1
|
Zha X, Fang M, Zhong W, Chen L, Feng H, Zhang M, Wang H, Zhang Y. Dose-, stage- and sex- difference of prenatal prednisone exposure on placental morphological and functional development. Toxicol Lett 2024; 402:68-80. [PMID: 39580039 DOI: 10.1016/j.toxlet.2024.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 11/18/2024] [Accepted: 11/21/2024] [Indexed: 11/25/2024]
Abstract
Prednisone, a synthetic glucocorticoid, is commonly used to treat autoimmune diseases in pregnant women. However, some studies suggest that the use of prednisone during pregnancy may lead to adverse pregnancy outcomes. In this study, we established PPE mouse models at different doses (0.25, 0.5, 1.0 mg/kg·d) and different stages (whole pregnancy, early pregnancy and middle-late pregnancy) and determined outcomes on the placenta and fetus. The results of our study indicated that at the highest dose of 1 mg/kg PPE using a GD 0-18 dosing regime, PPE caused placental morphological changes measured as a decrease in placental weight relative to controls and a decrease in the placenta junctional zone (JZ)/labyrinth zone (LZ) ratio. No changes were observed on the fetuses for number of live, stillborn, and absorbed fetuses between the experimental groups and the control group. In the placentas at some doses, there were decreases in cell proliferation markers measured at the RNA and protein level by Western blot and increased apoptosis. Measures of gene expression at the mRNA level showed altered nutrients (including glucose, amino acid, and cholesterol) transport gene expressions with the most significant change associated with the male placentas at high-dose and whole pregnancy PPE group. It was further found that PPE led to the inhibition of the insulin-like growth factor 2 (IGF2)/insulin-like growth factor 1 receptor (IGF1R) signaling pathway, which was well correlated with the indicators of cell proliferation, syncytialization and nutrient (glucose and amino acid) transport indices. In conclusion, PPE can alter placental morphology and nutrient transport function, with differences in effect related to dose, stage and gender. Differential gene expressions measured for genes of the IGF2/IGF1R signaling pathway suggested this pathway may be involved in the effects seen with PPE. This study provides a theoretical and experimental basis for enhancing the understanding of the effects of prednisone use on placenta during human pregnancy but does not currently raise concerns for human use as effects were not seen on the fetuses and while the effects on cell proliferation are informative they were inconsistent and the differential effects on female and male placentas unexplained suggesting that further work is required to elucidate if these findings have relevance for human use of PPE during pregnancy.
Collapse
Affiliation(s)
- Xiaomeng Zha
- Department of Obstetrics and Gynaecology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Man Fang
- Department of Obstetrics and Gynaecology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Wen Zhong
- Department of Obstetrics and Gynaecology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Liang Chen
- Department of Obstetrics and Gynaecology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Hui Feng
- Department of Obstetrics and Gynaecology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Min Zhang
- Department of Obstetrics and Gynaecology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Diseases, Wuhan 430071, China; Hubei Clinical Research Center for Prenatal Diagnosis and Birth Health, Wuhan 430071, China
| | - Hui Wang
- Department of Obstetrics and Gynaecology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Diseases, Wuhan 430071, China.
| | - Yuanzhen Zhang
- Department of Obstetrics and Gynaecology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Diseases, Wuhan 430071, China; Hubei Clinical Research Center for Prenatal Diagnosis and Birth Health, Wuhan 430071, China.
