1
|
Mavil-Guerrero E, Vazquez-Duhalt R, Juarez-Moreno K. Exploring the cytotoxicity mechanisms of copper ions and copper oxide nanoparticles in cells from the excretory system. CHEMOSPHERE 2024; 347:140713. [PMID: 37981015 DOI: 10.1016/j.chemosphere.2023.140713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/10/2023] [Accepted: 11/12/2023] [Indexed: 11/21/2023]
Abstract
Copper oxide nanoparticles (CuO NPs) are widely applied in various products, including food, cosmetic, biomedical, and environmental goods. Despite their broad use, potential risks are still associated with these NPs, therefore, the aim of this study is to delve deeper into the cytotoxic effects of 85 nm CuO NPs on kidney MDCK and liver AML-12 cells, representing cell models from the excretory system. Our findings pointed out that the viability of both cell lines decreased in a concentration-dependent manner when exposed to CuO NPs. Additionally, CuO NPs induced the overproduction of reactive oxygen species (ROS) and caused depolarization of the mitochondrial membrane, thereby arresting the cell cycle at the G2/M phase in MDCK and AML-12 cells. Importantly, unlike others our study uncovered distinctive forms of cellular death induced by CuO NPs in these cell lines. MDCK cells exhibited a combination of apoptosis and autophagy while early apoptosis was predominant in AML-12 cells. Moreover, the role of Cu2+ ions and CuO NPs in exerting cytotoxic effects was investigated, revealing that MDCK cells were affected by both copper ions and NPs. In contrast, AML-12 cells experienced toxic effects solely from CuO NPs. These findings provide crucial insights into the different cell death mechanisms caused either by CuO NPs or Cu2+ ions in excretory system cells in vitro. Nevertheless, further research is needed to explore the underlying mechanisms at the in vivo level, ensuring the safe use of CuO NPs. The results suggest that specific concentrations of metal oxide NPs can impact the physiology of cells within the excretory system of various mammals, including humans, and pave the way for comparing the toxic effects between ions and nanoparticles for further nanotoxicological studies.
Collapse
Affiliation(s)
- Elizabeth Mavil-Guerrero
- Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, (CFATA-UNAM), Blvd. Juriquilla #3001, Querétaro 76230, Mexico; Posgrado en Nanociencias, Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Ensenada B.C. 22860, Mexico
| | - Rafael Vazquez-Duhalt
- Centro de Nanociencias y Nanotecnología (CNyN), Universidad Nacional Autónoma de México (UNAM), Ensenada B.C. 22860, Mexico
| | - Karla Juarez-Moreno
- Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, (CFATA-UNAM), Blvd. Juriquilla #3001, Querétaro 76230, Mexico.
| |
Collapse
|
2
|
Zong Q, Qu H, Zhao Y, Liu H, Wu S, Wang S, Bao W, Cai D. Sodium butyrate alleviates deoxynivalenol-induced hepatic cholesterol metabolic dysfunction via RORγ-mediated histone acetylation modification in weaning piglets. J Anim Sci Biotechnol 2022; 13:133. [PMID: 36550531 PMCID: PMC9783825 DOI: 10.1186/s40104-022-00793-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 10/06/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Cholesterol is an essential component of lipid rafts in cell plasma membrane, which exerts a hepatoprotective role against mycotoxin exposure in pigs, and cholesterol metabolism is vulnerable to epigenetic histone acetylation. Therefore, our present study aimed to investigate whether a histone deacetylase inhibitor (sodium butyrate [NaBu]) could protect the porcine liver from deoxynivalenol (DON) exposure by modulating cholesterol metabolism. Herein, we randomly divided 28 pigs into four groups, which were fed an uncontaminated basal diet, contaminated diet (4 mg DON/kg), uncontaminated diet supplemented with 0.2% NaBu or 4 mg/kg DON contaminated diet (4 mg DON/kg) supplemented with 0.2% NaBu for 28 d. RESULTS We found that the serum alanine transaminase (ALT), aspartate transaminase (AST), and alkaline phosphatase (ALP) were all increased in pigs exposed to DON, indicative of significant