1
|
Cao JJ, Gregoire BR. Time of day of exercise does not affect the beneficial effect of exercise on bone structure in older female rats. Front Physiol 2023; 14:1142057. [PMID: 37965104 PMCID: PMC10641222 DOI: 10.3389/fphys.2023.1142057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 10/13/2023] [Indexed: 11/16/2023] Open
Abstract
Background: Circadian clock genes are expressed in bone and biomarkers of bone resorption and formation exhibit diurnal patterns in animals and humans. Disruption of the diurnal rhythms may affect the balance of bone turnover and compromise the beneficial effects of exercise on bone. Objective: This study investigated whether the time of day of exercise alters bone metabolism in a rodent model. We hypothesized that exercise during the active phase results in greater bone mass than exercise during the rest phase in older female rats. Methods: Fifty-five, female 12-month-old Sprague Dawley rats were randomly assigned to four treatment groups (n = 13-14/group). Rats were subjected to no exercise or 2 h of involuntary exercise at 9 m/min and 5 days/wk for 15 weeks using motor-driven running wheels at Zeitgeber time (ZT) 4-6 (rest phase), 12-14 (early active phase), or 22-24 (late active phase). ZT 0 is defined as light on, the start of the rest phase. A red lamp was used at minimal intensity during the active, dark phase exercise period, i.e., ZT 12-14 and 22-24. Bone structure, body composition, and bone-related cytokines in serum and gene expression in bone were measured. Data were analyzed using one-way ANOVA followed by Tukey-Kramer post hoc contrasts. Results: Exercise at different ZT did not affect body weight, fat mass, lean mass, the serum bone biomarkers, bone structural or mechanical parameters, or expression of circadian genes. Exercise pooled exercise data from different ZT were compared to the No-Exercise data (a priori contrast) increased serum IGF-1 and irisin concentrations, compared to No-Exercise. Exercise increased tibial bone volume/total volume (p = 0.01), connectivity density (p = 0.04), and decreased structural model index (p = 0.02). Exercise did not affect expression of circadian genes. Conclusion: These data indicate that exercise is beneficial to bone structure and that the time of day of exercise does not alter the beneficial effect of exercise on bone in older female rats.
Collapse
Affiliation(s)
- Jay J. Cao
- USDA, Agricultural Research Service, Grand Forks Human Nutrition Research Center, Grand Forks, ND, United States
| | | |
Collapse
|
2
|
Little-Letsinger SE, Rubin J, Diekman B, Rubin CT, McGrath C, Pagnotti GM, Klett EL, Styner M. Exercise to Mend Aged-tissue Crosstalk in Bone Targeting Osteoporosis & Osteoarthritis. Semin Cell Dev Biol 2022; 123:22-35. [PMID: 34489173 PMCID: PMC8840966 DOI: 10.1016/j.semcdb.2021.08.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 08/16/2021] [Accepted: 08/19/2021] [Indexed: 12/16/2022]
Abstract
Aging induces alterations in bone structure and strength through a multitude of processes, exacerbating common aging- related diseases like osteoporosis and osteoarthritis. Cellular hallmarks of aging are examined, as related to bone and the marrow microenvironment, and ways in which these might contribute to a variety of age-related perturbations in osteoblasts, osteocytes, marrow adipocytes, chondrocytes, osteoclasts, and their respective progenitors. Cellular senescence, stem cell exhaustion, mitochondrial dysfunction, epigenetic and intracellular communication changes are central pathways and recognized as associated and potentially causal in aging. We focus on these in musculoskeletal system and highlight knowledge gaps in the literature regarding cellular and tissue crosstalk in bone, cartilage, and the bone marrow niche. While senolytics have been utilized to target aging pathways, here we propose non-pharmacologic, exercise-based interventions as prospective "senolytics" against aging effects on the skeleton. Increased bone mass and delayed onset or progression of osteoporosis and osteoarthritis are some of the recognized benefits of regular exercise across the lifespan. Further investigation is needed to delineate how cellular indicators of aging manifest in bone and the marrow niche and how altered cellular and tissue crosstalk impact disease progression, as well as consideration of exercise as a therapeutic modality, as a means to enhance discovery of bone-targeted therapies.
Collapse
Affiliation(s)
- SE Little-Letsinger
- Department of Medicine, Division of Endocrinology & Metabolism, University of North Carolina at Chapel Hill
| | - J Rubin
- Department of Medicine, Division of Endocrinology & Metabolism, University of North Carolina at Chapel Hill,North Carolina Diabetes Research Center (NCDRC), University of North Carolina at Chapel Hill,Department of Medicine, Thurston Arthritis Research Center (TARC), University of North Carolina at Chapel Hill
| | - B Diekman
- Department of Medicine, Thurston Arthritis Research Center (TARC), University of North Carolina at Chapel Hill,Joint Departments of Biomedical Engineering NC State & University of North Carolina at Chapel Hill
| | - CT Rubin
- Department of Biomedical Engineering, State University of New York at Stony Brook
| | - C McGrath
- Department of Medicine, Division of Endocrinology & Metabolism, University of North Carolina at Chapel Hill
| | - GM Pagnotti
- Dept of Endocrine, Neoplasia, and Hormonal Disorders, University Texas MD Anderson Cancer Center, Houston
| | - EL Klett
- Department of Medicine, Division of Endocrinology & Metabolism, University of North Carolina at Chapel Hill,Department of Nutrition, School of Public Health, University of North Carolina at Chapel Hill
| | - M Styner
- Department of Medicine, Division of Endocrinology & Metabolism, University of North Carolina at Chapel Hill,North Carolina Diabetes Research Center (NCDRC), University of North Carolina at Chapel Hill,Department of Medicine, Thurston Arthritis Research Center (TARC), University of North Carolina at Chapel Hill
| |
Collapse
|
3
|
Ju YI, Sone T. Effects of Different Types of Mechanical Loading on Trabecular Bone Microarchitecture in Rats. J Bone Metab 2021; 28:253-265. [PMID: 34905673 PMCID: PMC8671029 DOI: 10.11005/jbm.2021.28.4.253] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 10/06/2021] [Indexed: 11/21/2022] Open
Abstract
Mechanical loading is generally considered to have a positive impact on the skeleton; however, not all types of mechanical loading have the same beneficial effect. Many researchers have investigated which types of mechanical loading are more effective for improving bone mass and strength. Among the various mechanical loads, high-impact loading, such as jumping, appears to be more beneficial for bones than low-impact loadings such as walking, running, or swimming. Therefore, the different forms of mechanical loading exerted by running, swimming, and jumping exercises may have different effects on bone adaptations. However, little is known about the relationships between the types of mechanical loading and their effects on trabecular bone structure. The purpose of this article is to review the recent reports on the effects of treadmill running, jumping, and swimming on the trabecular bone microarchitecture in small animals. The effects of loading on trabecular bone architecture appear to differ among these different exercises, as several reports have shown that jumping increases the trabecular bone mass by thickening the trabeculae, whereas treadmill running and swimming add to the trabecular bone mass by increasing the trabecular number, rather than the thickness. This suggests that different types of exercise promote gains in trabecular bone mass through different architectural patterns in small animals.
Collapse
Affiliation(s)
- Yong-In Ju
- Department of Health and Sports Sciences, Kawasaki University of Medical Welfare, Kurashiki, Okayama, Japan
| | - Teruki Sone
- Department of Nuclear Medicine, Kawasaki Medical School, Kurashiki, Okayama, Japan
| |
Collapse
|
4
|
Effects of Interval Exercise Training on Serum Biochemistry and Bone Mineral Density in Dogs. Animals (Basel) 2021; 11:ani11092528. [PMID: 34573494 PMCID: PMC8468388 DOI: 10.3390/ani11092528] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/16/2021] [Accepted: 08/24/2021] [Indexed: 01/18/2023] Open
Abstract
Simple Summary In this study, six male beagle dogs underwent 12 weeks of interval exercise following the Frequency, Intensity, Time/duration, Type, Volume, and Progression (FITT-VP) training principle. The heart rate (HR) response was measured during the entire exercise period, and changes in bone mineral density (BMD), muscle volume (MV), and hematology and serum biomarkers were evaluated at the pre-exercise training period and post-exercise training period. We showed that exercise training increased BMD in the femur and serum total alkaline phosphatase (TALP), aspartate aminotransferase, and creatine kinase levels. In addition, our data suggest a positive correlation between BMD and TALP, demonstrating that increased TALP might be an important contributing factor for enhancing BMD with physical training in dogs. Abstract Exercise has been suggested as a powerful intervention for health care and fitness management in humans; however, few studies have demonstrated the benefits of exercise training in dogs. The purpose of this study was to examine the effects of exercise training on heart rate (HR), bone mineral density (BMD), muscle volume (MV), and hematological and serum biomarkers in dogs. Six healthy beagles completed the interval treadmill exercise, developed on the basis of the FITT principle, two times a week for 12 weeks. To evaluate the physiological parameters, the HR values were analyzed using the Polar H10 system during the entire exercise period. At pre-and post-exercise, quantitative computed tomography and hematological and serum biochemical parameters were analyzed. The interval exercise resulted in a normal HR response and no adverse behavioral or physiological effects on the dogs. We showed that exercise improved BMD in the femur (541.6 ± 16.7 vs. 610.2 ± 27.8 HA, p < 0.01) and increased serum total alkaline phosphatase (TALP; 68.6 ± 9.2 vs. 81.3 ± 17.2, p < 0.01), aspartate aminotransferase (23.5 ± 1.0 vs. 33.5 ± 1.6, p < 0.01), and creatine kinase (114.8 ± 5.3 vs. 214.0 ± 20.8, p < 0.01) levels. There was a positive relationship between BMD and TALP (femur: r = 0.760, p = 0.004; vertebrae: r = 0.637; p = 0.025). Our findings suggest that interval exercise training is beneficial to increase BMD in the femur, and an increased TALP level would be a concomitant mechanism for enhancing BMD with exercise in dogs.
Collapse
|
5
|
Ozone K, Oka Y, Minegishi Y, Kano T, Kokubun T, Murata K, Kanemura N. Effect of Various Types of Muscle Contraction with Different Running Conditions on Mouse Humerus Morphology. Life (Basel) 2021; 11:life11040284. [PMID: 33801768 PMCID: PMC8065967 DOI: 10.3390/life11040284] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 03/14/2021] [Accepted: 03/24/2021] [Indexed: 12/01/2022] Open
Abstract
How various types of muscle contraction during exercises affect bone formation remains unclear. This study aimed to determine how exercises with different muscle contraction types affect bone morphology. In total, 20 mice were used and divided into four groups: Control, Level, Down Slow, and Down. Different types of muscle contraction were induced by changing the running angle of the treadmill. After the intervention, micro-computed tomography (Micro-CT), tartrate-resistant acid phosphatase/alkaline phosphatase (ALP) staining, and immunohistochemical staining were used to analyze the humerus head, tendon-to-bone attachment, and humerus diaphyseal region. Micro-CT found that the volume ratio of the humeral head, the volume of the tendon-to-bone attachment region, and the area of the humeral diaphyseal region increased in the Down group. However, no difference was detected in bone morphology between the Level and Down Slow groups. In addition, histology showed activation of ALP in the subarticular subchondral region in the Down Slow and Down groups and the fibrocartilage region in the tendon-to-bone attachment. Moreover, Osterix increased predominantly in the Down Slow and Down groups.Overall bone morphological changes in the humerus occur only when overuse is added to EC-dominant activity. Furthermore, different type of muscle contractile activities might promote bone formation in a site-specific manner.
Collapse
Affiliation(s)
- Kaichi Ozone
- Graduate Course of Health and Social Services, Graduate School of Saitama Prefectural University, Saitama 343-8540, Japan; (K.O.); (Y.O.); (Y.M.); (T.K.)
- Research Fellowship for Young Scientists, Japan Society for the Promotion of Science, Tokyo 102-0083, Japan
| | - Yuichiro Oka
- Graduate Course of Health and Social Services, Graduate School of Saitama Prefectural University, Saitama 343-8540, Japan; (K.O.); (Y.O.); (Y.M.); (T.K.)
| | - Yuki Minegishi
- Graduate Course of Health and Social Services, Graduate School of Saitama Prefectural University, Saitama 343-8540, Japan; (K.O.); (Y.O.); (Y.M.); (T.K.)
- Research Fellowship for Young Scientists, Japan Society for the Promotion of Science, Tokyo 102-0083, Japan
| | - Takuma Kano
- Graduate Course of Health and Social Services, Graduate School of Saitama Prefectural University, Saitama 343-8540, Japan; (K.O.); (Y.O.); (Y.M.); (T.K.)
| | - Takanori Kokubun
- Department of Health and Social Services, Saitama Prefectural University, Saitama 343-8540, Japan; (T.K.); (K.M.)
| | - Kenji Murata
- Department of Health and Social Services, Saitama Prefectural University, Saitama 343-8540, Japan; (T.K.); (K.M.)
| | - Naohiko Kanemura
- Department of Health and Social Services, Saitama Prefectural University, Saitama 343-8540, Japan; (T.K.); (K.M.)