| |
Collapse
|
2
|
Aioub AAA, Abdelnour SA, Hashem AS, Maher M, Abdel-Wahab SIZ, Alkeridis LA, Shukry M, Sayed SM, Elsobki AEA. Cinnamon nanoemulsion mitigates acetamiprid-induced hepatic and renal toxicity in rats: biochemical, histopathological, immunohistochemical, and molecular docking analysis. BMC Vet Res 2024; 20:256. [PMID: 38867202 PMCID: PMC11167909 DOI: 10.1186/s12917-024-04084-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 05/16/2024] [Indexed: 06/14/2024] Open
Abstract
Acetamiprid (ACDP) is a widely used neonicotinoid insecticide that is popular for its efficacy in controlling fleas in domestic settings and for pets. Our study aims to offer a comprehensive examination of the toxicological impacts of ACDP and the prophylactic effects of cinnamon nanoemulsions (CMNEs) on the pathological, immunohistochemical, and hematological analyses induced by taking ACDP twice a week for 28 days. Forty healthy rats were divided into four groups (n = 10) at random; the first group served as control rats; the second received CMNEs (2 mg/Kg body weight); the third group received acetamiprid (ACDP group; 21.7 mg/Kg body weight), and the fourth group was given both ACDP and CMNEs by oral gavage. Following the study period, tissue and blood samples were extracted and prepared for analysis. According to a GC-MS analysis, CMNEs had several bioactive ingredients that protected the liver from oxidative stress by upregulating antioxidant and anti-inflammatory agents. Our findings demonstrated that whereas ACDP treatment considerably boosted white blood cells (WBCs) and lymphocytes, it significantly lowered body weight gain (BWG), red blood cells (RBCs), hemoglobin (Hb), hematocrit (HCT), and platelets (PLT). ACDP notably reduced antioxidant enzyme activities: superoxide dismutase (SOD), glutathione peroxidase (GPx), and catalase (CAT) and elevated hydrogen peroxide and malondialdehyde levels compared with other groups. ACDP remarkably raised alanine aminotransferase (ALT), aspartate amino transaminase (AST), and alkaline phosphatase (ALP) levels.Moreover, the histopathological and immunohistochemistry assays discovered a severe toxic effect on the liver and kidney following ACDP delivery. Furthermore, cyclooxygenase 2 (COX-2) + immunoexpression was enhanced after treatment with CMNEs. All of the parameters above were returned to nearly normal levels by the coadministration of CMNEs. The molecular docking of cinnamaldehyde with COX-2 also confirmed the protective potential of CMNEs against ACDP toxicity. Our findings highlighted that the coadministration of CMNEs along with ACDP diminished its toxicity by cutting down oxidative stress and enhancing antioxidant capacity, demonstrating the effectiveness of CMNEs in lessening ACDP toxicity.
Collapse
Affiliation(s)
- Ahmed A A Aioub
- Plant Protection Department, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt.
| | - Sameh A Abdelnour
- Animal Production Department, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Ahmed S Hashem
- Stored Product Pests Research Department, Plant Protection Research Institute, Agricultural Research Center, Sakha, Kafr El-Sheikh, 33717, Egypt
| | - Mohamed Maher
- Department of Biochemistry, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Sarah I Z Abdel-Wahab
- Plant Protection Department, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Lamya Ahmed Alkeridis
- Department of Biology, College of Science, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh, 11671, Saudi Arabia
| | - Mustafa Shukry
- Physiology Department, Faculty of Veterinary Medicine, kafrelsheikh University, kafrelsheikh, 33516, Egypt
| | - Samy M Sayed
- Department of Economic Entomology and Pesticides, Faculty of Agriculture, Cairo University, Giza, 12613, Egypt
- Department of Science and Technology, University College-Ranyah, Taif University, B.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Ahmed E A Elsobki
- Plant Protection Department, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| |
Collapse
|
3
|
Aioub AAA, Abdelnour SA, Shukry M, Saad AM, El-Saadony MT, Chen Z, Elsobki AEA. Ameliorating effect of the biological Zinc nanoparticles in abamectin induced hepato-renal injury in a rat model: Implication of oxidative stress, biochemical markers and COX-2 signaling pathways. Front Pharmacol 2022; 13:947303. [PMID: 36172185 PMCID: PMC9510891 DOI: 10.3389/fphar.2022.947303] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 08/08/2022] [Indexed: 11/30/2022] Open