liver injury. Furthermore, the cholesterol content in the serum of DON-exposed pigs was significantly reduced, compared to the healthy Vehicle group. Transcriptome analysis of porcine liver tissues revealed that the cholesterol homeostasis pathway was highly enriched due to DON exposure. In which we validated by qRT-PCR and western blotting that the cholesterol program was markedly activated. Importantly, NaBu effectively restored parameters associated with liver injury, along with the cholesterol content and the expression of key genes involved in the cholesterol biosynthesis pathway. Mechanistically, we performed a ChIP-seq analysis of H3K27ac and showed that NaBu strongly diminished DON-increased H3K27ac genome-wide enrichment. We further validated that the elevated H3K27ac and H3K9ac occupancies on cholesterol biosynthesis genes were both decreased by NaBu, as determined by ChIP-qPCR analysis. Notably, nuclear receptor RORγ, a novel regulator of cholesterol biosynthesis, was found in the hyperacetylated regions. Again, a remarkable increase of RORγ at both mRNA and protein levels in DON-exposed porcine livers was drastically reduced by NaBu. Consistent with RORγ expression, NaBu also hindered RORγ transcriptional binding enrichments on these activated cholesterol biosynthesis genes like HMGCR, SQLE, and DHCR24. Furthermore, we conducted an in vitro luciferase reporter assay to verify that porcine RORγ directly bonds to the promoters of the above target genes. CONCLUSIONS Collectively, our results demonstrate the utility of the natural product NaBu as a potential anti-mycotoxin nutritional strategy for regulating cholesterol metabolism via RORγ-mediated histone acetylation modification.
Collapse
Affiliation(s)
- Qiufang Zong
- grid.268415.cCollege of Animal Science and Technology, Yangzhou University, Yangzhou, 225009 PR China
| | - Huan Qu
- grid.268415.cCollege of Animal Science and Technology, Yangzhou University, Yangzhou, 225009 PR China
| | - Yahui Zhao
- grid.268415.cCollege of Animal Science and Technology, Yangzhou University, Yangzhou, 225009 PR China
| | - Haoyu Liu
- grid.268415.cCollege of Animal Science and Technology, Yangzhou University, Yangzhou, 225009 PR China
| | - Shenglong Wu
- grid.268415.cCollege of Animal Science and Technology, Yangzhou University, Yangzhou, 225009 PR China ,grid.268415.cJoint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Yangzhou, 225009 PR China
| | - Shuai Wang
- grid.35155.370000 0004 1790 4137Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070 PR China
| | - Wenbin Bao
- grid.268415.cCollege of Animal Science and Technology, Yangzhou University, Yangzhou, 225009 PR China ,grid.268415.cJoint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Yangzhou, 225009 PR China
| | - Demin Cai
- grid.268415.cCollege of Animal Science and Technology, Yangzhou University, Yangzhou, 225009 PR China ,grid.268415.cJoint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Yangzhou, 225009 PR China
| |
Collapse
|
3
|
Ruan H, Lu Q, Wu J, Qin J, Sui M, Sun X, Shi Y, Luo J, Yang M. Hepatotoxicity of food-borne mycotoxins: molecular mechanism, anti-hepatotoxic medicines and target prediction. Crit Rev Food Sci Nutr 2021; 62:2281-2308. [PMID: 34346825 DOI: 10.1080/10408398.2021.1960794] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mycotoxins are metabolites produced by fungi. The widespread contamination of food and feed by mycotoxins is a global food safety problem and a serious threat to people's health. Most food-borne mycotoxins have strong hepatotoxicity. However, no effective methods have been found to prevent or treat Mycotoxin- Induced Liver Injury (MILI) in clinical and animal husbandry. In this paper, the molecular mechanisms and potential anti-MILI medicines of six food-borne MILI are reviewed, and their targets are predicted by network toxicology, which provides a theoretical basis for further study of the toxicity mechanism of MILI and the development of effective strategies to manage MILI-related health problems in the future and accelerate the development of food safety.