- Correspondence: ; Tel.: +81-48-971-0500
| |
Collapse
|
6
|
Latza J, Otte M, Lindner T, Fischer DC, Bruhn S, Hollinski R, Warkentin M, Mittlmeier T, Müller-Hilke B. Interval Training Is Not Superior to Endurance Training With Respect to Bone Accrual of Ovariectomized Mice. Front Physiol 2020; 11:1096. [PMID: 33013466 PMCID: PMC7509202 DOI: 10.3389/fphys.2020.01096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 08/07/2020] [Indexed: 11/17/2022] Open
Abstract
Physical exercise is considered to delay bone loss associated with post-menopausal estrogen deficiency in women. However, the optimal training regimen for maximal bone accrual has not yet been defined. We, therefore, turned to ovariectomized (OVX) C57BL/6 mice and directly compared a low intensity endurance training on the treadmill to medium and high intensity interval trainings tailored to the individual performance limits. Trainings lasted 30 min each and were performed five times/week. After a 5-week training period, mice were sacrificed, and the hind legs were analyzed for assessment of (i) biomechanical stability (three-point bending test), (ii) bone microarchitecture [micro-computed tomography (μCT)], (iii) mineral apposition rate (MAR; histomorphometry), and (iv) muscle volume (MRI). Increased running speeds and quadriceps femoris muscle volumes in trained mice confirmed positive impacts on the cardiopulmonary system and myoinduction; however, none of the treadmill training regimens prevented ovariectomy induced bone loss. Our results provide evidence that treadmill training impacts differentially on the various members of the musculoskeletal unit and call for further experiments investigating frequency and duration of training regimens.
Collapse
Affiliation(s)
- Julia Latza
- Department for Trauma, Hand and Reconstructive Surgery, Rostock University Medical Center, Rostock, Germany
| | - Maresa Otte
- Department for Trauma, Hand and Reconstructive Surgery, Rostock University Medical Center, Rostock, Germany
| | - Tobias Lindner
- Core Facility Multimodal Small Animal Imaging, Rostock University Medical Center, Rostock, Germany
| | | | - Sven Bruhn
- Department of Exercise Science, Rostock University, Rostock, Germany
| | - Robin Hollinski
- Institute of Diagnostic and Interventional Radiology, Rostock University Medical Center, Rostock, Germany
| | - Mareike Warkentin
- Department of Material Science and Medical Engineering, Rostock University, Rostock, Germany
| | - Thomas Mittlmeier
- Department for Trauma, Hand and Reconstructive Surgery, Rostock University Medical Center, Rostock, Germany
| | - Brigitte Müller-Hilke
- Core Facility for Cell Sorting and Cell Analysis, Rostock University Medical Center, Rostock, Germany
| |
Collapse
|
7
|
Portier H, Benaitreau D, Pallu S. Does Physical Exercise Always Improve Bone Quality in Rats? Life (Basel) 2020; 10:life10100217. [PMID: 32977460 PMCID: PMC7598192 DOI: 10.3390/life10100217] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/17/2020] [Accepted: 09/18/2020] [Indexed: 12/17/2022] Open
Abstract
For decades, the osteogenic effect from different physical activities on bone in rodents remained uncertain. This literature review presents for the first time the effects on five exercise models (treadmill running, wheel running, swimming, resistance training and vibration modes) in three different experimental rat groups (males, females, osteopenic) on bone quality. The bone parameters presented are bone mineral density, micro-architectural and mechanical properties, and osteoblast/osteocyte and osteoclast parameters. This review shows that physical activities have a positive effect (65% of the results) on bone status, but we clearly observed a difference amongst the different protocols. Even if treadmill running is the most used protocol, the resistance training constitutes the first exercise model in term of osteogenic effects (87% of the whole results obtained on this model). The less osteogenic model is the vibration mode procedure (31%). It clearly appears that the gender plays a role on the bone response to swimming and wheel running exercises. Besides, we did not observe negative results in the osteopenic population with impact training, wheel running and vibration activities. Moreover, about osteoblast/osteocyte parameters, we conclude that high impact and resistance exercise (such jumps and tower climbing) seems to increase bone formation more than running or aerobic exercise. Among the different protocols, literature has shown that the treadmill running procedure mainly induces osteogenic effects on the viability of the osteocyte lineage in both males and females or ovariectomized rats; running in voluntary wheels contributes to a negative effect on bone metabolism in older male models; whole-body vertical vibration is not an osteogenic exercise in female and ovariectomized rats; whereas swimming provides controversial results in female models. For osteoclast parameters only, running in a voluntary wheel for old males, the treadmill running program at high intensity in ovariectomized rats, and the swimming program in a specific ovariectomy condition have detrimental consequences.
Collapse
Affiliation(s)
- Hugues Portier
- Laboratoire de Biologie Bioingénierie et Bioimagerie Ostéo-Articulaire (B3OA), Université Paris, UMR CNRS 7052, INSERM U1273, 10 Av de Verdun, 75010 Paris, France;
- Collegium Science & Technique, 2 allée du château, Université d’Orléans. 45100 Orléans, France;
- Correspondence: ; Tel.: +33-782-309-433
| | - Delphine Benaitreau
- Collegium Science & Technique, 2 allée du château, Université d’Orléans. 45100 Orléans, France;
| | - Stéphane Pallu
- Laboratoire de Biologie Bioingénierie et Bioimagerie Ostéo-Articulaire (B3OA), Université Paris, UMR CNRS 7052, INSERM U1273, 10 Av de Verdun, 75010 Paris, France;
- Collegium Science & Technique, 2 allée du château, Université d’Orléans. 45100 Orléans, France;
| |
Collapse
|
8
|
Ju YI, Choi HJ, Ohnaru K, Sone T. Differential effects of jump versus running exercise on trabecular bone architecture and strength in rats. Phys Act Nutr 2020; 24:1-8. [PMID: 32408407 PMCID: PMC7451845 DOI: 10.20463/pan.2020.0001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 02/20/2020] [Accepted: 02/24/2020] [Indexed: 11/22/2022] Open
Abstract
PURPOSE This study compared differences in trabecular bone architecture and strength caused by jump and running exercises in rats. METHODS Ten-week-old male Wistar rats (n=45) were randomly assigned to three body weight-matched groups: a sedentary control group (CON, n=15); a treadmill running group (RUN, n=15); and a jump exercise group (JUM, n=15). Treadmill running was performed at 25 m/min without inclination, 1 h/day, 5 days/week for 8 weeks. The jump exercise protocol comprised 10 jumps/day, 5 days/week for 8 weeks, with a jump height of 40 cm. We used microcomputed tomography to assess microarchitecture, mineralization density, and fracture load as predicted by finite element analysis (FEA) at the distal femoral metaphysis. RESULTS Both jump and running exercises produced significantly higher trabecular bone mass, thickness, number, and fracture load compared to the sedentary control group. The jump and running exercises, however, showed different results in terms of the structural characteristics of trabecular bone. Jump exercises enhanced trabecular bone mass by thickening the trabeculae, while running exercises did so by increasing the trabecular number. FEA-estimated fracture load did not differ significantly between the exercise groups. CONCLUSION This study elucidated the differential effects of jump and running exercise on trabecular bone architecture in rats. The different structural changes in the trabecular bone, however, had no significant impact on trabecular bone strength.
Collapse
Affiliation(s)
- Yong-In Ju
- Department of Health and Sports Sciences, Kawasaki University of Medical Welfare, KurashikiJapan
| | - Hak-Jin Choi
- School of Sport for All, Kyungwoon University, GumiRepublic of Korea
| | - Kazuhiro Ohnaru
- Department of Orthopedic Surgery, Kawasaki Medical School, KurashikiJapan
| | - Teruki Sone
- Department of Nuclear Medicine, Kawasaki Medical School, KurashikiJapan
| |
Collapse
|
9
|
Popp KL, Turkington V, Hughes JM, Xu C, Unnikrishnan G, Reifman J, Bouxsein ML. Skeletal loading score is associated with bone microarchitecture in young adults. Bone 2019; 127:360-366. [PMID: 31265923 DOI: 10.1016/j.bone.2019.06.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 05/31/2019] [Accepted: 06/01/2019] [Indexed: 10/26/2022]
Abstract
UNLABELLED Physical activity that involves high strain magnitudes and high rates of loading is reported to be most effective in eliciting an osteogenic bone response. Whether a history of participation in osteogenic activities during youth, as well as current participation in osteogenic activities, contributes to young adult bone microarchitecture and strength is unknown. PURPOSE We determined the association between a new skeletal loading (SkL) score reflecting physical activity from age 11 to adulthood, the bone specific physical activity questionnaire (BPAQ) and bone microarchitecture in young Black and White men and women. METHODS We conducted a cross-sectional study of young ([mean ± SD] 23.7 ± 3.3 years) Black (n = 51 women, n = 31 men) and White (n = 50 women, n = 49 men) adults. Microarchitecture and estimated bone strength (by micro-finite element analysis) were assessed at the ultradistal tibia using high-resolution peripheral quantitative computed tomography (HR-pQCT). Physical activity questionnaires were administered and a SkL score was derived based on ground reaction force, rate of loading, frequency, duration, and life period of participation per activity from age 11 onwards. BPAQ score was also calculated. We used multiple linear regression to determine associations between both SkL score and BPAQ score and bone outcomes, adjusting for age, height, weight, sex, and race. RESULTS We found that SkL score, which accounts for current and historical physical activity, was significantly associated with most cortical bone parameters at the tibia including area, area fraction, porosity, thickness, and tissue mineral density (R2 = 0.27-0.55, all p < 0.01). Further, trabecular thickness, separation, number, and bone mineral density (R2 = 0.22-0.32, all p < 0.01), as well as stiffness and failure load (R2 = 0.63-0.65, all p < 0.01), were associated with the SkL score. The BPAQ was also significantly associated with most bone parameters, but to a lesser degree than SkL score. CONCLUSION These findings suggest that among young adults, greater amounts of osteogenic physical activity, as assessed by the SkL score and BPAQ are associated with improved bone microarchitecture and strength. With the potential to predict bone parameters in young adults, these scores may ultimately serve to identify those most vulnerable to fracture.
Collapse
Affiliation(s)
- Kristin L Popp
- Military Performance Division, United States Army Research Institute of Environmental Medicine, 10 General Greene Ave, Natick, MA 01760, USA; Endocrine Unit, Massachusetts General Hospital, 50 Blossom Street, THR-1051, Boston, MA 02114, USA; Department of Medicine, Harvard Medical School, 25 Shattuck St, Boston, MA 02155, USA.
| | - Victoria Turkington
- Endocrine Unit, Massachusetts General Hospital, 50 Blossom Street, THR-1051, Boston, MA 02114, USA
| | - Julie M Hughes
- Military Performance Division, United States Army Research Institute of Environmental Medicine, 10 General Greene Ave, Natick, MA 01760, USA
| | - Chun Xu
- Department of Defense, Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advance Technology Research Center, United States Army Medical Research and Materiel Command, Fort Detrick, MD 21702, USA
| | - Ginu Unnikrishnan
- Department of Defense, Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advance Technology Research Center, United States Army Medical Research and Materiel Command, Fort Detrick, MD 21702, USA
| | - Jaques Reifman
- Department of Defense, Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advance Technology Research Center, United States Army Medical Research and Materiel Command, Fort Detrick, MD 21702, USA
| | - Mary L Bouxsein
- Endocrine Unit, Massachusetts General Hospital, 50 Blossom Street, THR-1051, Boston, MA 02114, USA; Department of Medicine, Harvard Medical School, 25 Shattuck St, Boston, MA 02155, USA; Center for Advanced Orthopedic Studies, Beth Israel Deaconess Medical Center, and Department of Orthopedic Surgery, Harvard Medical School, One Overland Street, Boston, MA 02215, USA
| |
Collapse
|
10
|
Oh T, Tanaka S, Naka T, Igawa S. Effects of high-intensity swimming training on the bones of ovariectomized rats. J Exerc Nutrition Biochem 2016; 20:39-45. [PMID: 27757386 PMCID: PMC5067419 DOI: 10.20463/jenb.2016.09.20.3.6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 07/20/2016] [Accepted: 07/25/2016] [Indexed: 11/29/2022] Open
Abstract
[Purpose] This study was performed to assess the effects of high-intensity intermittent swimming training(HIT) on bone in ovariectomized rats. [Methods] Six-week-old female Sprague-Dawley rats were randomly assigned to either sham operation or bilateral ovariectomy. After surgery, they were divided into the following four groups: 1) sham-operated sedentary (S), 2) sham-operated exercise training (SE), 3) OVX sedentary (O), 4) OVX exercise training (OE) 5) OVX given 17β-estradiol (OE2) and 6) OVX exercise training and given 17β-estradiol (OEE). SE, OE and OEE rats were used extremely high-intensity swim exercise. The rats repeated fourteen 20-s swimming bouts with a weight equivalent to 14, 15, and 16% of body weight for the first 5, the next 9, and the last 5 days, respectively. Between exercise bouts, a 10-s pause was allowed. HIT was originally designed as an exercise method; a method that very quickly induces an increase in the maximum oxygen intake (Tabata I et al., 1996). OEE and OE2 rats were subcutaneously injected ethanol with 25μg/kg body weight 17β-estradiol 3 times per week. [Results] Bone strength, bone mineral density and trabecular bone parameters were measured after a 8-weeks experimental period. Bone strength was significantly higher in the SE, OE, OE2 and OEE group compared with the O group. BV/TV was significant increase in the SE, OE groups compared with the O group. BMD showed no difference in the OE group compared with the O group. [Conclusion] This study demonstrate some beneficial effects of postmenopausal osteoporosis of high-intensity intermittent swimming training on bone structure and strength.
