER Epidemiología y Salud Pública, Madrid, Spain
| | - Neil Murphy
- Behavioral and Epidemiology Research Group, American Cancer Society, Atlanta, Georgia
| | - Polly A Newcomb
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington; School of Public Health, University of Washington, Seattle, Washington
| | - Deborah A Nickerson
- Department of Genome Sciences, University of Washington, Seattle, Washington
| | - Kenneth Offit
- Clinical Genetics Service, Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, New York; Department of Medicine, Weill Cornell Medical College, New York, New York
| | - Rachel Pearlman
- Division of Human Genetics, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio
| | - Paul D P Pharoah
- Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom
| | - Elizabeth A Platz
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - John D Potter
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Gad Rennert
- Department of Community Medicine and Epidemiology, Lady Davis Carmel Medical Center, Haifa, Israel; Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Lori C Sakoda
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington; Division of Research, Kaiser Permanente Northern California, Oakland, California
| | - Clemens Schafmayer
- Department of General Surgery, University Hospital Rostock, Rostock, Germany
| | - Stephanie L Schmit
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Robert E Schoen
- Department of Medicine and Epidemiology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Fredrick R Schumacher
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, Ohio
| | - Martha L Slattery
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah
| | - Yu-Ru Su
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Catherine M Tangen
- SWOG Statistical Center, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Cornelia M Ulrich
- Huntsman Cancer Institute and Department of Population Health Sciences, University of Utah, Salt Lake City, Utah
| | | | - Bethany Van Guelpen
- Department of Radiation Sciences, Oncology Unit, Umeå University, Umeå, Sweden
| | - Kala Visvanathan
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Pavel Vodicka
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic; Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Ludmila Vodickova
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic; Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Veronika Vymetalkova
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic; Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Xiaoliang Wang
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Emily White
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington; Department of Epidemiology, University of Washington School of Public Health, Seattle, Washington
| | - Alicja Wolk
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Michael O Woods
- Memorial University of Newfoundland, Discipline of Genetics, St John's, Newfoundland and Labrador, Canada
| | - Graham Casey
- Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia
| | - Li Hsu
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Mark A Jenkins
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Stephen B Gruber
- Department of Preventive Medicine and University of Southern California Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Ulrike Peters
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington; Department of Epidemiology, University of Washington School of Public Health, Seattle, Washington
| | - Wei Zheng
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, and Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee
| |
Collapse
|
2
|
Lertsuwan K, Nammultriputtar K, Nanthawuttiphan S, Tannop N, Teerapornpuntakit J, Thongbunchoo J, Charoenphandhu N. Differential effects of Fe2+ and Fe3+ on osteoblasts and the effects of 1,25(OH)2D3, deferiprone and extracellular calcium on osteoblast viability under iron-overloaded conditions. PLoS One 2020; 15:e0234009. [PMID: 32470038 PMCID: PMC7259719 DOI: 10.1371/journal.pone.0234009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 05/15/2020] [Indexed: 02/07/2023] Open
Abstract
One of the potential contributing factors for iron overload-induced osteoporosis is the iron toxicity on bone forming cells, osteoblasts. In this study, the comparative effects of Fe3+ and Fe2+ on osteoblast differentiation and mineralization were studied in UMR-106 osteoblast cells by using ferric ammonium citrate and ferrous ammonium sulfate as Fe3+ and Fe2+ donors, respectively. Effects of 1,25 dihydroxyvitamin D3 [1,25(OH)2D3] and iron chelator deferiprone on iron uptake ability of osteoblasts were examined, and the potential protective ability of 1,25(OH)2D3, deferiprone and extracellular calcium treatment in osteoblast cell survival under iron overload was also elucidated. The differential effects of Fe3+ and Fe2+ on reactive oxygen species (ROS) production in osteoblasts were also compared. Our results showed that both iron species suppressed alkaline phosphatase gene expression and mineralization with the stronger effects from Fe3+ than Fe2+. 1,25(OH)2D3 significantly increased the intracellular iron but minimally affected osteoblast cell survival under iron overload. Deferiprone markedly decreased intracellular iron in osteoblasts, but it could not recover iron-induced osteoblast cell death. Interestingly, extracellular calcium was able to rescue osteoblasts from iron-induced osteoblast cell death. Additionally, both iron species could induce ROS production and G0/G1 cell cycle arrest in osteoblasts with the stronger effects from Fe3+. In conclusions, Fe3+ and Fe2+ differentially compromised the osteoblast functions and viability, which can be alleviated by an increase in extracellular ionized calcium, but not 1,25(OH)2D3 or iron chelator deferiprone. This study has provided the invaluable information for therapeutic design targeting specific iron specie(s) in iron overload-induced osteoporosis. Moreover, an increase in extracellular calcium could be beneficial for this group of patients.
Collapse
Affiliation(s)
- Kornkamon Lertsuwan
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, Thailand
- Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Ketsaraporn Nammultriputtar
- Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, Thailand
- Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | | | - Natnicha Tannop
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Jarinthorn Teerapornpuntakit
- Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, Thailand
- Department of Physiology, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
| | - Jirawan Thongbunchoo
- Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Narattaphol Charoenphandhu
- Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, Thailand
- Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand
- Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand
- The Academy of Science, The Royal Society of Thailand, Dusit, Bangkok, Thailand
- * E-mail:
| |
Collapse
|