Collapse
Affiliation(s)
- Haonan Ruan
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Qian Lu
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jiashuo Wu
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jiaan Qin
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Ming Sui
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xinqi Sun
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yue Shi
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jiaoyang Luo
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Meihua Yang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
4
|
Alhamoud Y, Li Y, Zhou H, Al-Wazer R, Gong Y, Zhi S, Yang D. Label-Free and Highly-Sensitive Detection of Ochratoxin A Using One-Pot Synthesized Reduced Graphene Oxide/Gold Nanoparticles-Based Impedimetric Aptasensor. BIOSENSORS 2021; 11:87. [PMID: 33808613 PMCID: PMC8003581 DOI: 10.3390/bios11030087] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/10/2021] [Accepted: 03/16/2021] [Indexed: 01/13/2023]
Abstract
Ochratoxin A (OTA) primarily obtained by the genera aspergillus and penicillium, is one of the toxic substances for different organs and systems of the human body such as the kidney, liver, neurons and the immune system. Moreover, it is considered to cause tumors and fetal malformation even at a very low concentration. Fast and sensitive assay for detection of OTA at ultralow levels in foods and agricultural products has been an increasing demand. In this study, a new label-free electrochemical biosensor based on three-dimensional reduced graphene oxide/gold nanoparticles/aptamer for OTA detection was constructed. The 3D-rGO/Au NPs nanocomposites were firstly synthesized using a one-pot hydrothermal process under optimized experimental conditions. The 3D-rGO/Au NPs with considerable particular surface area and outstanding electrical conductivity was then coated on a glass carbon electrode to provide tremendous binding sites for -SH modified aptamer via the distinctive Au-S linkage. The presence of OTA was specifically captured by aptamer and resulted in electrochemical impedance spectroscopy (EIS) signal response accordingly. The constructed impedimetric aptasensor obtained a broad linear response from 1 pg/mL to 10 ng/mL with an LOD of 0.34 pg/mL toward OTA detection, highlighting the excellent sensitivity. Satisfactory reproducibility was also achieved with the relative standard deviation (RSD) of 1.393%. Moreover, the proposed aptasensor obtained a good recovery of OTA detection in red wine samples within the range of 93.14 to 112.75% along with a low LOD of 0.023 ng/mL, indicating its applicability for OTA detection in real samples along with economical, specific, susceptible, fast, easy, and transportable merits.
Collapse
Affiliation(s)
- Yasmin Alhamoud
- Zhejiang Key Laboratory of Pathophysiology, Department of Preventative Medicine, School of Medicine, Ningbo University, 818 Fenghua Road, Ningbo 315211, China; (Y.A.); (Y.L.); (Y.G.)
| | - Yingying Li
- Zhejiang Key Laboratory of Pathophysiology, Department of Preventative Medicine, School of Medicine, Ningbo University, 818 Fenghua Road, Ningbo 315211, China; (Y.A.); (Y.L.); (Y.G.)
| | - Haibo Zhou
- Institute of Pharmaceutical Analysis and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine & New Drug Research, College of Pharmacy, Jinan University, Guangzhou 510632, China;
| | - Ragwa Al-Wazer
- Department of Pharmacy, Faculty of Applied Medical Sciences, Yemeni Jordanian University, 1833 Sana’a, Yemen;
| | - Yiying Gong
- Zhejiang Key Laboratory of Pathophysiology, Department of Preventative Medicine, School of Medicine, Ningbo University, 818 Fenghua Road, Ningbo 315211, China; (Y.A.); (Y.L.); (Y.G.)