Collapse
Affiliation(s)
- Taewoong Oh
- Dean of the College of Sports Sciences, Yongin University, Yongin-Si Republic of Korea
| | - Sakura Tanaka
- Graduate School of Health Science, Matsumoto University, Nagano Japan
| | - Tatsuki Naka
- Faculty of Wellness, Shigakkan University, Aichi Japan
| | - Shoji Igawa
- Graduate School of Health Science, Matsumoto University, Nagano Japan
| |
Collapse
|
11
|
Meakin LB, Udeh C, Galea GL, Lanyon LE, Price JS. Exercise does not enhance aged bone's impaired response to artificial loading in C57Bl/6 mice. Bone 2015; 81:47-52. [PMID: 26142929 PMCID: PMC4652609 DOI: 10.1016/j.bone.2015.06.026] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 06/24/2015] [Accepted: 06/30/2015] [Indexed: 01/06/2023]
Abstract
Bones adapt their structure to their loading environment and so ensure that they become, and are maintained, sufficiently strong to withstand the loads to which they are habituated. The effectiveness of this process declines with age and bones become fragile fracturing with less force. This effect in humans also occurs in mice which experience age-related bone loss and reduced adaptation to loading. Exercise engenders many systemic and local muscular physiological responses as well as engendering local bone strain. To investigate whether these physiological responses influence bones' adaptive responses to mechanical strain we examined whether a period of treadmill exercise influenced the adaptive response to an associated period of artificial loading in young adult (17-week) and old (19-month) mice. After treadmill acclimatization, mice were exercised for 30 min three times per week for two weeks. Three hours after each exercise period, right tibiae were subjected to 40 cycles of non-invasive axial loading engendering peak strain of 2250 με. In both young and aged mice exercise increased cross-sectional muscle area and serum sclerostin concentration. In young mice it also increased serum IGF1. Exercise did not affect bone's adaptation to loading in any measured parameter in young or aged bone. These data demonstrate that a level of exercise sufficient to cause systemic changes in serum, and adaptive changes in local musculature, has no effect on bone's response to loading 3h later. This study provides no support for the beneficial effects of exercise on bone in the elderly being mediated by systemic or local muscle-derived effects rather than local adaptation to altered mechanical strain.
Collapse
Affiliation(s)
- Lee B Meakin
- School of Veterinary Sciences, University of Bristol, Bristol BS40 5DU, UK.
| | - Chinedu Udeh
- School of Clinical Sciences, University of Bristol, Bristol BS2 8DZ, UK
| | - Gabriel L Galea
- School of Veterinary Sciences, University of Bristol, Bristol BS40 5DU, UK
| | - Lance E Lanyon
- School of Veterinary Sciences, University of Bristol, Bristol BS40 5DU, UK
| | - Joanna S Price
- School of Veterinary Sciences, University of Bristol, Bristol BS40 5DU, UK
| |
Collapse
|
12
|
Zhang J, Wang L, Zhang W, Zhang M, Luo ZP. Synchronization of calcium sulphate cement degradation and new bone formation is improved by external mechanical regulation. J Orthop Res 2015; 33:685-91. [PMID: 25643826 DOI: 10.1002/jor.22839] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 01/19/2015] [Indexed: 02/04/2023]
Abstract
A major challenge faced in the bone materials of weight-bearing without internal fixture support is the mismatch of material degradation and new bone formation, leading to weakening or even failure of the overall bony structure. This study demonstrated in the rat femur model that calcium sulphate cement degradation and new bone formation could be better synchronized by external mechanical force. An ascending force in line with calcium sulphate cement degradation could achieve bone healing in 37 days with ultimate load to failure of 87.00 ± 7.30 N, similar to that of intact femur (80.46 ± 2.79 N, p = 0.369). In contrast, the healing process under either a constant force or no force illustrated significant residual defect volumes of 1.47 ± 0.44 and 4.08 ± 0.89 mm(3) (p < 0.001), and weaker ultimate loads to failure of 69.56 ± 4.74 and 59.17 ± 7.48 N, respectively (p < 0.001). Our results suggest that the mechanical regulation approach deserves further investigation and may potentially offer a clinical strategy to improve synchronization.
Collapse
Affiliation(s)
- Jie Zhang
- The 1st Affiliated Hospital of Soochow University, Orthopedic Institute, Soochow University, Suzhou, 215007, China
| | | | | | | | | |
Collapse
|
13
|
Zhang J, Gao R, Cao P, Yuan W. Additive effects of antiresorptive agents and exercise on lumbar spine bone mineral density in adults with low bone mass: a meta-analysis. Osteoporos Int 2014; 25:1585-94. [PMID: 24566585 DOI: 10.1007/s00198-014-2644-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2013] [Accepted: 11/26/2013] [Indexed: 11/28/2022]
Abstract
INTRODUCTION Exercise has been recommended to increase bone mass and prevent osteoporosis. While current treatment of osteoporosis mainly involves the use of antiresorptive agents, it is unclear whether there are any additive effects in improving bone mass when antiresorptive agents and exercise are jointly used. METHODS A structured and comprehensive search of databases was undertaken along with hand searching of key journals and reference lists. The combined interventions of antiresorptive agents and exercise were examined for their additive effects on lumbar spine bone mineral density (BMD) among adults with low bone mass. Trial quality was assessed using the Jadad quality score. Study outcomes for analysis, absolute change (grams per square centimeter) or relative change (in percent) in BMD, at the lumbar spine were compared by calculating standardized mean difference (SMD) using fixed and random effect models. RESULTS Seven randomized controlled trials (RCT) met the predetermined inclusion criteria. The increase in lumbar spine BMD of the combined-intervention group was significantly greater than that of the antiresorptive agent-alone group (fixed effect model: SMD = 0.55; 95% confidence interval (CI) = 0.36, 0.75; overall effect Z-value = 5.51; p < 0.00001). Subgroup analyses also showed consistent results. Methodological quality of most included studies was scored 3 by the Jadad criterion, and publication bias was slight according to funnel plots. CONCLUSION It was found that combining antiresorptive agents with exercise had additive effects on improving lumbar spine bone mass gains in adults with low bone mass. To verify the additive effects further, more RCTs with longer duration and larger sample sizes are needed.
Collapse
Affiliation(s)
- J Zhang
- Evidence-Based Medicine Group, Department of Spine Surgery, Changzheng Hospital, Second Military Medical University, 415 Fengyang Road, Shanghai, 200003, China
| | | | | | | |
Collapse
|
14
|
Meakin LB, Price JS, Lanyon LE. The Contribution of Experimental in vivo Models to Understanding the Mechanisms of Adaptation to Mechanical Loading in Bone. Front Endocrinol (Lausanne) 2014; 5:154. [PMID: 25324829 PMCID: PMC4181237 DOI: 10.3389/fendo.2014.00154] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 09/12/2014] [Indexed: 12/12/2022] Open
Abstract
Changing loading regimens by natural means such as exercise, with or without interference such as osteotomy, has provided useful information on the structure:function relationship in bone tissue. However, the greatest precision in defining those aspects of the overall strain environment that influence modeling and remodeling behavior has been achieved by relating quantified changes in bone architecture to quantified changes in bones' strain environment produced by direct, controlled artificial bone loading. Jiri Hert introduced the technique of artificial loading of bones in vivo with external devices in the 1960s using an electromechanical device to load rabbit tibiae through transfixing stainless steel pins. Quantifying natural bone strains during locomotion by attaching electrical resistance strain gages to bone surfaces was introduced by Lanyon, also in the 1960s. These studies in a variety of bones in a number of species demonstrated remarkable uniformity in the peak strains and maximum strain rates experienced. Experiments combining strain gage instrumentation with artificial loading in sheep, pigs, roosters, turkeys, rats, and mice has yielded significant insight into the control of strain-related adaptive (re)modeling. This diversity of approach has been largely superseded by non-invasive transcutaneous loading in rats and mice, which is now the model of choice for many studies. Together such studies have demonstrated that over the physiological strain range, bone's mechanically adaptive processes are responsive to dynamic but not static strains; the size and nature of the adaptive response controlling bone mass is linearly related to the peak loads encountered; the strain-related response is preferentially sensitive to high strain rates and unresponsive to static ones; is most responsive to unusual strain distributions; is maximized by remarkably few strain cycles, and that these are most effective when interrupted by short periods of rest between them.
Collapse
Affiliation(s)
- Lee B. Meakin
- School of Veterinary Sciences, University of Bristol, Bristol, UK
- *Correspondence: Lee B. Meakin, School of Veterinary Sciences, University of Bristol, Langford House, Langford, Bristol BS40 5DU, UK e-mail:
| | - Joanna S. Price
- School of Veterinary Sciences, University of Bristol, Bristol, UK
| | - Lance E. Lanyon
- School of Veterinary Sciences, University of Bristol, Bristol, UK
| |
Collapse
|
15
|
Swift SN, Baek K, Swift JM, Bloomfield SA. Restriction of dietary energy intake has a greater impact on bone integrity than does restriction of calcium in exercising female rats. J Nutr 2012; 142:1038-45. [PMID: 22513985 DOI: 10.3945/jn.111.153361] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We sought to elucidate the effects of restricting calcium, energy, or food on the skeletal integrity of exercising female rats. Female Sprague-Dawley rats (4 mo old) were randomly assigned to 5 groups (n = 10/group): ad libitum intake of an AIN-93M diet (Research Diets D10012M, Research Diets, Inc.) with no exercise (AL-S) or with exercise (AL-EX) or to 1 of 3 exercising restriction groups [40% restriction of calcium only (CAR-EX), energy only (ER-EX), or food (FR-EX)]. All EX rats were treadmill trained 3 d/wk, 45 min/d for 12 wk at ~60% maximal oxygen consumption. After 12 wk, total body bone mineral content (by DXA) and body mass, but not lean mass, were lower in ER-EX (-17%) and FR-EX rats (-13%) compared with the AL-EX group. CAR-EX had few negative effects on bone geometry (by peripheral quantitative computed tomography) or histomorphometry. However, declines in total volumetric bone mineral density at the proximal tibia metaphysic (PTM) were observed in ER-EX (-6%) and FR-EX (-8%) groups; only FR-EX rats exhibited increased osteoclast surface and decreased mineral apposition rate in PTM cancellous bone. Decrements in serum estradiol, uterine weights, or both in these 2 groups implicate altered estrogen status as contributory. Urine pH declined significantly by 12 wk in all restricted groups, but net acid excretion increased only in CAR-EX rats. These findings, when compared with published data on sedentary rats, suggest that treadmill running exercise may mitigate some, but not all, deleterious effects on bone after chronic energy or food restriction but is more protective during calcium restriction.
Collapse
Affiliation(s)
- Sibyl N Swift
- Department of Health and Kinesiology, Texas A&M University, College Station, TX, USA
| | | | | | | |
Collapse
|
16
|
Ju YI, Sone T, Ohnaru K, Choi HJ, Fukunaga M. Differential effects of jump versus running exercise on trabecular architecture during remobilization after suspension-induced osteopenia in growing rats. J Appl Physiol (1985) 2011; 112:766-72. [PMID: 22162526 DOI: 10.1152/japplphysiol.01219.2011] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
High-impact exercise is considered to be very beneficial for bones. We investigated the ability of jump exercise to restore bone mass and structure after the deterioration induced by tail suspension in growing rats and made comparisons with treadmill running exercise. Five-week-old male Wistar rats (n = 28) were randomly assigned to four body weight-matched groups: a spontaneous recovery group after tail suspension (n = 7), a jump exercise group after tail suspension (n = 7), a treadmill running group after tail suspension (n = 7), and age-matched controls without tail suspension or exercise (n = 7). Treadmill running was performed at 25 m/min, 1 h/day, 5 days/wk. The jump exercise protocol consisted of 10 jumps/day, 5 days/wk, with a jump height of 40 cm. Bone mineral density (BMD) of the total right femur was measured by dual-energy X-ray absorptiometry. Three-dimensional trabecular bone architecture at the distal femoral metaphysis was evaluated using microcomputed tomography. After 5 wk of free remobilization, right femoral BMD, right hindlimb muscle weight, and body weight returned to age-matched control levels, but trabeculae remained thinner and less connected. Although both jump and running exercises during the remobilization period increased trabecular bone mass, jump exercise increased trabecular thickness, whereas running exercise increased trabecular number. These results indicate that restoration of trabecular bone architecture induced by jump exercise during remobilization is predominantly attributable to increased trabecular thickness, whereas running adds trabecular bone mass through increasing trabecular number, and suggest that jumping and running exercises have different mechanisms of action on structural characteristics of trabecular bone.
