1
|
Zhang Z, Li D, Xie R, Guo R, Nair S, Han H, Zhang G, Zhao Q, Zhang L, Jiao N, Zhang Y. Plastoquinone synthesis inhibition by tetrabromo biphenyldiol as a widespread algicidal mechanism of marine bacteria. THE ISME JOURNAL 2023; 17:1979-1992. [PMID: 37679430 PMCID: PMC10579414 DOI: 10.1038/s41396-023-01510-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 08/30/2023] [Accepted: 09/01/2023] [Indexed: 09/09/2023]
Abstract
Algae and bacteria have complex and intimate interactions in the ocean. Besides mutualism, bacteria have evolved a variety of molecular-based anti-algal strategies. However, limited by the unknown mechanism of synthesis and action of these molecules, these strategies and their global prevalence remain unknown. Here we identify a novel strategy through which a marine representative of the Gammaproteobacteria produced 3,3',5,5'-tetrabromo-2,2'-biphenyldiol (4-BP), that kills or inhibits diverse phytoplankton by inhibiting plastoquinone synthesis and its effect cascades to many other key metabolic processes of the algae. Through comparative genomic analysis between the 4-BP-producing bacterium and its algicidally inactive mutant, combined with gene function verification, we identified the gene cluster responsible for 4-BP synthesis, which contains genes encoding chorismate lyase, flavin-dependent halogenase and cytochrome P450. We demonstrated that in near in situ simulated algal blooming seawater, even low concentrations of 4-BP can cause changes in overall phytoplankton community structure with a decline in dinoflagellates and diatoms. Further analyses of the gene sequences from the Tara Oceans expeditions and 2750 whole genome sequences confirmed the ubiquitous presence of 4-BP synthetic genes in diverse bacterial members in the global ocean, suggesting that it is a bacterial tool potentially widely used in global oceans to mediate bacteria-algae antagonistic relationships.
Collapse
Affiliation(s)
- Zenghu Zhang
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- Shandong Energy Institute, Qingdao, 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao, 266101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Dehai Li
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
| | - Ruize Xie
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
| | - Ruoyu Guo
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
| | - Shailesh Nair
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
| | - Huan Han
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
| | - Guojian Zhang
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
| | - Qun Zhao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R. &A. Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Lihua Zhang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R. &A. Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Nianzhi Jiao
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, 361101, China
| | - Yongyu Zhang
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China.
- Shandong Energy Institute, Qingdao, 266101, China.
- Qingdao New Energy Shandong Laboratory, Qingdao, 266101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
2
|
Recent Progress in the Study of Peroxiredoxin in the Harmful Algal Bloom Species Chattonella marina. Antioxidants (Basel) 2021; 10:antiox10020162. [PMID: 33499182 PMCID: PMC7911785 DOI: 10.3390/antiox10020162] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 01/17/2021] [Accepted: 01/19/2021] [Indexed: 02/06/2023] Open
Abstract
Peroxiredoxin (Prx) is a relatively recently discovered antioxidant enzyme family that scavenges peroxides and is known to be present in organisms from biological taxa ranging from bacteria to multicellular eukaryotes, including photosynthetic organisms. Although there have been many studies of the Prx family in higher plants, green algae, and cyanobacteria, few studies have concerned raphidophytes and dinoflagellates, which are among the eukaryotic algae that cause harmful algal blooms (HABs). In our proteomic study using 2-D electrophoresis, we found a highly expressed 2-Cys peroxiredoxin (2-CysPrx) in the raphidophyte Chattonella marina var. antiqua, a species that induces mass mortality of aquacultured fish. The abundance of the C. marina 2-CysPrx enzyme was highest in the exponential growth phase, during which photosynthetic activity was high, and it then decreased by about a factor of two during the late stationary growth phase. This pattern suggested that 2-CysPrx is a key enzyme involved in the maintenance of high photosynthesis activity. In addition, the fact that the depression of photosynthesis by excessively high irradiance was more severe in the 2-CysPrx low-expression strain (wild type) than in the normal-expression strain (wild type) of C. marina suggested that 2-CysPrx played a critical role in protecting the cell from oxidative stress caused by exposure to excessively high irradiance. In the field of HAB research, estimates of growth potential have been desired to predict the population dynamics of HABs for mitigating damage to fisheries. Therefore, omics approaches have recently begun to be applied to elucidate the physiology of the growth of HAB species. In this review, we describe the progress we have made using a molecular physiological approach to identify the roles of 2-CysPrx and other antioxidant enzymes in mitigating environmental stress associated with strong light and high temperatures and resultant oxidative stress. We also describe results of a survey of expressed Prx genes and their growth-phase-dependent behavior in C. marina using RNA-seq analysis. Finally, we speculate about the function of these genes and the ecological significance of 2-CysPrx, such as its involvement in circadian rhythms and the toxicity of C. marina to fish.
Collapse
|
3
|
Tasmin R, Shimasaki Y, Tsuyama M, Qiu X, Khalil F, Mukai K, Khanam MRM, Yamada N, Fukuda S, Kang IJ, Oshima Y. Effects of water temperature and light intensity on the acute toxicity of herbicide thiobencarb to a green alga, Raphidocelis subcapitata. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:25363-25370. [PMID: 29946846 DOI: 10.1007/s11356-018-2599-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 06/18/2018] [Indexed: 06/08/2023]
Abstract
The present study investigated how principal environmental factors such as temperature and light intensity change the toxicological properties of thiobencarb (TB) herbicide to the green alga, Raphidocelis subcapitata. At first, we investigated the inhibitory effect of TB (0, 15.6, 31.2, 62.4, and 125 μg L-1) on growth of R. subcapitata at five temperatures (10, 15, 20, 25, or 30 °C) for 144 h exposure and calculated 72- and 144-h effective concentration values (EC10, 20, and EC50) for growth rate. All EC values significantly decreased with an increasing temperature. The maximum quantum yield of photosystem II in R. subcapitata exposed to 125 μg L-1 of TB was also significantly inhibited with increased temperature. These physiological effects could explain the lower EC values at high temperatures. Then, single and interactive effects of TB, temperature, and light intensity on growth rate were investigated by three-way of analysis of variance. As a result, single and interactive effects were detected in all explanatory variables. These results suggest that temperature and light intensity change the acute toxicity parameter in R. subcapitata exposed to TB and must be considered in evaluating the risk of TB.