| | - Shuai Zhi
- Zhejiang Key Laboratory of Pathophysiology, Department of Preventative Medicine, School of Medicine, Ningbo University, 818 Fenghua Road, Ningbo 315211, China; (Y.A.); (Y.L.); (Y.G.)
| | - Danting Yang
- Zhejiang Key Laboratory of Pathophysiology, Department of Preventative Medicine, School of Medicine, Ningbo University, 818 Fenghua Road, Ningbo 315211, China; (Y.A.); (Y.L.); (Y.G.)
| |
Collapse
|
5
|
Kumar P, Mahato DK, Sharma B, Borah R, Haque S, Mahmud MC, Shah AK, Rawal D, Bora H, Bui S. Ochratoxins in food and feed: Occurrence and its impact on human health and management strategies. Toxicon 2020; 187:151-162. [DOI: 10.1016/j.toxicon.2020.08.031] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 08/30/2020] [Accepted: 08/31/2020] [Indexed: 12/14/2022]
|
6
|
Tiu AC, Yang J, Asico LD, Konkalmatt P, Zheng X, Cuevas S, Wang X, Lee H, Mazhar M, Felder RA, Jose PA, Villar VAM. Lipid rafts are required for effective renal D 1 dopamine receptor function. FASEB J 2020; 34:6999-7017. [PMID: 32259353 DOI: 10.1096/fj.201902710rr] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 03/05/2020] [Accepted: 03/17/2020] [Indexed: 12/13/2022]
Abstract
Effective receptor signaling is anchored on the preferential localization of the receptor in lipid rafts, which are plasma membrane platforms replete with cholesterol and sphingolipids. We hypothesized that the dopamine D1 receptor (D1 R) contains structural features that allow it to reside in lipid rafts for its activity. Mutation of C347 palmitoylation site and Y218 of a newly identified Cholesterol Recognition Amino Acid Consensus motif resulted in the exclusion of D1 R from lipid rafts, blunted cAMP response, impaired sodium transport, and increased oxidative stress in renal proximal tubule cells (RPTCs). Kidney-restricted silencing of Drd1 in C57BL/6J mice increased blood pressure (BP) that was normalized by renal tubule-restricted rescue with D1 R-wild-type but not the mutant D1 R 347A that lacks a palmitoylation site. Kidney-restricted disruption of lipid rafts by β-MCD jettisoned the D1 R from the brush border, decreased sodium excretion, and increased oxidative stress and BP in C57BL/6J mice. Deletion of the PX domain of the novel D1 R-binding partner sorting nexin 19 (SNX19) resulted in D1 R partitioning solely to non-raft domains, while silencing of SNX19 impaired D1 R function in RPTCs. Kidney-restricted silencing of Snx19 resulted in hypertension in C57BL/6J mice. Our results highlight the essential role of lipid rafts for effective D1 R signaling.