Collapse
Affiliation(s)
- Yong-In Ju
- Dept. of Health and Sports Sciences, Kawasaki Univ. of Medical Welfare, 288 Matsushima, Kurashiki, Okayama 701-0193, Japan.
| | | | | | | | | |
Collapse
|
17
|
Chang TK, Huang CH, Huang CH, Chen HC, Cheng CK. The influence of long-term treadmill exercise on bone mass and articular cartilage in ovariectomized rats. BMC Musculoskelet Disord 2010; 11:185. [PMID: 20727126 PMCID: PMC2936345 DOI: 10.1186/1471-2474-11-185] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2010] [Accepted: 08/20/2010] [Indexed: 11/18/2022] Open
Abstract
Background Loss of bone quality and deterioration of articular cartilage are commonly seen after menopause. While exercise may protect against tissue degeneration, a clear link has yet to be established. The aim of the present study is to investigate the influence of long-term treadmill exercise on changes in bone mass and articular cartilage in ovariectomized rats. Methods Sixty female Sprague-Dawley rats were randomly assigned to 4 groups: ovariectomized (OVX), ovariectomized plus treadmill exercise (OVX-RUN), treadmill exercise alone (RUN), and control (CON) groups. After 36 weeks, the following variables were compared among the 4 groups. Bone mass was evaluated by trabecular bone volume and bone mineral density (BMD). Articular cartilage in the knee joints was evaluated by histology analysis and a modified Mankin score. Results Rats in the ovariectomized groups (OVX and OVX-RUN) had significantly lower BMD and bone mass than the non-ovariectomized rats (CON and RUN), indicating that exercise did little to preserve bone mass. However, the sedentary OVX group had a significantly worse modified Mankin score (7.7 ± 1.4) than the OVX-RUN group (4.8 ± 1.0), whose scores did not differ significantly from the other 2 non-operated groups. The articular cartilage in the sedentary OVX rats was relatively thinner, hypocellular, and had more clefts than in the other 3 groups. Conclusion This study suggests that long-term exercise protects articular cartilage in OVX rats but does not retard the loss of bone mass seen in after menopause.
Collapse
Affiliation(s)
- Ting-Kuo Chang
- Institute of Biomedical Engineering, National Yang Ming University, Taipei, Taiwan
| | | | | | | | | |
Collapse
|
18
|
Bone mass is preserved and cancellous architecture altered due to cyclic loading of the mouse tibia after orchidectomy. J Bone Miner Res 2008; 23:663-71. [PMID: 18433300 PMCID: PMC2674541 DOI: 10.1359/jbmr.080104] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
INTRODUCTION The study of adaptation to mechanical loading under osteopenic conditions is relevant to the development of osteoporotic fracture prevention strategies. We previously showed that loading increased cancellous bone volume fraction and trabecular thickness in normal male mice. In this study, we tested the hypothesis that cyclic mechanical loading of the mouse tibia inhibits orchidectomy (ORX)-associated cancellous bone loss. MATERIALS AND METHODS Ten-week-old male C57BL/6 mice had in vivo cyclic axial compressive loads applied to one tibia every day, 5 d/wk, for 6 wk after ORX or sham operation. Adaptation of proximal cancellous and diaphyseal cortical bone was characterized by muCT and dynamic histomorphometry. Comparisons were made between loaded and nonloaded contralateral limbs and between the limbs of ORX (n = 10), sham (n = 11), and basal (n = 12) groups and tested by two-factor ANOVA with interaction. RESULTS Cyclic loading inhibited bone loss after ORX, maintaining absolute bone mass at age-matched sham levels. Relative to sham, ORX resulted in significant loss of cancellous bone volume fraction (-78%) and trabecular number (-35%), increased trabecular separation (67%), no change in trabecular thickness, and smaller loss of diaphyseal cortical properties, consistent with other studies. Proximal cancellous bone volume fraction was greater with loading (ORX: 290%, sham: 68%) than in contralateral nonloaded tibias. Furthermore, trabeculae thickened with loading (ORX: 108%, sham: 48%). Dynamic cancellous bone histomorphometry indicated that loading was associated with greater mineral apposition rates (ORX: 32%, sham: 12%) and smaller percent mineralizing surfaces (ORX: -47%, sham: -39%) in the final week. Loading resulted in greater BMC (ORX: 21%, sham: 15%) and maximum moment of inertia (ORX: 39%, sham: 24%) at the cortical midshaft. CONCLUSIONS This study shows that cancellous bone mass loss can be prevented by mechanical loading after hormonal compromise and supports further exploration of nonpharmacologic measures to prevent rapid-onset osteopenia and associated fractures.
Collapse
|
19
|
Banu J, Bhattacharya A, Rahman M, O'Shea M, Fernandes G. Effects of conjugated linoleic acid and exercise on bone mass in young male Balb/C mice. Lipids Health Dis 2006; 5:7. [PMID: 16556311 PMCID: PMC1440862 DOI: 10.1186/1476-511x-5-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2006] [Accepted: 03/23/2006] [Indexed: 11/10/2022] Open
Abstract
There is an increase in obesity among the population of industrialized countries, and dietary supplementation with Conjugated Linoleic Acid (CLA) has been reported to lower body fat mass. However, weight loss is generally associated with negative effects on bone mass, but CLA is reported to have beneficial effects on bone. Furthermore, another factor that is well established to have a beneficial effect on bone is exercise (EX). However, a combination therapy of CLA and EX on bone health has not been studied. In this paper, we report the beneficial effects of CLA and EX on bone, in four different groups of Balb-C young, male mice. There were 4 groups in our study: 1. Safflower oil (SFO) sedentary (SED); 2. SFO EX; 3. CLA SED; 4. CLA EX. Two months old mice, under their respective treatment regimens were followed for 14 weeks. Mice were scanned in vivo using a DEXA scanner before and after treatment. At the end of the treatment period, the animals were sacrificed, the left tibia was removed and scanned using peripheral quantitative computerized tomography (pQCT). The results showed that although CLA decreased gain in body weight by 35%, it however increased bone mass by both reducing bone resorption and increasing bone formation. EX also decreased gain in body weight by 21% and increased bone mass; but a combination of CLA and EX, however, did not show any further increase in bone mass. In conclusion, CLA increases bone mass in both cancellous and cortical bones, and the effects of CLA on bone is not further improved by EX in pure cortical bone of young male mice.
Collapse
Affiliation(s)
- Jameela Banu
- Department of Medicine, Division of Clinical Immunology and Rheumatology, University of Texas Health Science Center at San Antonio, 7703, Floyd Curl Dr, San Antonio, 78229-3900, USA
| | - Arunabh Bhattacharya
- Department of Medicine, Division of Clinical Immunology and Rheumatology, University of Texas Health Science Center at San Antonio, 7703, Floyd Curl Dr, San Antonio, 78229-3900, USA
| | - Mizanur Rahman
- Department of Medicine, Division of Clinical Immunology and Rheumatology, University of Texas Health Science Center at San Antonio, 7703, Floyd Curl Dr, San Antonio, 78229-3900, USA
| | | | - Gabriel Fernandes
- Department of Medicine, Division of Clinical Immunology and Rheumatology, University of Texas Health Science Center at San Antonio, 7703, Floyd Curl Dr, San Antonio, 78229-3900, USA
| |
Collapse
|
20
|
Saxon LK, Robling AG, Alam I, Turner CH. Mechanosensitivity of the rat skeleton decreases after a long period of loading, but is improved with time off. Bone 2005; 36:454-64. [PMID: 15777679 DOI: 10.1016/j.bone.2004.12.001] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2004] [Revised: 11/01/2004] [Accepted: 12/01/2004] [Indexed: 10/25/2022]
Abstract
After the initial adaptation to large mechanical loads, it appears as though the skeleton's responsiveness to exercise begins to wane. To counteract the waning effects of long-term mechanical loading, "time off" may be needed to improve the responsiveness of bone cells to future mechanical signals and reinitiate bone formation. The aim of this study was to determine whether bone becomes less sensitive to long-term mechanical loading and whether time off is needed to improve mechanosensitivity. Fifty-seven female Sprague-Dawley rats (7-8 months of age) were randomized to one of following groups: Group 1 loading was applied for 5 weeks followed by 10 weeks of time off (1 x 5); Group 2 loading was applied for 5 weeks, followed by time off for 5 weeks and loading again for 5 weeks (2 x 5); Group 3 loading was applied continuously for 15 weeks (3 x 5); Group 4 age-matched control group; and Group 5 baseline control group. An axial load was applied to the right ulna for 360 cycles/day, at 2 Hz, 3 days/week at 15 N. At the end of the intervention, all three loaded groups showed similar increases in bone mass, cortical area, and I(MIN) in response to mechanical loading(.) Bone formation rate of the loaded ulna was increased in the first 5 weeks of loading for all three loaded groups; however, during the last 5 weeks, it was only significantly increased in the group that had time off (2 x 5) (P < 0.05). The group that had time off (2 x 5) also showed greater improvements in work to failure compared to the group loaded for 5 weeks (1 x 5) and the entire 15 weeks (3 x 5). A second experiment showed that the waning effect of long-term loading on the skeleton is not a result of aging. In conclusion, mechanical loading of the rat ulna results in large improvements in bone formation during the first 5 weeks of loading, but continual loading decreases the osteogenic response. Having time off increases bone formation and improves the resistance to fracture.
Collapse
Affiliation(s)
- L K Saxon
- Department of Orthopaedic Surgery, IUPUI, Room 600, 541 Clinical Drive, Indianapolis, IN 46202, USA
| | | | | | | |
Collapse
|
21
|
Hagihara Y, Fukuda S, Goto S, Iida H, Yamazaki M, Moriya H. How many days per week should rats undergo running exercise to increase BMD? J Bone Miner Metab 2005; 23:289-94. [PMID: 15981024 DOI: 10.1007/s00774-005-0601-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2003] [Accepted: 01/24/2005] [Indexed: 10/25/2022]
Abstract
The aim of the present study was to examine the effect of different frequencies of running exercise on increasing bone mineral density (BMD) and improving bone histomorphology at various sites of the skeleton (tibia, femur, and second lumbar vertebra) in young rats. Twenty-five female Wistar rats, 8 weeks old, were divided into five groups, of 5 animals each according to running load: control group, no running (A group); running load (RL), 4 days per week (d/w; B group); RL, 5 d/w (C group); RL, 6 d/w (D group); and RL, 7 d/w (E group). Rats ran on a treadmill at a speed of 15 m/min for 30 min per day over an 8-week period. The results indicated that the BMD of the tibia in the B, C, D, and E groups and that of the femur in the B and E groups increased significantly over that of the A group. However, the cortical BMD and trabecular BMD of the second lumbar vertebra did not change. In regard to bone histomorphometry of the tibia, a parameter of bone resorption (eroded surface/bone surface) was significantly lower in the B and D groups than in the A group. There were no differences in the parameters of bone formation. Tartaric acid-resistant acid phosphatase (TRACP) values were significantly lower in the B and C groups than in the A group. There were significant increases in body weight in the B group and in muscle weight in the C group. From the data obtained in this study, it was concluded that increases in BMD were obtained by a moderate running load at frequencies of 4 and 5 days per week.