Abstract
Extensive use of abamectin (ABM) as an anthelmintic in veterinary systems adversely affects the health and welfare of animals and humans. Zinc nanoparticles (ZnNPs) have therapeutic benefits and ameliorate the effect of environmental pollutants. In this study, we assessed the ameliorative effect of ZnNPs against the sub-lethal toxicity of ABM in rats. Forty healthy rats were randomly selected into four groups (n = 10); the control received normal saline and test rats were treated orally twice weekly with ABM (1 mg/kg bwt), ZnNPs (10 mg/kg bwt) and ABM + ZnNPs for 28 days. Upon completion of the study period, blood and tissue samples were collected and prepared for hematological, biochemical, pathological, and immunohistochemical analysis. Our results showed that ABM treatment significantly decreased body weight gain (BWG), red blood cells (RBCs), hemoglobin (Hb), hematocrit (HC), and platelet (PLT); while it significantly increased white blood cells (WBCs) and lymphocytes. ABM also significantly decreased antioxidant enzyme activities: superoxide dismuthase (SOD), glutathione peroxidase (GPx), and catalase (CAT) and increased hydrogen peroxide and malondialdehyde levels compared with other groups. ABM significantly raised alanine aminotransferase (ALT), aspartate amino transaminase (AST), and alkaline phosphatase (ALP) levels, which was restored by co-administration of ZnNPs. Moreover, ZnNPs ameliorated ABM-mediated negative histopathological changes in the liver and kidney tissues, exhibiting a significant protective effect. Cyclooxygenase 2 (COX-2) + immuno-expression were reduced after pretreatment with ZnNPs. These findings suggested that co-administration of ZnNPs with ABM mitigated its toxicity by combating oxidative stress and boosting antioxidant capacity, indicating the efficacy of ZnNPs in attenuating ABM toxicity.
Collapse
Affiliation(s)
- Ahmed A. A. Aioub
- Plant Protection Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Sameh A. Abdelnour
- Animal Production Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Mustafa Shukry
- Department of Physiology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Ahmed M. Saad
- Biochemistry Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Mohamed T. El-Saadony
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Zhongli Chen
- Key Laboratory of the Three Gorges Reservoir Eco-Environment, Chongqing University, Chongqing, China
- *Correspondence: Zhongli Chen,
| | - Ahmed E. A. Elsobki
- Plant Protection Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| |
Collapse
|
4
|
Lorigo M, Cairrao E. Fetoplacental vasculature as a model to study human cardiovascular endocrine disruption. Mol Aspects Med 2021; 87:101054. [PMID: 34839931 DOI: 10.1016/j.mam.2021.101054] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 10/15/2021] [Accepted: 11/18/2021] [Indexed: 12/11/2022]
Abstract
Increasing evidence has associated the exposure of endocrine-disrupting chemicals (EDCs) with the cardiovascular (CV) system. This exposure is particularly problematic in a sensitive window of development, pregnancy. Pregnancy exposome can affect the overall health of the pregnancy by dramatic changes in vascular physiology and endocrine activity, increasing maternal susceptibility. Moreover, fetoplacental vascular function is generally altered, increasing the risk of developing pregnancy complications (including cardiovascular diseases, CVD) and predisposing the foetus to adverse health risks later in life. Thus, our review summarizes the existing literature on exposures to EDCs during pregnancy and adverse maternal health outcomes, focusing on the human placenta, vein, and umbilical artery associated with pregnancy complications. The purpose of this review is to highlight the role of fetoplacental vasculature as a model for the study of human cardiovascular endocrine disruption. Therefore, we emphasize that the placenta, together with the umbilical arteries and veins, allows a better characterization of the pregnant woman's exposome. Consequently, it contributes to the protection of the mother and foetus against CV disorders in life.