Collapse
Affiliation(s)
- Andrew C Tiu
- Division of Renal Diseases & Hypertension, Department of Medicine, The George Washington University School of Medicine & Health Sciences, Washington, DC, USA.,Department of Medicine, Einstein Medical Center, Philadelphia, PA, USA
| | - Jian Yang
- Department of Clinical Nutrition, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, P.R. China
| | - Laureano D Asico
- Division of Renal Diseases & Hypertension, Department of Medicine, The George Washington University School of Medicine & Health Sciences, Washington, DC, USA
| | - Prasad Konkalmatt
- Division of Renal Diseases & Hypertension, Department of Medicine, The George Washington University School of Medicine & Health Sciences, Washington, DC, USA
| | - Xiaoxu Zheng
- Division of Renal Diseases & Hypertension, Department of Medicine, The George Washington University School of Medicine & Health Sciences, Washington, DC, USA
| | - Santiago Cuevas
- Division of Renal Diseases & Hypertension, Department of Medicine, The George Washington University School of Medicine & Health Sciences, Washington, DC, USA
| | - Xiaoyan Wang
- Division of Renal Diseases & Hypertension, Department of Medicine, The George Washington University School of Medicine & Health Sciences, Washington, DC, USA
| | - Hewang Lee
- Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA
| | - Momina Mazhar
- Division of Renal Diseases & Hypertension, Department of Medicine, The George Washington University School of Medicine & Health Sciences, Washington, DC, USA
| | - Robin A Felder
- Department of Pathology, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Pedro A Jose
- Division of Renal Diseases & Hypertension, Department of Medicine, The George Washington University School of Medicine & Health Sciences, Washington, DC, USA.,Department of Pharmacology/Physiology, The George Washington University School of Medicine & Health Sciences, Washington, DC, USA
| | - Van Anthony M Villar
- Division of Renal Diseases & Hypertension, Department of Medicine, The George Washington University School of Medicine & Health Sciences, Washington, DC, USA
| |
Collapse
|
7
|
Gao Y, Ye Q, Bao X, Huang X, Wang J, Zheng N. Transcriptomic and proteomic profiling reveals the intestinal immunotoxicity induced by aflatoxin M1 and ochratoxin A. Toxicon 2020; 180:49-61. [PMID: 32268155 DOI: 10.1016/j.toxicon.2020.03.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 03/24/2020] [Accepted: 03/27/2020] [Indexed: 12/21/2022]
Abstract
Mycotoxins-contaminated milk could threaten human health; therefore, it is necessary to demonstrate the toxicological effect of mycotoxins in milk. Most recently, researchers have paid more attention to the immunotoxic effects of the individual cereal-contaminating mycotoxins, namely, zearalenone and deoxynivalenol. However, there is scant information about the intestinal immunotoxicity of aflatoxin M1 (AFM1), let alone that of a combination of AFM1 and ochratoxin A (OTA), which often co-occur in milk. To reveal the inflammatory response caused by these mycotoxins, expression of inflammation-related genes in differentiated Caco-2 cells was analyzed, demonstrating a synergistic effect of the mixture of AFM1 (4 μg/mL) and OTA (4 μg/mL). Integrative transcriptomic and proteomic analyses were also performed. A cross-omics analysis identified several mechanisms underlying this synergy: (i) compared with stimulation with either compound alone, combined use resulted in stronger induction of proteins involved in immunity-related pathways; (ii) combination of the two agents targeted different points in the same pathways; and (iii) combination of the two agents activated specific inflammation-related pathways. These results suggested that combined use of AFM1 and OTA might exacerbate intestinal inflammation, indicating that regulatory authorities should pay more attention to food contamination by multiple mycotoxins when performing risk assessments.
Collapse
Affiliation(s)
- Yanan Gao
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China; Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China; Milk and Milk Products Inspection Center of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China; State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Qiaoyan Ye
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China; Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China; Milk and Milk Products Inspection Center of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China; State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Xiaoyu Bao
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China; Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China; Milk and Milk Products Inspection Center of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China; State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Xin Huang
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China; Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China; Milk and Milk Products Inspection Center of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China; State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Jiaqi Wang
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China; Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China; Milk and Milk Products Inspection Center of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China; State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Nan Zheng
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China; Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China; Milk and Milk Products Inspection Center of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China; State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| |
Collapse
|
8
|
Alhamoud Y, Yang D, Fiati Kenston SS, Liu G, Liu L, Zhou H, Ahmed F, Zhao J. Advances in biosensors for the detection of ochratoxin A: Bio-receptors, nanomaterials, and their applications. Biosens Bioelectron 2019; 141:111418. [PMID: 31228729 DOI: 10.1016/j.bios.2019.111418] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 06/04/2019] [Accepted: 06/04/2019] [Indexed: 01/20/2023]
Abstract
Ochratoxin A (OTA) is a class of mycotoxin mainly produced by the genera Aspergillus and Penicillium. OTA can cause various forms of kidney, liver and brain diseases in both humans and animals although trace amount of OTA is normally present in food. Therefore, development of fast and sensitive detection technique is essential for accurate diagnosis of OTA. Currently, the most commonly used detection methods are enzyme-linked immune sorbent assays (ELISA) and chromatographic techniques. These techniques are sensitive but time consuming, and require expensive equipment, highly trained operators, as well as extensive preparation steps. These drawbacks limit their wide application in OTA detection. On the contrary, biosensors hold a great potential for OTA detection at for both research and industry because they are less expensive, rapid, sensitive, specific, simple and portable. This paper aims to provide an extensive overview on biosensors for OTA detection by highlighting the main biosensing recognition elements for OTA, the most commonly used nanomaterials for fabricating the sensing interface, and their applications in different read-out types of biosensors. Current challenges and future perspectives are discussed as well.