Collapse
Affiliation(s)
- Yoshinobu Hagihara
- Department of Orthopedic Surgery, Jyoto Insurance Hospital, 9-13-1 Kameido, Koutou-ku, Tokyo 136-0071, Japan.
| | | | | | | | | | | |
Collapse
|
22
|
Mori T, Okimoto N, Sakai A, Okazaki Y, Nakura N, Notomi T, Nakamura T. Climbing exercise increases bone mass and trabecular bone turnover through transient regulation of marrow osteogenic and osteoclastogenic potentials in mice. J Bone Miner Res 2003; 18:2002-9. [PMID: 14606513 DOI: 10.1359/jbmr.2003.18.11.2002] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
UNLABELLED To investigate the relationship between the effects of bone turnover and bone marrow cell development in bone cells, we developed a mouse voluntary climbing exercise model. Climbing exercise increased bone volume and transient osteogenic potential of bone marrow. This model would be suitable for investigating the mechanistic roles of mechanical loading. INTRODUCTION The relationship between bone mass gain and local bone formation and resorption in mechanically loaded bone is not well understood. MATERIALS AND METHODS Sixty-five C57BL/6J mice, 8 weeks of age, were assigned to five groups: a baseline control and two groups each of ground control and climbing exercise mice for 2 and 4 weeks. Mice were housed in a 100-cm tower and had to climb toward a bottle placed at the top to drink water. RESULTS Compared with the ground control, bone mineral density of the left femur increased in the climbing mice at 4 weeks. At 2 and 4 weeks, bone formation rate (BFR/BS) of periosteal surface, the cross-sectional area, and moment of inertia were increased in the climbing mice, whereas BFR/BS and eroded surface (ES/BS) of endosteal surface did not differ. The trabecular bone volume (BV/TV) of the proximal tibia increased in climbing mice, and osteoclast surface (Oc.S/BS) and osteoclast number decreased at 2 weeks. At 4 weeks, there were increases in BV/TV and parameters of bone formation, including mineralized surface, mineral apposition rate, and bone formation rate. In marrow cell cultures from the tibia, the number of alkaline phosphatase+ colony forming units-fibroblastic and the area of mineralized nodule formation in climbing mice were increased, and the number of osteoclast-like TRACP+ multinucleated cells was lower at 2 weeks. At 4 weeks, these parameters recovered to the levels of the ground controls. CONCLUSION Our results indicate that climbing increased trabecular bone volume and reduced bone resorption, with a subsequent increase in bone formation. Intermittent climbing downregulates marrow osteoclastogenic cells and upregulates osteogenic cells initially, but further exercise seemed to desensitize them. Cortical envelopes were enlarged earlier, but the response seems to differ from trabecular bone.
Collapse
Affiliation(s)
- Toshiharu Mori
- Department of Orthopaedic Surgery, University of Occupational and Environmental Health, Kitakyushu, Japan
| | | | | | | | | | | | | |
Collapse
|
23
|
Villareal DT, Binder EF, Yarasheski KE, Williams DB, Brown M, Sinacore DR, Kohrt WM. Effects of exercise training added to ongoing hormone replacement therapy on bone mineral density in frail elderly women. J Am Geriatr Soc 2003; 51:985-90. [PMID: 12834519 DOI: 10.1046/j.1365-2389.2003.51312.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVES To determine whether exercise training added to ongoing hormone replacement therapy (HRT) increases bone mineral density (BMD) in physically frail elderly women. DESIGN Prospective controlled trial. SETTING University-based research center. PARTICIPANTS Twenty-eight women on HRT, aged 75 and older with physical frailty. INTERVENTIONS Participants were assigned to 9 months of supervised (EXER) or home (HOME) exercise. The EXER program started with physical therapy and gradually incorporated resistance and endurance training. The HOME program consisted of flexibility exercises. MEASUREMENTS Changes in BMD and body composition. RESULTS There were larger increases in lumbar spine BMD in response to EXER than with HOME (3.5% vs 1.5%, P =.048), with a trend for larger increases in total body BMD (1.5% vs 0.2%, P =.058). There were no significant between-group differences in hip BMD. The EXER group had decreases in weight (-2.2 +/- 0.3 kg, P =.010) and fat mass (-2.7 +/- 0.4 kg, P =.018) and increases in muscle strength (9-30%, P <.05). CONCLUSION In physically frail elderly women on HRT, relatively vigorous exercise training significantly increased lumbar spine BMD. The improved BMD and strength in response to exercise could reduce fracture risk in frail women already on HRT.
Collapse
Affiliation(s)
- Dennis T Villareal
- Washington University Claude Pepper Older Americans Independence Center, USA.
| | | | | | | | | | | | | |
Collapse
|
24
|
Shimamura C, Iwamoto J, Takeda T, Ichimura S, Abe H, Toyama Y. Effect of decreased physical activity on bone mass in exercise-trained young rats. J Orthop Sci 2002; 7:358-63. [PMID: 12077662 DOI: 10.1007/s007760200060] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The aim of this study was to determine whether decreased physical activity in exercise-trained young rats would result in a lower rate of bone gain or a reversal of the benefits of exercise. Thirty-five female Wistar rats, 6 weeks of age, were randomized into seven groups: 7 weeks of exercise (7EX), 7 weeks of sedentary control (7CN), 11 weeks of exercise (11EX), 7 weeks of exercise followed by 4 weeks of exercise cessation (7EX4C), 7 weeks of exercise followed by 4 weeks of decreased exercise frequency (7EX4F), 7 weeks of exercise followed by 4 weeks of decreased exercise intensity (7EX4I), and 11 weeks of sedentary control (11CN). The running intensity (speed) and duration were 25 m/min for 60 min/day at a frequency of 5 days/week. During the last 4 weeks, exercise frequency was reduced to 1 day/week in the 11EX4F group, and exercise intensity (speed) was reduced to 12 m/min in the 7EX4I group. After each period of exercise, the bone mineral content (BMC) of the proximal, middle, and distal tibiae, determined by dual-energy X-ray absorptiometry (DXA), was significantly greater in the 7EX and 11EX groups than in the 7CN and 11CN groups, respectively, but it was significantly lower in the 7EX4C group than in the 11EX group and did not differ significantly from the values of the 11CN group. Although the BMC of the proximal and middle tibiae did not differ significantly among the 7EX4F, 7EX4I, 7EX4C, and 11CN groups, the BMC of the distal tibia was significantly greater in the 7EX4F and 7EX4I groups than in the 11CN group and tended to be greater than in the 7EX4C group. The results of this study suggest that the effect of decreased exercise intensity and frequency on bone mass appears to be site specific in the tibia of the exercise-trained young rats. This study shows that exercise-trained young rats lose the benefits gained from exercise when exercise is completely ceased, resulting in the reduction of bone mass to levels that do not differ significantly from those of sedentary controls. At least, continuous exercise appears to be necessary for the maintenance of high bone mass.
Collapse
Affiliation(s)
- Chisato Shimamura
- Department of Orthopaedic Surgery, Keio University School of Medicine, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
25
|
Akhter MP, Cullen DM, Recker RR. Bone adaptation response to sham and bending stimuli in mice. J Clin Densitom 2002; 5:207-16. [PMID: 12110765 DOI: 10.1385/jcd:5:2:207] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2001] [Revised: 10/03/2001] [Accepted: 10/05/2001] [Indexed: 11/11/2022]
Abstract
This study presents inbred-strain-related differences in tibial bone adaptation response to low-force loading in four-point bending and sham (pad pressure) arrangements in mice. Our previous work in mice has shown that at relatively high but equal bending forces (9 N or a bending moment of 16.88 N-mm), C57BL/6J mice respond with significantly greater bone formation than C3H/HeJ mice. Because of high tibial strains, the majority of the bone response in our previous study was woven bone. In this, study, we reduced the loading forces to 5 N or a bending moment of 9.38 N-mm (to decrease the woven-bone formation response) and investigated inbred-strain-related bone adaptation differences resulting from bending and sham loading (reported here for the first time in C57BL/6J) in these mice. Twenty-four female mice within each inbred mouse strain (C3H/HeJ [C3H] and C57BL/6J [B6]) were randomly divided into the two loading groups (12 per group sham and bending, total of 48 mice). All of the external loading was done for 36 cycles at 2 Hz, 3 d/wk for 3 wk. The bone adaptation response at lower forces exhibited a pattern similar to that seen for the higher forces in the previous study, suggesting that the patterns of bone adaptation were inbred strain related and independent of bending force magnitude. The bending-related periosteal mineral apposition surface (pMS) and mineral apposition rate (MAR) were respectively 40% and 45% greater in B6 than in C3H. The cortical bone adaptation response to bending was greater when compared to sham or pad pressure for each inbred strain of mice, suggesting that the majority of the bone adaptation response was the result of bending stimulus and not local pressure from pad contact. In addition, regardless of loading arrangement (sham or bending), the bone adaptation response in C57BL/6J mice was greater than C3H/HeJ.
Collapse
Affiliation(s)
- M P Akhter
- Osteoporosis Research Center, Creighton University, Omaha, NE 68131, USA
| | | | | |
Collapse
|
26
|
Gala J, Díaz-Curiel M, de la Piedra C, Calero J. Short- and long-term effects of calcium and exercise on bone mineral density in ovariectomized rats. Br J Nutr 2001; 86:521-7. [PMID: 11591240 DOI: 10.1079/bjn2001428] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
At the level of prevention of bone mineral loss produced by ovariectomy, the aim of the present study was to determine the effect produced by supplementation of Ca in the diet and a moderate exercise programme (treadmill), simultaneously or separately, in ovariectomized rats, an experimental model of postmenopausal bone loss. Female Wistar rats (n 110, 15 weeks old) were divided into five groups: (1) OVX, rats ovariectomized at 15 weeks of age, fed a standard diet; (2) SHAM, rats sham operated at 15 weeks of age, fed a standard diet; (3) OVX-EX, ovariectomized rats, fed a standard diet and performing the established exercise programme; (4) OVX-Ca, ovariectomized rats fed a diet supplemented with Ca; (5) OVX-EXCa, ovariectomized rats with the exercise programme and diet supplemented with Ca. The different treatments were initiated 1 week after ovariectomy and were continued for 13 weeks for subgroup 1 and 28 weeks for subgroup 2, to look at the interaction of age and time passed from ovariectomy on the treatments. Bone mineral density (BMD) was determined, at the end of the study, in the lumbar spine (L2, L3 and L4) and in the left femur using a densitometer. Bone turnover was also estimated at the end of the study, measuring the serum formation marker total alkaline phosphatase (AP) and the resorption marker serum tartrate-resistant acid phosphatase (TRAP). As expected, OVX rats showed a significant decrease (P<0.05) in BMD, more pronounced in subgroup 2, and a significant increase in AP and TRAP with regard to their respective SHAM group. The simultaneous treatment with Ca and exercise produced the best effects on lumbar and femoral BMD of ovariectomized rats, partially avoiding bone loss produced by ovariectomy, although it was not able to fully maintain BMD levels of intact animals. This combined treatment produced a significant increase in AP, both in subgroups 1 and 2, and a decrease in TRAP in subgroup 1, with regard to OVX group. The exercise treatment alone was able to produce an increase in BMD with regard to OVX group only in subgroup 1 of rats (younger animals and less time from ovariectomy), but not in subgroup 2. In agreement with this, there was an increase of AP in both subgroups, lower than that observed in animals submitted to exercise plus Ca supplement, and a decrease of TRAP in subgroup 1, without significant changes in this marker in the older rats. Ca treatment did not produce any significant effect on BMD in OVX rats in both subgroups of animals, showing a decrease of AP and TRAP levels in the younger animals with no significant variations in markers of bone remodelling in the older female rats compared with their respective OVX group.
Collapse
Affiliation(s)
- J Gala
- Department of Internal Medicine, Fundación Jimenez Díaz, Avenida Reyes Católicos 2, 28040 Madrid, Spain
| | | | | | | |
Collapse
|
27
|
Buhl KM, Jacobs CR, Turner RT, Evans GL, Farrell PA, Donahue HJ. Aged bone displays an increased responsiveness to low-intensity resistance exercise. J Appl Physiol (1985) 2001; 90:1359-64. [PMID: 11247935 DOI: 10.1152/jappl.2001.90.4.1359] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The ability of bone to respond to increased loading as a function of age was tested by use of three-point bending and histomorphometry. The hindlimbs of male Fischer 344 rats of three age groups (young = 4 mo, adult = 12 mo, and old = 22 mo; n = 10 per age group) were progressively overloaded by training the rats to depress a lever high on the side of a cage while wearing a weighted backpack. This squatlike movement required full extension of the hindlimbs. Exercised (Exer) rats performed 50 repetitions three times per week for 9 wk. Pack weight was gradually increased to 65% of body weight. Controls (n = 10 per age group) performed the same exercise without additional weight. Neither the mechanical properties of the femur nor histomorphometry in the proximal tibia was significantly affected in young or adult rats. However, old Exer rats were found to have significantly smaller medullary areas and a decreased trabecular spacing than their age-matched controls. These results suggest a greater sensitivity to increased loading in aged rats.
Collapse
Affiliation(s)
- K M Buhl
- Department of Orthopaedics and Rehabilitation, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033, USA
| | | | | | | | | | | |
Collapse
|
28
|
Kawcak CE, McIlwraith CW, Norrdin RW, Park RD, James SP. The role of subchondral bone in joint disease: a review. Equine Vet J 2001; 33:120-6. [PMID: 11266060 DOI: 10.1111/j.2042-3306.2001.tb00589.x] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Subchondral bone plays a role in the pathogenesis of osteochondral damage and osteoarthritis in horses and humans. Osteochondral fragmentation and fracture, subchondral bone necrosis and osteoarthritis are common diseases in athletic horses, and subchondral bone is now thought to play an integral role in the pathogenesis of these diseases. There have been numerous research efforts focused on articular cartilage damage and its pathogenesis, yet comparatively little effort focused on subchondral bone pathology or the coordinated disease states of the osteochondral tissues. The purpose of this report is to review the current understanding of osteochondral disease in all species and its application to equine research and practice. It can be concluded from this review that our current understanding of osteochondral disease is based on clinical and pathological sources; and that the lack of information about joint tissue adaptation and disease has hampered objective studies of osteochondral tissues.