Collapse
Affiliation(s)
- Margarida Lorigo
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, 6200-506, Covilhã, Portugal; FCS - UBI, Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal
| | - Elisa Cairrao
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, 6200-506, Covilhã, Portugal; FCS - UBI, Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal.
| |
Collapse
|
5
|
Moniruzzaman M, Yano Y, Ono T, Hisaeda Y, Shimakoshi H. Aerobic Electrochemical Transformations of DDT to Oxygen-Incorporated Products Catalyzed by a B12 Derivative. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20210316] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Mohammad Moniruzzaman
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Yoshio Yano
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Toshikazu Ono
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Yoshio Hisaeda
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Hisashi Shimakoshi
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
6
|
Peinado FM, Artacho-Cordón F, Barrios-Rodríguez R, Arrebola JP. Influence of polychlorinated biphenyls and organochlorine pesticides on the inflammatory milieu. A systematic review of in vitro, in vivo and epidemiological studies. ENVIRONMENTAL RESEARCH 2020; 186:109561. [PMID: 32668538 DOI: 10.1016/j.envres.2020.109561] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 04/10/2020] [Accepted: 04/19/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs) are relevant families of persistent organic pollutants, which have been linked to several long-term adverse health effects. The mechanisms of action of these pollutants are still poorly understood. However, there are some evidences suggesting that inflammation might play a key role on their effects. AIM To systematically synthesize the published in vitro, in vivo and epidemiological data assessing the potential influence of exposure to OCPs and PCBs on the development of an inflammatory milieu. METHODS A systematic review of peer-reviewed original research papers published until 1st May 2019 was conducted, by using Medline, Web of Science and Scopus databases. A total of 39 articles met the inclusion criteria and were evaluated in this review. RESULTS The majority of the studies showed significant associations of PCB and OCP exposure with all inflammatory markers measured (n = 30). Some studies showed positive and negative associations (n = 7) and only two studies evidenced negative associations (n = 2). Most of the available evidences came from in vitro and in vivo studies (n = 31), with few epidemiological studies (n = 8). CONCLUSIONS We found consistent positive associations between exposure to PCBs and OCPs and the development of a pro-inflammatory milieu, with only few discrepancies. However, given the limited epidemiological evidence found, our results warrant further research in order to elucidate the real contribution of these pollutants on the inflammatory processes and subsequent diseases.
Collapse
Affiliation(s)
- F M Peinado
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| | - F Artacho-Cordón
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain; University of Granada, Radiology and Physical Medicine Department, Granada, Spain; CIBER Epidemiology and Public Health (CIBERESP), Spain.
| | - R Barrios-Rodríguez
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain; University of Granada, Department of Preventive Medicine and Public Health, Granada, Spain; CIBER Epidemiology and Public Health (CIBERESP), Spain
| | - J P Arrebola
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain; University of Granada, Department of Preventive Medicine and Public Health, Granada, Spain; CIBER Epidemiology and Public Health (CIBERESP), Spain.
| |
Collapse
|
7
|
Gingrich J, Ticiani E, Veiga-Lopez A. Placenta Disrupted: Endocrine Disrupting Chemicals and Pregnancy. Trends Endocrinol Metab 2020; 31:508-524. [PMID: 32249015 PMCID: PMC7395962 DOI: 10.1016/j.tem.2020.03.003] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 02/19/2020] [Accepted: 03/06/2020] [Indexed: 01/06/2023]
Abstract
Endocrine disrupting chemicals (EDCs) are chemicals that can interfere with normal endocrine signals. Human exposure to EDCs is particularly concerning during vulnerable periods of life, such as pregnancy. However, often overlooked is the effect that EDCs may pose to the placenta. The abundance of hormone receptors makes the placenta highly sensitive to EDCs. We have reviewed the most recent advances in our understanding of EDC exposures on the development and function of the placenta such as steroidogenesis, spiral artery remodeling, drug-transporter expression, implantation and cellular invasion, fusion, and proliferation. EDCs reviewed include those ubiquitous in the environment with available human biomonitoring data. This review also identifies critical gaps in knowledge to drive future research in the field.
