1
|
Martins RX, Carvalho M, Maia ME, Flor B, Souza T, Rocha TL, Félix LM, Farias D. 2,4-D Herbicide-Induced Hepatotoxicity: Unveiling Disrupted Liver Functions and Associated Biomarkers. TOXICS 2024; 12:35. [PMID: 38250991 PMCID: PMC10818579 DOI: 10.3390/toxics12010035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/22/2023] [Accepted: 12/29/2023] [Indexed: 01/23/2024]
Abstract
2,4-dichlorophenoxyacetic acid (2,4-D) is a widely used herbicide worldwide and is frequently found in water samples. This knowledge has prompted studies on its effects on non-target organisms, revealing significant alterations to liver structure and function. In this review, we evaluated the literature on the hepatotoxicity of 2,4-D, focusing on morphological damages, toxicity biomarkers and affected liver functions. Searches were conducted on PubMed, Web of Science and Scopus and 83 articles were selected after curation. Among these studies, 72% used in vivo models and 30% used in vitro models. Additionally, 48% used the active ingredient, and 35% used commercial formulations in exposure experiments. The most affected biomarkers were related to a decrease in antioxidant capacity through alterations in the activities of catalase, superoxide dismutase and the levels of malondialdehyde. Changes in energy metabolism, lipids, liver function, and xenobiotic metabolism were also identified. Furthermore, studies about the effects of 2,4-D in mixtures with other pesticides were found, as well as hepatoprotection trials. The reviewed data indicate the essential role of reduction in antioxidant capacity and oxidative stress in 2,4-D-induced hepatotoxicity. However, the mechanism of action of the herbicide is still not fully understood and further research in this area is necessary.
Collapse
Affiliation(s)
- Rafael Xavier Martins
- Post-Graduation Program in Biochemistry, Department of Biochemistry and Molecular Biology, Building 907, Campus Pici, Federal University of Ceará, Fortaleza 60455-970, Brazil; (R.X.M.); (M.E.M.)
- Laboratory for Risk Assessment of Novel Technologies, Department of Molecular Biology, Federal University of Paraiba, João Pessoa 58050-085, Brazil; (M.C.); (B.F.); (T.S.)
| | - Matheus Carvalho
- Laboratory for Risk Assessment of Novel Technologies, Department of Molecular Biology, Federal University of Paraiba, João Pessoa 58050-085, Brazil; (M.C.); (B.F.); (T.S.)
| | - Maria Eduarda Maia
- Post-Graduation Program in Biochemistry, Department of Biochemistry and Molecular Biology, Building 907, Campus Pici, Federal University of Ceará, Fortaleza 60455-970, Brazil; (R.X.M.); (M.E.M.)
- Laboratory for Risk Assessment of Novel Technologies, Department of Molecular Biology, Federal University of Paraiba, João Pessoa 58050-085, Brazil; (M.C.); (B.F.); (T.S.)
| | - Bruno Flor
- Laboratory for Risk Assessment of Novel Technologies, Department of Molecular Biology, Federal University of Paraiba, João Pessoa 58050-085, Brazil; (M.C.); (B.F.); (T.S.)
| | - Terezinha Souza
- Laboratory for Risk Assessment of Novel Technologies, Department of Molecular Biology, Federal University of Paraiba, João Pessoa 58050-085, Brazil; (M.C.); (B.F.); (T.S.)
| | - Thiago Lopes Rocha
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia 74055-110, Brazil;
| | - Luís M. Félix
- Centre for the Research and Technology of Agro-Environment and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal;
- Inov4Agro, Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Davi Farias
- Post-Graduation Program in Biochemistry, Department of Biochemistry and Molecular Biology, Building 907, Campus Pici, Federal University of Ceará, Fortaleza 60455-970, Brazil; (R.X.M.); (M.E.M.)