Collapse
Affiliation(s)
- C E Kawcak
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins 80523, USA
| | | | | | | | | |
Collapse
|
29
|
Samnegård E, Cullen DM, Akhter MP, Kimmel DB. No effect of verapamil on the local bone response to in vivo mechanical loading. J Orthop Res 2001; 19:328-36. [PMID: 11347708 DOI: 10.1016/s0736-0266(00)90005-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Verapamil, a calcium channel blocker, alters the intracellular calcium concentration in bone cells in vitro, while mechanical loading stimulates calcium channels. The purpose of this study was to examine the effect of systemic verapamil treatment on the bone response to in vivo external mechanical loading. Female rats (age 5-6 months) were divided into six groups. Half were verapamil treated (0.75 mg/ml drinking water) for 12 weeks. After 8 weeks of treatment, the right tibia was loaded by a four-point bending device. In one set of verapamil and control groups, the right tibia was loaded at 31.8 +/- 0.2 N (36 cycles, 2 Hz, 3 d/wk) for four weeks. A second set was loaded at 40.1 +/- 0.3 N and the third set remained nonloaded. Tibial cortical bone formation and femur bone mineral density (BMD) were evaluated. With loading, bone formation was similarly elevated in loaded tibia of verapamil and control rats (P < 0.003). However, periosteal bone formation (P < 0.001) in the nonloaded tibia, and femoral diaphysis BMD (P < 0.04) were greater in verapamil rats than in controls. We conclude that verapamil, in the dose given, does not interfere with mechanical loading (30, 40 N) at the loaded site and that the voltage-dependent calcium channels, blocked by verapamil, are not significantly involved in the local bone response to increased strain in female rats. However, verapamil increased bone formation and BMD at nonloaded sites of loaded rats. Previously unknown systemic or regional factors associated with loading may explain the potential mechanisms for this interaction and need further investigation.
Collapse
Affiliation(s)
- E Samnegård
- Department of Orthopaedic Surgery, Karolinska Institute, Huddinge University Hospital, Sweden.
| | | | | | | |
Collapse
|
30
|
Notomi T, Okimoto N, Okazaki Y, Tanaka Y, Nakamura T, Suzuki M. Effects of tower climbing exercise on bone mass, strength, and turnover in growing rats. J Bone Miner Res 2001; 16:166-74. [PMID: 11149481 DOI: 10.1359/jbmr.2001.16.1.166] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
To determine the effects of tower climbing exercise on mass, strength, and local turnover of bone, 50 Sprague-Dawley rats, 10 weeks of age, were assigned to five groups: a baseline control and two groups of sedentary and exercise rats. Rats voluntarily climbed the 200-cm tower to drink water from the bottle set at the top of it. In 4 weeks, the trabecular bone formation rate (BFR/bone surface [BS]), bone volume (BV/TV), and trabecular thickness (Tb.Th) of both the lumbar vertebra and tibia and the bone mineral density (BMD) of the tibia increased, while the osteoclast surface (Oc.S) decreased. The parameter values in the midfemur, such as the total cross-sectional area, the moment of inertia, the periosteal mineralizing surface (MS/BS), mineral apposition rate (MAR), BFR/BS, and bending load increased, while the endosteal MAR decreased. In 8 weeks, the increases in the bone mineral content (BMC), BMD of the femur and tibia, and the bending load values of the femur were significant, but the climbing exercise did not increase BMC, BMD, or the compression load of the lumbar vertebra. Although the periosteal MS/BS, MAR, and BFR/BS increased, the endosteal MS/BS, MAR, and BFR/BS decreased. These results show that climbing exercise has a beneficial effect on the femoral cortex and tibia trabecular, rather than the vertebral trabecular. In the midfemur, effects on bone formation are site specific, supporting accelerated cortical drift by mechanical stimulation.
Collapse
Affiliation(s)
- T Notomi
- Laboratory and Biochemistry of Exercise and Nutrition, Institute of Health and Sport Sciences, University of Tsukuba, Japan
| | | | | | | | | | | |
Collapse
|
31
|
Iwamoto J, Yeh JK, Aloia JF. Effect of deconditioning on cortical and cancellous bone growth in the exercise trained young rats. J Bone Miner Res 2000; 15:1842-9. [PMID: 10977004 DOI: 10.1359/jbmr.2000.15.9.1842] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Exercise enhances bone growth and increases peak bone mass. The aim of this study was to determine whether or not 4 weeks of deconditioning after 8 weeks of exercise in growing rats would result in a decrease in bone gain or reverse the benefits of exercise. Fifty 4-week-old female Sprague-Dawley rats were randomized by a stratified weight method into 5 groups with 10 rats in each group: 8 weeks exercise (8EX), 8 weeks sedentary control (8S), 12 weeks exercise (12EX), 8 weeks exercise followed by 4 weeks sedentary (8EX4S), and 12 weeks sedentary control (12S). The exercise consisted of running on a treadmill with a 5 degrees slope at 24 m/minute for 1 h/day and 5 days/week. After each period of exercise, cancellous and cortical bone histomorphometry were performed on double fluorescent labeled 5-microm-thick sections of the proximal tibia and 40-microm-thick sections of the tibial shaft, respectively. Eight and 12 weeks of exercise resulted in a significant increase in the body weight and gastrocnemius muscle weight by two-way analysis of variance (ANOVA). The femoral wet weight (mg; mean +/- SD; 8EX, 781 +/- 45.1 vs. 8S, 713 +/- 40.5; p < 0.05; 12EX, 892 +/- 41.6 vs. 12S, 807 +/- 19.8; p < 0.05) was significantly higher in the exercise group than that in the respective control groups. The femoral wet weight and bone volume (BV) of the 8EX4S group (818 +/- 46.2 mg and 531 +/- 31.2 microl, respectively) were significantly lower than those of the 12EX group (p < 0.05) and did not differ significantly from those of the 12S groups. The cancellous BV was significantly higher in the 8EX and 12EX groups than that in the respective sedentary groups (p < 0.05). The cortical bone area of the tibial shaft was also significantly higher in the 12EX than that in the 12S group (p < 0.05). The increase in the cancellous BV or cortical bone area was caused by an increase in the mineral apposition rate (MAR), without a significant effect in the labeled perimeter. The bone formation rate (BFR; microm3/microm2 per day) in the cancellous bone (12EX, 27.9 +/- 7.74 vs. 12S, 15.4 +/- 4.56; p < 0.05) or periosteal surface (12EX, 127.6 +/- 27.7 vs. 12S, 79.5 +/- 18.6; p < 0.05) was significantly higher in the exercised groups than that in the respective control group (p < 0.05). Again, deconditioning resulted in a decrease in the cancellous BFR, BV, periosteal BFR, and cortical bone area to levels not significantly different from the 12S group. In conclusion, our findings showed that exercised growing rats, when deconditioned, lost the benefits gained through exercise and their bone parameters were reduced to levels not different from the sedentary control. Thus, continued exercise is required to maintain high bone mass.
Collapse
Affiliation(s)
- J Iwamoto
- Department of Medicine, Winthrop-University Hospital, Mineola, New York 11501, USA
| | | | | |
Collapse
|
32
|
Yao W, Jee WS, Chen J, Liu H, Tam CS, Cui L, Zhou H, Setterberg RB, Frost HM. Making rats rise to erect bipedal stance for feeding partially prevented orchidectomy-induced bone loss and added bone to intact rats. J Bone Miner Res 2000; 15:1158-68. [PMID: 10841185 DOI: 10.1359/jbmr.2000.15.6.1158] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The objectives of this study were to investigate the different effects on muscle mass and cancellous (proximal tibial metaphysis [PTM]) and cortical (tibial shaft [TX]) bone mass of sham-operated and orchidectomized (ORX) male rats by making rats rise to erect bipedal stance for feeding. Specially designed raised cages (RC) were used so that the rats had to rise to erect bipedal stance to eat and drink for 12 weeks. Dual-energy X-ray absorptiometry (DEXA) and peripheral quantitative computerized tomography (pQCT) were used to estimate the lean leg mass and bone mineral. Static and dynamic histomorphometry were performed on the triple-labeled undecalcified sections. We found that making the intact rats rise to erect bipedal stance for feeding increased muscle mass, cortical bone volume, and periosteal bone formation. Orchidectomy increased net losses of bone next to the marrow by increasing bone turnover. Making the ORX rats rise to erect bipedal stance increased muscle mass, partially prevented cancellous bone loss in the PTM, and prevented net cortical bone loss in TX induced by ORX by depressing cancellous and endocortical high bone turnover and stimulating periosteal bone formation. The bone-anabolic effects were achieved mainly in the first 4 weeks in the PTM and by 8 weeks in the TX. These findings suggested that making the rats rise to erect bipedal stance for feeding helped to increase muscle mass and cortical bone mass in the tibias of intact rats, increase muscle mass, and partially prevented cancellous and net cortical bone loss in ORX rats.
Collapse
Affiliation(s)
- W Yao
- Radiobiology Division, University of Utah, Salt Lake City 84108-1218, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Cullen DM, Smith RT, Akhter MP. Time course for bone formation with long-term external mechanical loading. J Appl Physiol (1985) 2000; 88:1943-8. [PMID: 10846003 DOI: 10.1152/jappl.2000.88.6.1943] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Increased mechanical loading of bone with the rat tibia four-point bending device stimulates bone formation on periosteal and endocortical surfaces. With long-term loading cell activity diminishes, and it has been reported that early gains in bone size may reverse. This study examined the time course for bone cellular and structural response after 6, 12, and 18 wk of loading at 1,200-1, 700 microstrain (muepsilon). Bone formation rates, measured by histomorphometry, were compared within groups, between loaded and contralateral nonloaded tibiae, and between weeks. Formation surface, mineral apposition rate, and bone formation rate on periosteal and endocortical surfaces were elevated after 6 wk of loading. By 12 wk of loading, periosteal and endocortical formation surface and endocortical mineral apposition rates were elevated. By 18 wk of loading, periosteal adaptation appeared complete, whereas endocortical mineral apposition rate remained elevated. No periosteal resorption was observed. Average thickness of new bone formed, from baseline to collection, was greater in loaded than nonloaded tibiae by week 6 and was maintained through week 18. Early increases in bone formation result in periosteal apposition of new bone that persists after formation ceases.
Collapse
Affiliation(s)
- D M Cullen
- Osteoporosis Research Center, Creighton University, Omaha, NE 68131, USA.
| | | | | |
Collapse
|
34
|
Abstract
The aim of the present study was to examine cancellous bone changes induced by exercise on three different skeletal sites, the lumbar vertebra, the proximal, and the distal tibia, in the young growing rat. Forty 4-week-old female Sprague-Dawley rats were randomized into 4 groups of 10 animals each; 8 weeks exercise (8EX), 8 weeks sedentary control (8CON), 12 weeks exercise (12EX), and 12 weeks sedentary control (12CON). The exercise regimen consisted of treadmill running at 24 m/min 1 hr per day 5 days a week. After each period of exercise, the proximal and distal tibial metaphyses (PTM and DTM, respectively) and the fifth lumbar (L5) vertebral body were processed for histomorphometry of the cancellous bone (secondary spongiosa) and cortical periosteum. Eight and twelve weeks of exercise significantly increased the mineral apposition rate and bone formation rate in the PTM and DTM, and 12 weeks of exercise significantly increased the labeled perimeter in the DTM, compared with the age-matched controls. Eight and twelve weeks of exercise significantly increased cancellous bone volume in the PTM (mean +/- standard deviation, 8EX; 19.1 +/- 2.9% vs 8CON; 14.3 +/- 3.1%, P < 0.05 and 12EX; 18.8 +/- 3.5% vs 12CON; 15.2 +/- 3.3%, P < 0.05), and 12 weeks exercise significantly increased cancellous bone volume in the DTM, compared with age-matched control (12EX; 32.5 +/- 7.7%, 12CON; 22.2 +/- 4.8%, P < 0.05). The increase in cancellous bone volume by 12 weeks exercise was higher in the DTM than that in the PTM (43.4% and 24.0%, respectively). On the other hand, the exercise did not significantly affect cancellous bone volume and bone formation in the L5 vertebral body, although the cortical periosteal bone formation rate and the L5 vertebral bone mass were increased. These findings suggest that cancellous bone adaptation to treadmill exercise is site specific, and the effect may be influenced by factors such as mechanical loading and metaphyseal bone architecture in the young growing rat.