Collapse
Affiliation(s)
- Yasmin Alhamoud
- Department of Preventative Medicine, Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, 818 Fenghua Road, Ningbo, Zhejiang Province, 315211, People's Republic of China
| | - Danting Yang
- Department of Preventative Medicine, Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, 818 Fenghua Road, Ningbo, Zhejiang Province, 315211, People's Republic of China; Graduate School of Biomedical Engineering, ARC Centre of Excellence in Nanoscale BioPhotonics (CNBP), Faculty of Engineering, The University of New South Wales, Sydney, Sydney, 2052, Australia.
| | - Samuel Selorm Fiati Kenston
- Department of Preventative Medicine, Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, 818 Fenghua Road, Ningbo, Zhejiang Province, 315211, People's Republic of China
| | - Guozhen Liu
- Graduate School of Biomedical Engineering, ARC Centre of Excellence in Nanoscale BioPhotonics (CNBP), Faculty of Engineering, The University of New South Wales, Sydney, Sydney, 2052, Australia
| | - Linyang Liu
- Graduate School of Biomedical Engineering, ARC Centre of Excellence in Nanoscale BioPhotonics (CNBP), Faculty of Engineering, The University of New South Wales, Sydney, Sydney, 2052, Australia
| | - Haibo Zhou
- Institute of Pharmaceutical Analysis and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine & New Drug Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Fatma Ahmed
- Department of Preventative Medicine, Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, 818 Fenghua Road, Ningbo, Zhejiang Province, 315211, People's Republic of China
| | - Jinshun Zhao
- Department of Preventative Medicine, Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, 818 Fenghua Road, Ningbo, Zhejiang Province, 315211, People's Republic of China.
| |
Collapse
|
9
|
de Gaetano M, Butler E, Gahan K, Zanetti A, Marai M, Chen J, Cacace A, Hams E, Maingot C, McLoughlin A, Brennan E, Leroy X, Loscher CE, Fallon P, Perretti M, Godson C, Guiry PJ. Asymmetric synthesis and biological evaluation of imidazole- and oxazole-containing synthetic lipoxin A4 mimetics (sLXms). Eur J Med Chem 2019; 162:80-108. [DOI: 10.1016/j.ejmech.2018.10.049] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 10/02/2018] [Accepted: 10/19/2018] [Indexed: 12/31/2022]
|
10
|
Soler L, Oswald I. The importance of accounting for sex in the search of proteomic signatures of mycotoxin exposure. J Proteomics 2018; 178:114-122. [DOI: 10.1016/j.jprot.2017.12.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 12/18/2017] [Accepted: 12/22/2017] [Indexed: 10/18/2022]
|
11
|
Zhang G, Zhu C, Huang Y, Yan J, Chen A. A Lateral Flow Strip Based Aptasensor for Detection of Ochratoxin A in Corn Samples. Molecules 2018; 23:molecules23020291. [PMID: 29385022 PMCID: PMC6017962 DOI: 10.3390/molecules23020291] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 01/11/2018] [Accepted: 01/15/2018] [Indexed: 12/17/2022] Open
Abstract
Ochratoxin A (OTA) is a mycotoxin identified as a contaminant in grains and wine throughout the world, and convenient, rapid and sensitive detection methods for OTA have been a long-felt need for food safety monitoring. Herein, we presented a new competitive format based lateral flow strip fluorescent aptasensor for one-step determination of OTA in corn samples. Briefly, biotin-cDNA was immobilized on the surface of a nitrocellulose filter on the test line. Without OTA, Cy5-labeled aptamer combined with complementary strands formed a stable double helix. In the presence of OTA, however, the Cy5-aptamer/OTA complexes were generated, and therefore less free aptamer was captured in the test zone, leading to an obvious decrease in fluorescent signals on the test line. The test strip showed an excellent linear relationship in the range from 1 ng·mL−1 to 1000 ng·mL−1 with the LOD of 0.40 ng·mL−1, IC15 value of 3.46 ng·mL−1 and recoveries from 96.4% to 104.67% in spiked corn samples. Thus, the strip sensor developed in this study is an acceptable alternative for rapid detection of the OTA level in grain samples.