- Laboratory for Risk Assessment of Novel Technologies, Department of Molecular Biology, Federal University of Paraiba, João Pessoa 58050-085, Brazil; (M.C.); (B.F.); (T.S.)
| |
Collapse
|
2
|
The selected epigenetic effects of phthalates: DBP, BBP and their metabolites: MBP, MBzP on human peripheral blood mononuclear cells (In Vitro). Toxicol In Vitro 2022; 82:105369. [PMID: 35487445 DOI: 10.1016/j.tiv.2022.105369] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 03/27/2022] [Accepted: 04/21/2022] [Indexed: 11/21/2022]
Abstract
Phthalates are classified as non-genotoxic carcinogens. These compounds do not cause direct DNA damage but may induce indirect DNA lesions leading to cancer development. In the presented paper we have studied the effect of di-n-butyl phthalate (DBP), butylbenzyl phthalate (BBP), and their metabolites, such as mono-n-butyl phthalate (MBP) and monobenzyl phthalate (MBzP) on selected epigenetic parameters in human peripheral blood mononuclear cells (PBMCs). The cells were incubated with tested phthalates at 0.001, 0.01 and 0.1 μg/mL for 24 h. Next, global DNA methylation, methylation in the promoter regions of tumor suppressor genes (P16, TP53) and proto-oncogenes (BCL2, CCND1) were assessed as well as the expression profile of the indicated genes was analysed. The obtained results have revealed significant reduction of global DNA methylation level in PBMCs exposed to BBP, MBP and MBzP. Phthalates changed methylation pattern of the tested genes, decreased expression of P16 and TP53 genes and increased the expression of BCL2 and CCND1. In conclusion, our results have shown that the examined phthalates disturbed the processes of methylation and expression of tumor suppressor genes (P16, TP53) and protooncogenes (BCL2, CCND1) in human PBMCs.
Collapse
|
3
|
Moody L, Hernández-Saavedra D, Kougias DG, Chen H, Juraska JM, Pan YX. Tissue-specific changes in Srebf1 and Srebf2 expression and DNA methylation with perinatal phthalate exposure. ENVIRONMENTAL EPIGENETICS 2019; 5:dvz009. [PMID: 31240115 PMCID: PMC6586200 DOI: 10.1093/eep/dvz009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 04/24/2019] [Accepted: 04/26/2019] [Indexed: 05/30/2023]
Abstract
Perinatal exposure to endocrine disrupting chemicals negatively impacts health, but the mechanism by which such toxicants damage long-term reproductive and metabolic function is unknown. Lipid metabolism plays a pivotal role in steroid hormone synthesis as well as energy utilization and storage; thus, aberrant lipid regulation may contribute to phthalate-driven health impairments. In order to test this hypothesis, we specifically examined epigenetic disruptions in lipid metabolism pathways after perinatal phthalate exposure. During gestation and lactation, pregnant Long-Evans rat dams were fed environmentally relevant doses of phthalate mixture: 0 (CON), 200 (LO), or 1000 (HI) µg/kg body weight/day. On PND90, male offspring in the LO and HI groups had higher body weights than CON rats. Gene expression of lipid metabolism pathways was altered in testis and adipose tissue of males exposed to the HI phthalate dosage. Specifically, Srebf1 was downregulated in testis and Srebf2 was upregulated in adipose tissue. In testis of HI rats, DNA methylation was increased at two loci and reduced at one other site surrounding Srebf1 transcription start site. In adipose tissue of HI rats, we observed increased DNA methylation at one region within the first intron of Srebf2. Computational analysis revealed several potential transcriptional regulator binding sites, suggesting functional relevance of the identified differentially methylated CpGs. Overall, we show that perinatal phthalate exposure affects lipid metabolism gene expression in a tissue-specific manner possibly through altering DNA methylation of Srebf1 and Srebf2.
Collapse
Affiliation(s)
- Laura Moody
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | | | - Daniel G Kougias
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Hong Chen
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Janice M Juraska
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Psychology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Yuan-Xiang Pan
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
4
|
Phthalates in Food Packaging, Consumer Products, and Indoor Environments. MOLECULAR AND INTEGRATIVE TOXICOLOGY 2014. [DOI: 10.1007/978-1-4471-6500-2_2] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
5
|
Benigni R, Bossa C, Tcheremenskaia O. Nongenotoxic carcinogenicity of chemicals: mechanisms of action and early recognition through a new set of structural alerts. Chem Rev 2013; 113:2940-57. [PMID: 23469814 DOI: 10.1021/cr300206t] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Romualdo Benigni
- Istituto Superiore di Sanita' Environment and Health Department, Viale Regina Elena 299, 00161 Rome, Italy.