Collapse
Affiliation(s)
- Jeremy Gingrich
- Department of Animal Science, College of Agriculture and Natural Resources, Michigan State University, East Lansing, MI, USA; Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, USA
| | - Elvis Ticiani
- Department of Animal Science, College of Agriculture and Natural Resources, Michigan State University, East Lansing, MI, USA
| | - Almudena Veiga-Lopez
- Department of Animal Science, College of Agriculture and Natural Resources, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
8
|
Yang C, Song G, Lim W. A mechanism for the effect of endocrine disrupting chemicals on placentation. CHEMOSPHERE 2019; 231:326-336. [PMID: 31132539 DOI: 10.1016/j.chemosphere.2019.05.133] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 05/13/2019] [Accepted: 05/16/2019] [Indexed: 05/28/2023]
Abstract
Numerous recent studies have shown that endocrine disrupting chemicals (EDCs) in the body of pregnant women can pass through the placenta and be exposed to the fetus, leading to fetal development and cognitive impairment. Placentation through invasion of trophoblast cells and vascular remodeling is essential to maintaining maternal and fetal health throughout the pregnancy. Abnormal placentation can lead to pregnancy disorders such as preeclampsia (PE) and intrauterine growth retardation (IUGR). However, many studies have not been conducted on whether EDCs can inhibit the development and function of the placenta. Isolating placental tissues to analyze the effect of EDCs on placentation has several limitations. In this review, we discussed the types of EDCs that can pass through the placental barrier and accumulate in the placenta with relative outcome. EDCs can be released from a variety of products including plasticizers, pesticides, and retardant. We also discussed the development and dysfunction of the placenta when EDCs were treated on trophoblast cells or pregnant rodent models. The effects of EDCs on the placenta of livestock are also discussed, together with the molecular mechanism of EDCs acting in trophoblast cells. We describe how EDCs cross the membrane of trophoblasts to regulate signaling pathways, causing genetic and epigenetic changes that lead to changes in cell viability and invasiveness. Further studies on the effects of EDCs on placenta may draw attention to the correct use of products containing EDCs during pregnancy.
Collapse
Affiliation(s)
- Changwon Yang
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Gwonhwa Song
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea.
| | - Whasun Lim
- Department of Food and Nutrition, Kookmin University, Seoul, 02707, Republic of Korea.
| |
Collapse
|
9
|
Yi Y, Cheng JC, Klausen C, Leung PC. TGF-β1 inhibits human trophoblast cell invasion by upregulating cyclooxygenase-2. Placenta 2018; 68:44-51. [DOI: 10.1016/j.placenta.2018.06.313] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 06/13/2018] [Accepted: 06/29/2018] [Indexed: 01/13/2023]
|
10
|
Li Y, Wang K, Zou QY, Zhou C, Magness RR, Zheng J. A possible role of aryl hydrocarbon receptor in spontaneous preterm birth. Med Hypotheses 2015; 84:494-7. [PMID: 25697115 DOI: 10.1016/j.mehy.2015.02.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 02/04/2015] [Indexed: 01/03/2023]
Abstract
Preterm birth (PTB) is defined as birth before 37 weeks of gestation and is a leading cause of neonatal mortality and morbidity. To date, the etiology of spontaneous PTB (sPTB) remains unclear; however, intrauterine bacterial infection-induced inflammation is considered to be one of the major triggers. Aryl hydrocarbon receptor (AhR) is a ligand-dependent transcription factor. Upon activation, AhR signaling mediates many biological processes. AhR is abundantly expressed in human placentas, primarily in trophoblasts, and several fetal organs and tissues. The activation of AhR signaling can modulate inflammatory responses via promoting production of pro-inflammatory cytokines by the placenta and fetal membranes. These cytokines could enhance expression and/or activity of cyclooxygenase-2 (COX2) in human trophoblasts and amniotic epithelia, which in turn stimulate synthesis and release of prostaglandins (PGs; e.g., PGE2 and PGF2α). Given the discovery of a number of natural and endogenous AhR ligands in human, we hypothesize that in a subset of patients with high AhR expression in placentas and fetal membranes, repeated exposure to these AhR ligands hyperactivates AhR, inducing hyperactivation of the cytokines/COX2/PGs pathway, resulting in myometrial contractions, ultimately leading to sPTB. We further hypothesize that hyperactivation of this AhR pathway can induce sPTB either directly or in synergy with the bacterial infection. Proof of this hypothesis may provide a novel mechanism underlying sPTB.