Collapse
Affiliation(s)
- J Iwamoto
- Department of Medicine, Winthrop-University Hospital, Mineola, NY 11501, USA
| | | | | |
Collapse
|
35
|
Puustjärvi K, Nieminen J, Räsänen T, Hyttinen M, Helminen HJ, Kröger H, Huuskonen J, Alhava E, Kovanen V. Do more highly organized collagen fibrils increase bone mechanical strength in loss of mineral density after one-year running training? J Bone Miner Res 1999; 14:321-9. [PMID: 10027896 DOI: 10.1359/jbmr.1999.14.3.321] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The aim of this study was to evaluate the effects of long-term running training on the structural properties of bone. Ten beagle dogs ran according to a strenuous progressive program (up to 40 km/day) for 1 year. At the end of the training program, there was a significant reduction in bone mineral density (up to 9.7%) in the vertebrae of the runner dogs as compared with 10 sedentary control dogs. Polarized light microscopy of the vertebral trabecular bone, however, displayed proportionally higher retardation values of the collagen network of the runner dogs than of the sedentary dogs, suggesting a reorganization in a more parallel manner in the collagen fibrils. The concentration and cross-linking of collagen in the bones remained similar in both groups. No differences were observed in the force to failure of bones of the two groups nor in the histomorphometric analysis of the bones. We suggest that the collagen network in the bones accounted for the maintenance of the strength properties in the bones of the runner dogs despite the loss of mineral density.
Collapse
Affiliation(s)
- K Puustjärvi
- Department of Physical and Rehabilitation Medicine, University Hospital of Kuopio, Kuopio, Finland
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Gabrie A, Detilleux J, Jolly S, Collin B, Dessy-Doizé C. Morphometric study of the equine navicular bone: age-related changes and influence of exercise. Vet Res Commun 1999; 23:15-40. [PMID: 10905816 DOI: 10.1023/a:1006102921304] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Navicular bones from the four limbs of 95 horses, classified in 9 categories, were studied. The effects of age on navicular bone morphometry and histomorphometry were estimated, after adjustment of the data to even out the effects of front and rear limbs, morphometrical type, sex, weight, and size. All the external measurements of the navicular bone decreased significantly with increasing age. From the histomorphometrical data, cortical bone volume decreased with age in most horses, whereas cancellous bone volume and, in particular, the marrow spaces increased. The increase in the cancellous bone volume could have resulted from tunnelling of the internal part of the cortex, which converted it progressively into a porous trabecular-like structure. Trabecular bone volume also decreased with age and the trabecular lattice changed dramatically to become disconnected in aged horses. These observations corresponded closely to those reported for ageing of the skeletal system in humans. However, in sporting horses, the navicular cortical bone volume increased with age and the cancellous bone volume decreased. Exercise appeared to have decreased bone resorption and increased bone formation at the endocortical junction. The cancellous bone architecture was also improved. in that the trabecular lattice and trabecular bone volume remained unchanged in aged sporting horses. Our findings confirmed that exercise may be good practice to prevent age-related bone loss.
Collapse
Affiliation(s)
- A Gabrie
- Department of Anatomy, Faculty of Veterinary Medicine, University of Liege, Belgium
| | | | | | | | | |
Collapse
|
37
|
Gabriel A, Jolly S, Detilleux J, Dessy-Doize C, Collin B, Reginster JY. Morphometric study of the equine navicular bone: variations with breeds and types of horse and influence of exercise. J Anat 1998; 193 ( Pt 4):535-49. [PMID: 10029187 PMCID: PMC1467879 DOI: 10.1046/j.1469-7580.1998.19340535.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Navicular bones from the 4 limbs of 95 horses, classified in 9 categories, were studied. The anatomical bases were established for the morphometry of the navicular bone and its variations according to the category of horse, after corrections were made for front or rear limb, sex, weight, size and age. In ponies, navicular bone measurements were smallest for light ponies and regularly increased with body size, but in horses, navicular bone dimensions were smallest for the athletic halfbred, intermediate for draft horse, thoroughbreds and sedentary halfbreds and largest for heavy halfbreds. The athletic halfbred thus showed reduced bone dimensions when compared with other horse types. Navicular bones from 61 horses were studied histomorphometrically. Light horses and ponies possessed larger amounts of cancellous bone and less cortical bone. Draft horses and heavy ponies showed marked thickening of cortical bone with minimum intracortical porosity, and a decrease in marrow spaces associated with more trabecular bone. Two distinct zones were observed for the flexor surface cortex: an external zone composed mainly of poorly remodelled lamellar bone, disposed in a distoproximal oblique direction, and an internal zone composed mainly of secondary bone, with a lateromedial direction for haversian canals. Flexor cortex external zone tended to be smaller for heavy ponies than for the light ponies. It was the opposite for horses, with the largest amount of external zone registered for draft horses. In athletic horses, we observed an increase in the amount of cortical bone at the expense of cancellous bone which could be the result of reduced resorption and increased formation at the corticoendosteal junction. Cancellous bone was reduced for the athletic horses but the number of trabeculae and their specific surfaces were larger. Increased bone formation and reduced resorption could also account for these differences.
Collapse
Affiliation(s)
- A Gabriel
- Department of Anatomy, Faculty of Veterinary Medicine, University of Liège, Belgium
| | | | | | | | | | | |
Collapse
|
38
|
Iwamoto J, Takeda T, Ichimura S. Effect of exercise on tibial and lumbar vertebral bone mass in mature osteopenic rats: bone histomorphometry study. J Orthop Sci 1998; 3:257-63. [PMID: 9732560 DOI: 10.1007/s007760050051] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The effect of moderate running exercise on tibial and lumbar vertebral bone mass was examined in mature osteopenic rats by bone histomorphometry. Ten 37-week-old female Wistar rats, with bone loss resulting from being fed a relatively low-calcium diet for 14 weeks after ovariectomy at the age of 23 weeks, were randomly divided into two groups of five animals each; control and exercise groups. The exercise consisted of treadmill running at 12 m/min for 1 h per day on 5 days per week for 12 weeks. During the exercise period, all animals were fed a standard calcium diet. After 12 weeks of exercise, bone histomorphometry was evaluated for cancellous bone (secondary spongiosa) of the proximal tibia and the fourth lumbar vertebra and for cortical bone of the tibial shaft. The findings suggested that in the mature osteopenic rat, there was a beneficial effect of moderate running exercise with adequate calcium intake on bone mass only in a weight-bearing long bone, the tibia. The mechanism for increased bone mass appeared to be both decreased bone resorption and increased bone formation in cancellous bone and increased bone formation in cortical bone.
Collapse
Affiliation(s)
- J Iwamoto
- Department of Orthopaedic Surgery, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | | | | |
Collapse
|
39
|
Abstract
Dual-energy X-ray absorptiometry (DXA) was used to examine the effects of quantitative application of treadmill running exercise on bone mineral density (BMD) of the tibia and the fourth and fifth lumbar (L4 + L5) vertebrae in mature osteopenic rats. Twenty 37-week-old rats with bone loss, resulting from feeding a relatively low calcium diet for 14 weeks after ovariectomy at the age of 23 weeks, were divided into four groups of five rats each according to the intensity and duration of the exercise: 12 m/minute, 1 h/day in group EX1; 18 m/minute, 1 h/day in group EX2; 12 m/minute, 2 h/day in group EX3; and sedentary control in group CON. With a standard calcium diet, the exercise was performed 5 days a week for 12 weeks, and the BMD of both the right tibia and the L4 + L5 vertebrae was measured using DXA at weeks 0, 4, 8, and 12. At the end of 12 weeks of exercise, the right femur and the L5 vertebra were dissected and the mechanical strength was measured using a three-point bending test and a compression test, respectively. After 12 weeks of exercise, a significant increase in the tibial BMD was observed in only group EX1 compared with that in group CON (p = 0.0039, by two-way analysis of variance). However, any significant increase in the L4 + L5 vertebral BMD was not observed in any exercise groups compared with that in the control group. While a maximum breaking force of the femoral shaft in group EX1 was significantly greater than that in group CON (p < 0.05, by Mann-Whitney's U-test), that in groups EX2 and EX3 did not significantly differ from that in group CON. However, there was no significant difference in a maximum breaking force of the L5 vertebral body among all the exercise and control groups. These results indicated that the beneficial effects of treadmill running exercise under a standard calcium diet were recognized only in the weight-bearing bones of the mature osteopenic rats resulting from estrogen deficiency and inadequate calcium intake only when an optimal level of exercise was applied.
Collapse
Affiliation(s)
- J Iwamoto
- Department of Orthopaedic Surgery, School of Medicine, Keio University, and Kitasato Institute Hospital, Tokyo, Japan
| | | | | |
Collapse
|
40
|
Kohrt WM, Ehsani AA, Birge SJ. Effects of exercise involving predominantly either joint-reaction or ground-reaction forces on bone mineral density in older women. J Bone Miner Res 1997; 12:1253-61. [PMID: 9258756 DOI: 10.1359/jbmr.1997.12.8.1253] [Citation(s) in RCA: 188] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
This study compared the effects of two exercise training programs, 11 months in duration, on bone mineral density (BMD) in older, sedentary women. Thirty-nine women, aged 60-74 years, were assigned to the following groups: (a) a group that performed exercises that introduced stress to the skeleton through ground-reaction forces (GRF) (i.e., walking, jogging, stairs); (b) a group that performed exercises that introduced stress to the skeleton through joint-reaction forces (JRF) (i.e., weight lifting, rowing); or (c) a no-exercise control group. BMD of the whole body, lumbar spine, proximal femur, and distal forearm was assessed five times at approximately 3-month intervals. The GRF and JRF exercise programs resulted in significant and similar increases in BMD of the whole body (2.0 +/- 0.8% and 1.6 +/- 0.4%, respectively), lumbar spine (1.8 +/- 0.7% and 1.5 +/- 0.5%, respectively), and Ward's triangle region of the proximal femur (6.1 +/- 1.5% and 5.1 +/- 2.1%, respectively). There was a significant in BMD of the femoral neck only in response to the GRF exercise program (GRF, 3.5 +/- 0.8%; JRF, -0.2 +/- 0.7%). There were no significant changes in BMD in control subjects. Among all exercisers, there was a significant inverse (r = -0.52, p < 0.01) relationship between increases in whole body BMD and reductions in fat mass, suggesting a dose response effect of exercise on bone mass. Although femoral neck BMD was responsive only to the GRF exercise program, some adaptations (i.e., increase in lean body mass and strength) that were specific to the JRF exercise program may be important in preventing osteoporotic fractures by reducing the risk for falls. It remains to be determined whether all of these benefits can be gained through a training program that combines the different types of exercises employed in this study.
Collapse
Affiliation(s)
- W M Kohrt
- Washington University School of Medicine, Department of Internal Medicine, St. Louis, Missouri, USA
| | | | | |
Collapse
|
41
|
Morey‐Holton ER, Whalen RT, Arnaud SB, Meulen MC. The Skeleton and its Adaptation to Gravity. Compr Physiol 1996. [DOI: 10.1002/cphy.cp040131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
42
|
Abstract
Osteoporosis is one of the most serious adverse effects experienced by patients receiving long term corticosteroid therapy. Bone loss occurs soon after corticosteroid therapy is initiated and results from a complex mechanism involving osteoblastic suppression and increased bone resorption. There are a number of factors that may increase the risk of corticosteroid-induced osteoporosis [smoking, excessive alcohol (ethanol) consumption, amenorrhoea, relative immobilisation, chronic obstructive pulmonary disease, inflammatory bowel disease, hypogonadism in men, organ transplantation]. The initial assessment of patients about to start taking corticosteroids should include measurement of spinal bone density, urinary calcium level and plasma calcifediol (25-hydroxycholecalciferol) level; serum testosterone levels should also be measured when hypogonadism is suspected. Many different drugs have been used to prevent osteoporosis in patients receiving long-term corticosteroid therapy, including thiazide diuretics, cholecalciferol (vitamin D) metabolites, bisphosphonates, calcitonin, fluoride, estrogens, anabolic steroids and progesterone. At present, however, published studies have failed to demonstrate a reduction in the rate of fracture using different preventive pharmacological therapies in patients being treated with corticosteroids on a continuous basis. Among the drugs studied, bisphosphonates (pamidronic acid and etidronic acid) and calcitonin appear to be effective in increasing bone density. Cholecalciferol preparations have been reported to be effective in some, but not all, studies. Limited data have shown positive results with thiazide diuretics, estrogen, progesterone and nandrolone. When treating patients with corticosteroids, the lowest effective dose should be used, with topical corticosteroids used whenever possible. Auranofin may be considered in patients with corticosteroid-dependent asthma. Patients should take as much physical activity as possible, maintain an adequate daily intake of calcium (1000 mg/day0 and cholecalciferol (400 to 800 U/day), stop smoking and avoid excessive alcohol intake. It is important to detect and treat hypogonadism in men, if present, and to replace gonadal hormones in postmenopausal women or amenorrhoeic premenopausal women, and to detect and correct cholecalciferol deficiency. A thiazide diuretic should be considered if hypercalciuria is present (urinary calcium excretion in excess of 4 mg/kg/day). High-risk patients and those with established osteoporosis should be treated with bisphosphonates (cyclical etidronic acid or intravenous pamidronic acid), nasal calcitonin, or calcifediol or calcitriol. Patients receiving cholecalciferol preparations should be carefully monitored for hypercalciuria and hypecalcaemia.