| | | | | |
Collapse
|
6
|
Cunningham ML, Collins BJ, Hejtmancik MR, Herbert RA, Travlos GS, Vallant MK, Stout MD. Effects of the PPARα Agonist and Widely Used Antihyperlipidemic Drug Gemfibrozil on Hepatic Toxicity and Lipid Metabolism. PPAR Res 2010; 2010:681963. [PMID: 20953357 PMCID: PMC2952818 DOI: 10.1155/2010/681963] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2010] [Revised: 07/13/2010] [Accepted: 07/29/2010] [Indexed: 11/17/2022] Open
Abstract
Gemfibrozil is a widely prescribed hypolipidemic agent in humans and a peroxisome proliferator and liver carcinogen in rats. Three-month feed studies of gemfibrozil were conducted by the National Toxicology Program (NTP) in male Harlan Sprague-Dawley rats, B6C3F1 mice, and Syrian hamsters, primarily to examine mechanisms of hepatocarcinogenicity. There was morphologic evidence of peroxisome proliferation in rats and mice. Increased hepatocyte proliferation was observed in rats, primarily at the earliest time point. Increases in peroxisomal enzyme activities were greatest in rats, intermediate in mice, and least in hamsters. These studies demonstrate that rats are most responsive while hamsters are least responsive. These events are causally related to hepatotoxicity and hepatocarcinogenicity of gemfibrozil in rodents via peroxisome proliferator activated receptor-α (PPARα) activation; however, there is widespread evidence that activation of PPARα in humans results in expression of genes involved in lipid metabolism, but not in hepatocellular proliferation.
Collapse
Affiliation(s)
- Michael L. Cunningham
- National Toxicology Program, National Institute of Environmental Health Sciences, National Institutes of Health, 111 Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Bradley J. Collins
- National Toxicology Program, National Institute of Environmental Health Sciences, National Institutes of Health, 111 Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Milton R. Hejtmancik
- National Toxicology Program, National Institute of Environmental Health Sciences, National Institutes of Health, 111 Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Ronald A. Herbert
- National Toxicology Program, National Institute of Environmental Health Sciences, National Institutes of Health, 111 Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Gregory S. Travlos
- National Toxicology Program, National Institute of Environmental Health Sciences, National Institutes of Health, 111 Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Molly K. Vallant
- National Toxicology Program, National Institute of Environmental Health Sciences, National Institutes of Health, 111 Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Matthew D. Stout
- National Toxicology Program, National Institute of Environmental Health Sciences, National Institutes of Health, 111 Alexander Drive, Research Triangle Park, NC 27709, USA
| |
Collapse
|
7
|
Kostka G, Urbanek-Olejnik K, Wiadrowska B. Di-butyl phthalate-induced hypomethylation of the c-myc gene in rat liver. Toxicol Ind Health 2010; 26:407-16. [PMID: 20504828 DOI: 10.1177/0748233710369124] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Peroxisome proliferators (PPs)-induced DNA hypomethylation has been proposed as a mechanism of their toxicity, including carcinogenic action. The effect of di-butyl phthalate (DBP), a known peroxisome proliferators, on the methylation level of the c-myc promoter region in rat liver was studied. Changes in the methylation status of the c-myc gene were correlated with changes in DNA synthesis, DNA methyltransferase (DNMTs) activity and liver weight. Male Wistar rats received DBP in one, three or fourteen daily oral doses of 1800 mg/kg body weight (b.w.) x day(-1) (this dose is close to the dose that increases the numbers of peroxisomes in male Wistar rats). We have demonstrated that DBP decreased the methylation of the c-myc gene. Cytosine hypomethylation in the analyzed CpG sites of the c-myc gene promoter occurred during the whole period of study, although after 14 doses of DBP the difference from control was only on the borderline of significance (p = 0.066). An increase in DNA synthesis was only observed after 24 hours of treatment with DBP, and it preceded liver growth. We hypothesize that DBP-induced demethylation of the c-myc gene was an active mechanism, not associated with DNMTs activity and DNA replication.
Collapse
Affiliation(s)
- Grazyna Kostka
- Department of Environmental Toxicology, National Institute of Public Health-National Institute of Hygiene, Chocimska, Warsaw, Poland.