Collapse
Affiliation(s)
- Rumana Tasmin
- Department of Zoology (Fisheries Branch), Faculty of Life and Earth science, Jagannath University, Dhaka, 1100, Bangladesh
| | - Yohei Shimasaki
- Laboratory of Marine Environmental Science, Faculty of Agriculture, Kyushu University, Motooka 744, Nishi-ku, Fukuoka, 819-0395, Japan.
| | - Michito Tsuyama
- Laboratory of Silviculture, Faculty of Agriculture, Kyushu University, Hakozaki 6-10-1, Higashi-ku, Fukuoka, 812-8581, Japan
| | - Xuchun Qiu
- Institute of Environmental Health and Ecological Security, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Fatma Khalil
- Department of Hygiene, Management and Zonooses, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - Koki Mukai
- Laboratory of Marine Environmental Science, Faculty of Agriculture, Kyushu University, Motooka 744, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Mst Ruhina Margia Khanam
- Laboratory of Marine Environmental Science, Faculty of Agriculture, Kyushu University, Motooka 744, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Naotaka Yamada
- Laboratory of Pesticide Chemistry, Faculty of Agriculture, Kyushu University, Hakozaki 6-10-1, Higashi-ku, Fukuoka, 812-8581, Japan
| | - Shinji Fukuda
- Institute of Agriculture, Tokyo University of Agriculture and Technology, Saiwai-machi 3-5-8, Fuchu-city, Tokyo, 183-8509, Japan
| | - Ik-Joon Kang
- Laboratory of Marine Environmental Science, Faculty of Agriculture, Kyushu University, Motooka 744, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Yuji Oshima
- Laboratory of Marine Environmental Science, Faculty of Agriculture, Kyushu University, Motooka 744, Nishi-ku, Fukuoka, 819-0395, Japan
| |
Collapse
|
4
|
Yi AX, Leung PTY, Leung KMY. Photosynthetic and molecular responses of the marine diatom Thalassiosira pseudonana to triphenyltin exposure. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2014; 154:48-57. [PMID: 24858899 DOI: 10.1016/j.aquatox.2014.05.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Revised: 05/03/2014] [Accepted: 05/05/2014] [Indexed: 06/03/2023]
Abstract
This study aimed to investigate the responses of the marine diatom Thalassiosira pseudonana upon waterborne exposure to triphenyltin chloride (TPTCl) through determining their photosynthetic response, growth performance, and expressions of genes and proteins. Based on the growth inhibition test, the 96-h IC50 (i.e., median inhibition concentration) was found to be 1.09 μg/L (95% confidence interval (CI): 0.89-1.34 μg/L). According to photosynthetic parameters, the 96-h EC50s (i.e., median effect concentrations) were estimated at 1.54 μg/L (95% CI: 1.40-1.69 μg/L) and 1.51 μg/L (95% CI: 1.44-1.58 μg/L) for the maximum quantum yield of photosystem II (PSII) photochemistry (ΦPo) and the effective quantum yield of photochemical energy conversion in PSII (Φ2), respectively. Non-photochemical quenching in the algae was increased at low concentrations of TPTCl (0.5-1.0 μg/L) but it decreased gradually when the TPTCl concentration further increased from 1.0 to 2.5 μg/L. Results of gene expressions showed that lipid metabolism related genes were not influenced by TPTCl at 0.5 or 1.0 μg/L, while silica shell formation genes were down-regulated at 0.5 μg/L. Photosynthesis related genes were up-regulated at 0.5 μg/L TPTCl but were down-regulated at 1.0 μg/L TPTCl. Proteomics analysis revealed that relatively less proteins could be detected after exposure to 1.0 μg/L TPTCl (only about 50-60 spots) compared with that observed in the 0.5μg/L TPTCl treatment and two control groups (each with about 290-300 protein spots). At 0.5 μg/L TPTCl, five proteins were differentially expressed when compared with the seawater control and solvent control, and most of these proteins are involved in defence function to protect the biological systems from reactive oxygen species that generated by TPTCl. These proteins include oxygen-evolving enhancer protein 1 precursor, fucoxanthin chlorophyll a/c protein - LI818 clade, and mitochondrial manganese superoxide dismutase, which can function to maintain the capacity of PSII and stabilize the photosynthesis efficiency as reflected by the unchanged ΦPo and Φ2 values at 0.5 μg/L TPTCl. In contrast, the excess toxicity that caused by TPTCl at the high concentration (1.0 μg/L TPTCl) might directly damage the proteins, inhibit their expression, and/or cause the suppression of metabolism as indicated by the down-regulation of most studied proteins and genes, which could ultimately inhibit the photosynthesis and growth of the algae. Overall, this study comprehensively elucidated the toxicity effects of TPT on T. pseudonana, and partially revealed the molecular toxic mechanisms and corresponding defence responses in this model algal species.
Collapse
Affiliation(s)
- Andy Xianliang Yi
- The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, PR China
| | - Priscilla T Y Leung
- The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, PR China
| | - Kenneth M Y Leung
- The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, PR China.
| |
Collapse
|