Collapse
Affiliation(s)
- Yan Li
- Department of Obstetrics and Gynecology, Perinatal Research Laboratories, University of Wisconsin, Madison, WI 53715, United States
| | - Kai Wang
- Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 200040, PR China
| | - Qing-Yun Zou
- Department of Obstetrics and Gynecology, Perinatal Research Laboratories, University of Wisconsin, Madison, WI 53715, United States
| | - Chi Zhou
- Department of Obstetrics and Gynecology, Perinatal Research Laboratories, University of Wisconsin, Madison, WI 53715, United States
| | - Ronald R Magness
- Department of Obstetrics and Gynecology, Perinatal Research Laboratories, University of Wisconsin, Madison, WI 53715, United States; Department of Pediatrics, University of Wisconsin, Madison, WI 53715, United States; Department of Animal Sciences, University of Wisconsin, Madison, WI 53715, United States
| | - Jing Zheng
- Department of Obstetrics and Gynecology, Perinatal Research Laboratories, University of Wisconsin, Madison, WI 53715, United States; Department of Cardiovascular Medicine, Affiliated Hospital of Guangdong Medical College, Zhanjiang 524001, Guangdong, PR China.
| |
Collapse
|
11
|
Wrobel MH, Bedziechowski P, Mlynarczuk J, Kotwica J. Impairment of uterine smooth muscle contractions and prostaglandin secretion from cattle myometrium and corpus luteum in vitro is influenced by DDT, DDE and HCH. ENVIRONMENTAL RESEARCH 2014; 132:54-61. [PMID: 24742728 DOI: 10.1016/j.envres.2014.02.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Revised: 02/21/2014] [Accepted: 02/24/2014] [Indexed: 06/03/2023]
Abstract
The aim of this study was to investigate the effect of dichlorodiphenyltrichloroethane(DDT), dichlorodiphenyldichloroethylene (DDE) and γ-hexachlorocyclohexane (HCH) (10 ng/ml) on myometrial motility and the secretory function of the myometrium and corpus luteum (CL) collected from cows on days 8-12 of the estrous cycle. All of the xenobiotics increased (P<0.05) myometrial contractility. Moreover, the xenobiotics stimulated the secretion of the following prostaglandins (PGs) from myometrial strips: PGF2α, PGE2 and PGI2. DDT and DDE also increased (P<0.05) the release of PGF2α from CL strips, and HCH had the same effect (P<0.05) on the secretion of PGE2 and PGI2. The studied xenobiotics did not affect (P>0.05) PG synthesis, but DDT and DDE increased the mRNA expression levels of leukemia inhibitor factor (LIF), which can stimulate PG production. In summary, the xenobiotics affected PG secretion from cow myometrium and CL, which may contribute to the mechanism of uterine contraction disturbance.
Collapse
Affiliation(s)
- Michal H Wrobel
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima Street 10, 10- 748 Olsztyn, Poland
| | - Pawel Bedziechowski
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima Street 10, 10- 748 Olsztyn, Poland
| | - Jaroslaw Mlynarczuk
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima Street 10, 10- 748 Olsztyn, Poland
| | - Jan Kotwica
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima Street 10, 10- 748 Olsztyn, Poland.
| |
Collapse
|
12
|
Diverse roles of prostaglandins in blastocyst implantation. ScientificWorldJournal 2014; 2014:968141. [PMID: 24616654 PMCID: PMC3925584 DOI: 10.1155/2014/968141] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 12/18/2013] [Indexed: 01/14/2023] Open
Abstract
Prostaglandins (PGs), derivatives of arachidonic acid, play an indispensable role in embryo implantation. PGs have been reported to participate in the increase in vascular permeability, stromal decidualization, blastocyst growth and development, leukocyte recruitment, embryo transport, trophoblast invasion, and extracellular matrix remodeling during implantation. Deranged PGs syntheses and actions will result in implantation failure. This review summarizes up-to-date literatures on the role of PGs in blastocyst implantation which could provide a broad perspective to guide further research in this field.
Collapse
|