| | | | | |
Collapse
|
8
|
Caldwell JC, Evans MV, Marcus AH, Scott CS, Chiu WA, Okino MS, Preuss PW. Comments on Article “Applying Mode-of-Action and Pharmacokinetic Considerations in Contemporary Cancer Risk Assessments: An Example with Trichloroethylene” by Clewell and Andersen. Crit Rev Toxicol 2008; 36:291-4; discussion 295-8. [PMID: 16686425 DOI: 10.1080/10408440600599240] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
In their 2004 article, Clewell and Andersen provide their perspective on the application of mode-of-action (MOA) and pharmacokinetic considerations in contemporary cancer risk assessment using trichloroethylene (TCE) as a case example. TCE is a complex chemical toxicologically, with multiple metabolites, multiple sites of observed toxicity, and multiple potential MOAs. As scientists who are responsible for revising the U.S. Environmental Protection Agency's draft risk assessment of TCE, we welcome input of the quality to which the Agency is held accountable. However, in our view, Clewell and Andersen do not present a sufficiently current, complete, accurate, and transparent review of the pertinent scientific literature. In particular, their article would need to incorporate substantial recently published scientific information, better support its conclusions about MOA and choice of linear or nonlinear dose-response extrapolation, and increase its transparency as to quantitative analyses in order to make a significant contribution to the scientific discussion of TCE health risks.
Collapse
Affiliation(s)
- Jane C Caldwell
- National Center for Environmental Assessment, Office of Research and Development, U.S. Environmental Protection Agency, Washington, DC 20460, USA
| | | | | | | | | | | | | |
Collapse
|
9
|
Kostka G, Urbanek K, Ludwicki JK. The effect of phenobarbital on the methylation level of the p16 promoter region in rat liver. Toxicology 2007; 239:127-35. [PMID: 17706854 DOI: 10.1016/j.tox.2007.07.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2007] [Revised: 07/04/2007] [Accepted: 07/07/2007] [Indexed: 01/01/2023]
Abstract
It has been suggested that non-genotoxic carcinogens (NGCs) may cause modification of the DNA methylation status. We studied the effects of phenobarbital (PB) -- a non-genotoxic rodent liver carcinogen -- on the methylation level of the promoter region of the p16 suppressor gene, as well as on hepatomegaly, DNA synthesis, and DNA-methyltransferase (DNMTs) activity in the rat liver. Male Wistar rats received PB in 1, 3 or 14 daily oral doses (at 24-h intervals), each equivalent to 1/10 of the LD(50) value. The study showed that PB has caused persistent elevation in relative liver weight (RLW) as well as a transient increase in DNA synthesis. This suggests that the PB-induced increase in RLW was due to a combination of both hyperplasia and hypertrophy of liver cells. The effect of PB on DNA synthesis corresponded to an increase in the methylation pattern of the p16 promoter sequence. Methylation of cytosine in the analyzed CpG sites of the p16 gene was found after short exposure of the animals to PB. Treatment of rats with PB for 1 and 3 days also produced an increase in nuclear DNMTs activity. After prolonged administration (14 days), DNA synthesis declined, returning to the control level. No changes in methylation of the p16 gene nor in DNMTs activity were observed. The reversibility of early induced changes in target tissues is a mark characteristic of tumor promoters. Thus, transient changes in methylation of the p16 gene, although their direct role in the mechanisms of PB toxicity, including its carcinogenic action, remains doubtful, may therefore be a significant element of such processes.
Collapse
Affiliation(s)
- Grazyna Kostka
- Department of Environmental Toxicology, National Institute of Hygiene, Chocimska 24, 00-791, Warsaw, Poland.
| | | | | |
Collapse
|
10
|
Maire MA, Rast C, Landkocz Y, Vasseur P. 2,4-Dichlorophenoxyacetic acid: effects on Syrian hamster embryo (SHE) cell transformation, c-Myc expression, DNA damage and apoptosis. Mutat Res 2007; 631:124-36. [PMID: 17540612 DOI: 10.1016/j.mrgentox.2007.03.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2006] [Revised: 01/16/2007] [Accepted: 03/23/2007] [Indexed: 11/25/2022]
Abstract
2,4-Dichlorophenoxyacetic acid (2,4-D) is a selective, systemic auxin-type herbicide extensively used throughout the world. The present research was aimed at studying effects of low and non-cytotoxic concentrations of 2,4-D on SHE cells in relation with carcinogenicity. Effects were studied on Syrian hamster morphological cell transformation, c-Myc expression - both at the gene and protein level - DNA damage and apoptosis. 2,4-D significantly induced cell transformation at 11.5 microM and 23 microM (i.e. 2.5 microg/mL and 5 microg/mL). An increase in the expression of the transcription factor c-Myc, measured by use of RT-PCR with respect to mRNA level and by Western blotting for protein level was registered at these concentrations, as well as genotoxic effects evaluated with the single-cell gel electrophoresis (Comet) assay. Consequences for apoptosis of 2,4-D treatment were also investigated. The fluorochrome acridine orange was used to study DNA fragmentation as a marker of apoptosis. No effect on apoptosis was found at 2,4-D concentrations that induced cell transformation. This was confirmed by the unchanged expression of Bcl-2 and Bax, two regulator genes of the mitochondrial pathway of apoptosis. Our results demonstrate the transforming and genotoxic effects of low concentrations of 2,4-D in mammalian cells. This information contributes to a better understanding of the mechanism of 2,4-D toxicity in mammalian cells and demonstrates that 2,4-D should be considered as potentially hazardous to humans.