Collapse
Affiliation(s)
- Guilan Zhang
- Key Laboratory of Agro-Product Quality and Safety, Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Chao Zhu
- Key Laboratory of Agro-Product Quality and Safety, Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Yafei Huang
- Key Laboratory of Agro-Product Quality and Safety, Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
- College of Food Science and Technology, Hainan University, Haikou 570228, China.
| | - Jiao Yan
- Key Laboratory of Agro-Product Quality and Safety, Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
- College of Food Science and Technology, Hainan University, Haikou 570228, China.
| | - Ailiang Chen
- Key Laboratory of Agro-Product Quality and Safety, Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
12
|
Qi X, Xu W, Guo M, Chen S, Liu Y, He X, Huang K. Rice- or pork-based diets with similar calorie and content result in different rat gut microbiota. Int J Food Sci Nutr 2017; 68:829-839. [PMID: 28320221 DOI: 10.1080/09637486.2017.1301889] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Rice is the most important food crop, and pork is the most widely eaten meat in the world. In this study, we compared the gut microbiota of the rats fed with rice or pork mixed diets, which have similar caloric contents. The physiological indices (body weights, hematology, serum chemistry, organ weights and histopathology) of two groups were all within the normal range. Two diets did not induce difference in the diversity of gut bacteria. However, Firmicutes were significantly higher in rice diet group, while Bacteroidetes were enriched in pork diet group. Butyrate and the bacteria enzymes β-glucuronidase, β-glucosidase and nitroreductase in the feces were all drastically higher in pork diet group. This study indicates that different diets with similar calorie and nutritional composition could change the community structure but not the diversity of rat fecal microbiota.
Collapse
Affiliation(s)
- Xiaozhe Qi
- a Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering , China Agricultural University , Beijing , China
| | - Wentao Xu
- a Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering , China Agricultural University , Beijing , China.,b Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering , China Agricultural University , Beijing , China
| | - Mingzhang Guo
- b Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering , China Agricultural University , Beijing , China
| | - Siyuan Chen
- b Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering , China Agricultural University , Beijing , China
| | - Yifei Liu
- a Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering , China Agricultural University , Beijing , China
| | - Xiaoyun He
- a Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering , China Agricultural University , Beijing , China
| | - Kunlun Huang
- a Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering , China Agricultural University , Beijing , China.,b Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering , China Agricultural University , Beijing , China
| |
Collapse
|
13
|
Podechard N, Chevanne M, Fernier M, Tête A, Collin A, Cassio D, Kah O, Lagadic-Gossmann D, Sergent O. Zebrafish larva as a reliable model for in vivo assessment of membrane remodeling involvement in the hepatotoxicity of chemical agents. J Appl Toxicol 2016; 37:732-746. [PMID: 27896850 DOI: 10.1002/jat.3421] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 10/20/2016] [Accepted: 10/28/2016] [Indexed: 12/13/2022]