Collapse
Affiliation(s)
- C Picado
- Department de Medicina, Hospital Clinic i Universitari, Facultat de Medicina, Barcelona, Spain
| | | |
Collapse
|
43
|
Abstract
The aim of this study is to examine the interrelationship of pituitary and ovarian hormone deficiency on the regulation of bone growth and bone formation rate. 48 female rats, at 3 months of age, were divided into age-matched intact control, hypophysectomized (HX), ovariectomized (OV), and HX + OV groups. Ten rats were killed at 3 months of age as baseline controls, and the rest of the animals were killed 5 weeks after surgery. Serum levels of osteocalcin and dynamic histomorphometry on the periosteal surface of the tibial shaft and fifth lumbar vertebrae were measured to evaluate systemic and local bone turnover. Tibial and fourth lumbar vertebral bone area, bone mineral content, and bone density were measured by dual-energy X-ray absorptiometry (DXA). Our results confirmed that OV increased and HX suppressed systemic and periosteal bone formation parameters in both bone sites, OV increased and HX suppressed the gain in bone size and bone mass. When OV rats were HX, the serum levels of osteocalcin and periosteal bone formation parameters of the tibial shaft and the fifth lumbar vertebrae were, however, depressed and did not differ from that of the HX alone. DXA results show that the effect of OV on bone size and bone mass is also abolished by HX. In conclusion, we have demonstrated that OV increases tibial and lumbar vertebral bone formation and bone growth and this effect is pituitary hormone dependent.
Collapse
Affiliation(s)
- J K Yeh
- Department of Medicine, Winthrop-University Hospital, Mineola, NY 11501, USA
| | | | | |
Collapse
|
44
|
|
45
|
Abstract
The skeleton provides more than only a framework for the body. Bone is a calcified conjunctive tissue sensitive to various mechanical stimuli, mainly to those resulting from gravity and muscular contractions. Numerous animal and human studies demonstrate the importance of weight-bearing physical activity as well as mechanical loading for maintaining skeletal integrity. Lack of weight-bearing activity is dangerous for the skeleton: a decrease in bone mineral density (BMD) has been demonstrated in animals and humans under conditions of weightlessness or immobilization. Other studies have also reported a lower vertebral BMD among young amenorrheic athletes than among athletes with regular cycles and/or non athletes. The main factor responsible for this lower BMD in the amenorrheic athletes is the persistent low level of endogenous estrogen observed among these women. However this does not represent a premature and irreversible loss of bone mass since the resumption of menses following a decrease in training is the primary factor for a significant increase in vertebral BMD in these formerly amenorrheic athletes. A weight-bearing exercise is likely to be more beneficial at weight-bearing than at non weight-bearing sites, and hypogonadism resulting from very intensive training and exercise is more detrimental to trabecular than cortical bone. Bone deficit at non weight-bearing sites may be attenuated by maintenance of body weight. Nevertheless the etiology of "stress fractures" among athletes remains poorly understood, and the exact relationship between soft tissue mass and BMD is not clear. Osteoporosis, the most common bone disorder in France, is a pathological condition associated with increased loss of bone mass, resulting in a greater risk of fracture. Although symptoms of osteoporosis do not generally occur until after menopause, recent evidence suggests that bone loss starts much earlier in life. Therefore osteoporosis might be prevented by increasing peak bone mass and/or by slowering bone loss after menopause. Exercise such as resistance training or weight-bearing activities like running or walking have an osteogenic effect on increasing BMD in young people, and the decrease in BMD is slower in exercised than in non-exercised post-menopausal women. Nevertheless the influence of the length and of the intensity of such physical activities remain to be determined.
Collapse
|
46
|
Bourrin S, Palle S, Pupier R, Vico L, Alexandre C. Effect of physical training on bone adaptation in three zones of the rat tibia. J Bone Miner Res 1995; 10:1745-52. [PMID: 8592952 DOI: 10.1002/jbmr.5650101118] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
This study as been conducted to examine the effects of physical exercise on the bone trabecular network and the cellular adaptations in three different areas of a single bone, the tibia. Male Wistar rats (9 weeks old) were treadmill-trained for 0, 3, 4, or 5 weeks at 60% of their measured maximal O2 consumption (VO2max). Histomorphometric analysis of the proximal tibia of running and age-matched control groups was performed in the epiphyseal trabecular bone, in the primary spongiosa and in the secondary spongiosa. Dynamic and static bone cell activities and serum calcium and phosphorus levels were measured. VO2max increased significantly by 18.4% after 5 weeks of training. In the epiphysis, a 9% increase in bone volume, associated with more numerous trabeculae (8%) was detected the third week of training. In primary spongiosa a significant increase (6.7%) in newly formed trabeculae was found. In secondary spongiosa bone volume increased significantly by 26.2% the fifth week of exercise and was associated with thicker trabeculae. The number of osteoclast profiles was significantly depressed. Osteoid surfaces and bone formation rate increased significantly in weeks 3 to 5. Serum calcium levels were found to be significantly decreased in weeks 3 and 4. There was no change in osteoid thickness or mineral apposition rate. These results suggest 1) a rapid increase in osteoblastic recruitment without change of the cell activity in response to moderate exercise; 2) a decreased bone resorption associated with a marked increased in bone formation from the third week of training; 3) adaptation of the trabecular network to exercise that seems to be bone-site-dependent, suggesting a cell sensitivity to training-engendered strain distribution within the bone or to strain-related local factors.
Collapse
Affiliation(s)
- S Bourrin
- Laboratoire de Biologie du Tissu Osseux, LBTO-GIP-exercise, Faculte de Medecine J. Lisfranc, Saint-Etienne, France
| | | | | | | | | |
Collapse
|
47
|
Abstract
The effect of aging on the mechanical loading thresholds for osteogenesis was investigated in rats. We applied mechanical loads varying from 30 to 64 N to the tibiae of 43 19-month-old rats using a four-point bending apparatus. Bone formation rates were measured on the periosteal and endocortical surfaces of the tibial midshaft using double-label histomorphometry. Bone formation rates from the old rats were compared with results from adult (9-month-old) rats that we reported earlier.(4) Bone formation on the periosteal surface of the old rats was predominantly woven-fibered. Periosteal bone formation was observed in a lower percentage of the old rats compared with the younger adult rats for applied loads of 40 N and greater (59% old, 100% adult). However, in the old rats that formed woven bone there were no significant differences in woven bone area (p=0.1) or surface (p=0.24) compared with younger adults. Therefore, the periosteum of old rats had a higher threshold for activation by mechanical loading, but after activation occurred, the cells had the same capacity to form woven bone as younger adult animals. On the endocortical surface, relative bone formation rates in old rats showed a marginal (p=0.06) increase in response to an applied load of 64 N but was not increased at lower loads. The relative bone formation rate in the old rats was over 16-fold less than that reported for the younger adult rats at an applied load of 64 N and the relative bone forming surface in old rats in this study was 5-fold less than it was younger rats under similar loading conditions. In the younger adult rats, a mechanical threshold for lamellar bone formation of 1050 microstrain was calculated for the endocortical bone surface. The old rats required over 1700 microstrain on the endocortical surface before bone formation was increased. The data suggest that both the periosteal and endocortical surfaces of the tibiae of older rats are less responsive to mechanical stimuli.
Collapse
Affiliation(s)
- C H Turner
- Department of Orthopaedic Surgery, Indiana University Medical Center, IUPUI, Indianapolis 46202, USA
| | | | | |
Collapse
|
48
|
Kohrt WM, Snead DB, Slatopolsky E, Birge SJ. Additive effects of weight-bearing exercise and estrogen on bone mineral density in older women. J Bone Miner Res 1995; 10:1303-11. [PMID: 7502701 DOI: 10.1002/jbmr.5650100906] [Citation(s) in RCA: 215] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The separate and combined effects of weight-bearing exercise and hormone replacement therapy (HRT) on bone mineral density (BMD) were studied in 32 women, 60 to 72 years of age. HRT consisted of continuous conjugated estrogens 0.625 mg/day and trimonthly medroxyprogesterone acetate 5 mg/day for 13 days. Exercise consisted of 2 months of low-intensity exercise followed by 9 months of more vigorous weight-bearing exercise approximately 45 minutes/day, > or = 3 days/week, at 65-85% of maximal heart rate. Lumbar spine and proximal femur BMD were significantly increased in response to exercise and to HRT, and total body BMD was significantly increased in response to HRT; neither exercise nor HRT had an effect on wrist BMD. The combination of exercise + HRT resulted in increased BMD at all sites except the wrist, with effects being additive for the lumbar spine and Ward's triangle and synergistic for the total body. Based on reductions in serum osteocalcin levels, it appears that increases in BMD in response to HRT and exercise + HRT were due to decreased bone turnover. The lack of change in serum osteocalcin and IGF-I in response to exercise alone suggests that increases in BMD were due to decreased bone resorption and not increased formation. Results indicate that weight-bearing exercise + HRT may be effective in preventing and/or treating osteoporosis. It is likely that the additive effects of weight-bearing exercise and HRT on bone mineral accretion, coupled with other adaptations to the exercise (i.e., increased strength and functional capacity), could effectively reduce the incidence of falls and osteoporotic fractures.
Collapse
Affiliation(s)
- W M Kohrt
- Washington University School of Medicine, Department of Internal Medicine, St. Louis, Missouri, USA
| | | | | | | |
Collapse
|
49
|
Abstract
This experiment studied the effects of hypophysectomy (HX) and ovariectomy (OV) on cancellous bone in the proximal tibia and distal 5th lumbar vertebra by dynamic histomorphometry. Forty-eight female Sprague-Dawley rats, 3 months of age, were divided into age-matched control, HX, OV, and HX + OV (HO) groups. Ten rats were sacrificed at 3 months of age as baseline controls, and the rest of the animals were sacrificed 5 weeks after the surgery. While the age-matched controls, and the OV rats significantly increased in body weight compared with the baseline control rats, cancellous bone volumes in the proximal tibia and distal 5th lumbar vertebra increased in the age-matched controls and decreased in the OV rats. In the HX and HO rats, body weight equaled baseline control values, and their cancellous bone volumes were decreased with a poorer trabecular architecture in both bone sites. In all HX, OV, and HO rats, uterine weight and serum estradiol were significantly decreased. OV significantly increased longitudinal bone growth and the tissue- and surface-based bone formation and bone resorption parameters in both the proximal tibia and 5th lumbar vertebra (p < 0.05). HX alone or HO significantly decreased longitudinal bone growth and the tissue-based bone formation rate without significantly affecting surface-based bone formation and bone resorption parameters when compared with the age-matched controls. No significant differences were detected in any variables between the HX alone and HO rats.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- M M Chen
- Department of Medicine, Winthrop-University Hospital, Mineola, New York, USA
| | | | | |
Collapse
|
50
|
Turner AS, Norrdin RW, Gaarde S, Connally HE, Thrall MA. Bone mineral density in feline mucopolysaccharidosis VI measured using dual-energy X-ray absorptiometry. Calcif Tissue Int 1995; 57:191-5. [PMID: 8574935 DOI: 10.1007/bf00310257] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Dual-energy X-ray absorptiometry (DXA) was used to determine the in vivo bone mineral density (BMD) and bone mineral content (BMC) of lumbar vertebrae in six cats affected with the inherited lysosomal storage disease mucopolysaccharidosis VI (MPS VI). DXA was also performed on MPS cats that had a bone marrow transplant (BMT) and total body irradiation (TBI) (MPS + BMT; n = 7), normal cats that had a bone marrow transplant, and TBI (control + BMT; n = 8) and normal cats (control; n = 14). Following euthanasia, one of the lumbar vertebrae that had been scanned (L5) was harvested and bone volume (BV/TV%) was determined by histomorphometry. The in vivo BMD and BMD measurements were compared with the BV/TV%. There was a greater BMD and BMC in the MPS + BMT cats compared with the MPS cats but the difference was not statistically significant. However, there was a greater BV/TV% in the MPS + BMT cats compared with the MPS cats and the difference was significant (P = 0.0152). Correlation between the noninvasive in vivo DXA measurements of BMD and BMC and the BV/TV% was significant (r2 = 0.767, P < 0.0001; r2 = 0.504, P < 0.0001). Noninvasive in vivo DXA was a rapid and precise method for measuring the lumbar BMD and BMC in cats and it correlated well with histomorphometric determination of bone mass. Further, the response of inherited storage diseases such as MPS VI to therapy, such as BMT, could be monitored in a longitudinal fashion using DXA.
Collapse
Affiliation(s)
- A S Turner
- Department of Clinical Sciences, Colorado State University, Ft. Collins 80523, USA
| | | | | | | | | |
Collapse
|