Collapse
Affiliation(s)
- M A Maire
- Laboratoire Ecotoxicité Santé Environnementale, CNRS UMR 7146, Université de Metz, UFR Sciences Fondamentales et Appliquées, Rue Général Delestraint, 57070 Metz, France
| | | | | | | |
Collapse
|
11
|
Caldwell JC, Keshava N. Key issues in the modes of action and effects of trichloroethylene metabolites for liver and kidney tumorigenesis. ENVIRONMENTAL HEALTH PERSPECTIVES 2006; 114:1457-63. [PMID: 16966105 PMCID: PMC1570066 DOI: 10.1289/ehp.8692] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Trichloroethylene (TCE) exposure has been associated with increased risk of liver and kidney cancer in both laboratory animal and epidemiologic studies. The U.S. Environmental Protection Agency 2001 draft TCE risk assessment concluded that it is difficult to determine which TCE metabolites may be responsible for these effects, the key events involved in their modes of action (MOAs) , and the relevance of these MOAs to humans. In this article, which is part of a mini-monograph on key issues in the health risk assessment of TCE, we present a review of recently published scientific literature examining the effects of TCE metabolites in the context of the preceding questions. Studies of the TCE metabolites dichloroacetic acid (DCA) , trichloroacetic acid (TCA) , and chloral hydrate suggest that both DCA and TCA are involved in TCE-induced liver tumorigenesis and that many DCA effects are consistent with conditions that increase the risk of liver cancer in humans. Studies of S-(1,2-dichlorovinyl) -l-cysteine have revealed a number of different possible cell signaling effects that may be related to kidney tumorigenesis at lower concentrations than those leading to cytotoxicity. Recent studies of trichloroethanol exploring an alternative hypothesis for kidney tumorigenesis have failed to establish the formation of formate as a key event for TCE-induced kidney tumors. Overall, although MOAs and key events for TCE-induced liver and kidney tumors have yet to be definitively established, these results support the likelihood that toxicity is due to multiple metabolites through several MOAs, none of which appear to be irrelevant to humans.
Collapse
Affiliation(s)
- Jane C Caldwell
- National Center for Environmental Assessment, Office of Research and Development, U.S. Environmental Protection Agency, Washington, DC, USA.
| | | |
Collapse
|
12
|
Tao L, Wang W, Li L, Kramer PK, Pereira MA. DNA hypomethylation induced by drinking water disinfection by-products in mouse and rat kidney. Toxicol Sci 2005; 87:344-52. [PMID: 16014735 DOI: 10.1093/toxsci/kfi257] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Bromodichloromethane (BDCM), chloroform, dibromoacetic acid (DBA), dichloroacetic acid (DCA), and trichloroacetic acid (TCA) are chlorine disinfection by-products (DBPs) found in drinking water that have indicated renal carcinogenic and/or tumor promoting activity. We have reported that the DBPs caused DNA hypomethylation in mouse liver, which correlated with their carcinogenic and tumor promoting activity. In this study, we determined their ability to cause renal DNA hypomethylation. B6C3F1 mice were administered DCA or TCA concurrently with/without chloroform in their drinking water for 7 days. In male, but not female mouse kidney, DCA, TCA, and to a lesser extent, chloroform decreased the methylation of DNA and the c-myc gene. Coadministering chloroform increased DCA but not TCA-induced DNA hypomethylation. DBA and BDCM caused renal DNA hypomethylation in both male B6C3F1 mice and Fischer 344 rats. We have reported that, in mouse liver, methionine prevented DCA- and TCA-induced hypomethylation of the c-myc gene. To determine whether it would also prevent hypomethylation in the kidneys, male mice were administered methionine in their diet concurrently with DCA or TCA in their drinking water. Methionine prevented both DCA- and TCA-induced hypomethylation of the c-myc gene. The ability of the DBPs to cause hypomethylation of DNA and of the c-myc gene correlated with their carcinogenic and tumor promoting activity in mouse and rat kidney, which should be taken into consideration as part of their risk assessment. That methionine prevents DCA- and TCA-induced hypomethylation of the c-myc gene would suggest it could prevent their carcinogenic activity in the kidney.