Abstract
The easy-to-use in vivo model, zebrafish larva, is being increasingly used to screen chemical-induced hepatotoxicity, with a good predictivity for various mechanisms of liver injury. However, nothing is known about its applicability in exploring the mechanism called membrane remodeling, depicted as changes in membrane fluidity or lipid raft properties. The aim of this study was, therefore, to substantiate the zebrafish larva as a suitable in vivo model in this context. Ethanol was chosen as a prototype toxicant because it is largely described, both in hepatocyte cultures and in rodents, as capable of inducing a membrane remodeling leading to hepatocyte death and liver injury. The zebrafish larva model was demonstrated to be fully relevant as membrane remodeling was maintained even after a 1-week exposure without any adaptation as usually reported in rodents and hepatocyte cultures. It was also proven to exhibit a high sensitivity as it discriminated various levels of cytotoxicity depending on the extent of changes in membrane remodeling. In this context, its sensitivity appeared higher than that of WIF-B9 hepatic cells, which is suited for analyzing this kind of hepatotoxicity. Finally, the protection afforded by a membrane stabilizer, ursodeoxycholic acid (UDCA), or by a lipid raft disrupter, pravastatin, definitely validated zebrafish larva as a reliable model to quickly assess membrane remodeling involvement in chemical-induced hepatotoxicity. In conclusion, this model, compatible with a high throughput screening, might be adapted to seek hepatotoxicants via membrane remodeling, and also drugs targeting membrane features to propose new preventive or therapeutic strategies in chemical-induced liver diseases. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Normand Podechard
- UMR Inserm 1085, IRSET, UFR des Sciences Pharmaceutiques et Biologiques, bâtiment 5, 35043, Rennes Cédex, France.,Biosit UMS3480, Université de Rennes 1, 35043, Rennes Cédex, France
| | - Martine Chevanne
- UMR Inserm 1085, IRSET, UFR des Sciences Pharmaceutiques et Biologiques, bâtiment 5, 35043, Rennes Cédex, France.,Biosit UMS3480, Université de Rennes 1, 35043, Rennes Cédex, France
| | - Morgane Fernier
- UMR Inserm 1085, IRSET, UFR des Sciences Pharmaceutiques et Biologiques, bâtiment 5, 35043, Rennes Cédex, France.,Biosit UMS3480, Université de Rennes 1, 35043, Rennes Cédex, France
| | - Arnaud Tête
- UMR Inserm 1085, IRSET, UFR des Sciences Pharmaceutiques et Biologiques, bâtiment 5, 35043, Rennes Cédex, France.,Biosit UMS3480, Université de Rennes 1, 35043, Rennes Cédex, France
| | - Aurore Collin
- UMR Inserm 1085, IRSET, UFR des Sciences Pharmaceutiques et Biologiques, bâtiment 5, 35043, Rennes Cédex, France.,Biosit UMS3480, Université de Rennes 1, 35043, Rennes Cédex, France
| | - Doris Cassio
- Inserm, UMR-S 757; Orsay, France; Université Paris-Sud, Orsay, France
| | - Olivier Kah
- Biosit UMS3480, Université de Rennes 1, 35043, Rennes Cédex, France.,UMR Inserm 1085, IRSET, Université de Rennes 1, bâtiment 9, 35000, Rennes, France
| | - Dominique Lagadic-Gossmann
- UMR Inserm 1085, IRSET, UFR des Sciences Pharmaceutiques et Biologiques, bâtiment 5, 35043, Rennes Cédex, France.,Biosit UMS3480, Université de Rennes 1, 35043, Rennes Cédex, France
| | - Odile Sergent
- UMR Inserm 1085, IRSET, UFR des Sciences Pharmaceutiques et Biologiques, bâtiment 5, 35043, Rennes Cédex, France.,Biosit UMS3480, Université de Rennes 1, 35043, Rennes Cédex, France
| |
Collapse
|