Collapse
Affiliation(s)
- Lianhui Tao
- Department of Internal Medicine, Division of Hematology and Oncology, College of Medicine and Public Health, The Ohio State University, Columbus, 43210, USA.
| | | | | | | | | |
Collapse
|
13
|
Pereira MA, Wang W, Kramer PM, Tao L. DNA hypomethylation induced by non-genotoxic carcinogens in mouse and rat colon. Cancer Lett 2004; 212:145-51. [PMID: 15279894 DOI: 10.1016/j.canlet.2004.03.024] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2003] [Revised: 03/18/2004] [Accepted: 03/22/2004] [Indexed: 12/31/2022]
Abstract
The ability of non-genotoxic colon carcinogens to induce DNA hypomethylation was evaluated. Administering 0, 0.2 and 0.4 mg/kg of 5-aza-2'-deoxycytidine to female mice for 5 days resulted in a dose-related decrease in 5-methylcytosine in colon DNA. Rutin (3.0 mg/kg) and five bile acids (4.0 mg/kg) were administered in the diet to male F344 rats for 14 days. Rutin and four bile acids that promote colon cancer, deoxycholic acid, chenodeoxycholic acid, cholic acid and lithocholic acid caused DNA hypomethylation, while ursodeoxycholic acid that prevents colon cancer did not. Bromodichloromethane (BDCM) was administered to male F344 rats and B6C3F1 mice by gavage at 0, 50 and 100 mg/kg or in their drinking water at 0, 350 and 700 mg/l for up to 28 days. In rats, BDCM decreased DNA methylation, being more effective when administered by gavage, correlating to its greater carcinogenic potency by this route. In mice, BDCM did not decrease DNA methylation, corresponding to its lack of carcinogenic activity in the colon of this species. In summary, the ability of non-genotoxic colon carcinogens to cause DNA hypomethylation correlated with their carcinogenic activity in the colon.
Collapse
Affiliation(s)
- Michael A Pereira
- Department of Pathology, Medical College of Ohio, 3055 Arlington Avenue, Toledo 43614-5806, USA.
| | | | | | | |
Collapse
|
14
|
Tao L, Li Y, Kramer PM, Wang W, Pereira MA. Hypomethylation of DNA and the insulin-like growth factor-II gene in dichloroacetic and trichloroacetic acid-promoted mouse liver tumors. Toxicology 2004; 196:127-36. [PMID: 15036762 DOI: 10.1016/j.tox.2003.11.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2003] [Revised: 11/12/2003] [Accepted: 11/20/2003] [Indexed: 11/23/2022]
Abstract
Dichloroacetic acid (DCA) and trichloroacetic acid (TCA) are mouse liver carcinogens. DNA hypomethylation is a common molecular event in cancer that is induced by DCA and TCA. Hypomethylation of DNA and the insulin-like growth factor-II (IGF-II) gene was determined in DCA- and TCA-promoted liver tumors. Mouse liver tumors were initiated by N-methyl-N-nitrosourea and promoted by either DCA or TCA. By dot-blot analysis using an antibody for 5-methylcytosine, the DNA in DCA- and TCA-promoted tumors was demonstrated to be hypomethylated. The methylation status of 28 CpG sites in the differentially methylated region-2 (DMR-2) of mouse IGF-II gene was determined. In liver, 79.3 +/- 1.7% of the sites were methylated, while in DCA- and TCA-treated mice, only 46.4 +/- 2.1% and 58.0 +/- 1.7% of them were methylated and 8.7 +/- 2.6% and 10.7 +/- 7.4% were methylated in tumors. The decreased methylation found in liver from mice exposed to DCA or TCA occurred only in the upstream region of DMR-2, while in tumors it occurred throughout the probed region. mRNA expression of the IGF-II gene was increased in DCA- and TCA-promoted liver tumors but not in non-involved liver from DCA- and TCA-exposed mice. The results support the hypothesis that DNA hypomethylation is involved in the mechanism for the tumorigenicity of DCA and TCA.
Collapse
Affiliation(s)
- Lianhui Tao
- Department of Pathology, Medical College of Ohio, 3055 Arlington Avenue, Toledo, OH 43614-5806, USA.
| | | | | | | | | |
Collapse
|