1
|
Liu H, Guo X, Yang J, Xia C, Yao Y, Li X, Liu X, Yang J, Li X, Xu Y, Li J, Wang M. Structure Optimization of Natural Product Catalpol to Obtain Novel and Potent Analogs against Heart Failure. J Med Chem 2025. [PMID: 39925333 DOI: 10.1021/acs.jmedchem.4c02591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2025]
Abstract
Heart failure (HF) is a major global health threat, characterized by high morbidity and mortality. Targeting cardiac hypertrophy has been identified as a potential therapy for HF, with current treatments showing limited efficacy. Our research aims to address this limitation by exploring new structural classes of therapeutic agents. Starting from the natural product catalpol, we designed a series of novel catalpol analogs to break through the structural limitations of natural analogs, improve the anti-HF efficacy and metabolic properties. Among these, compound JZ19 exhibited remarkable efficacy in both myocardial cell injury assays and in an isoproterenol-induced murine HF model, outperforming catalpol. Our findings indicate that JZ19 potently reversed cardiac function by modulating the PI3K-AKT-GSK3β pathway, a key regulator of hypertrophy and apoptosis. Moreover, JZ19 showed favorable pharmacokinetic properties and safety. Overall, our results provide direct pharmacologic evidence supporting the further development of JZ19 as novel HF therapeutics by inhibiting cardiac hypertrophy and apoptosis.
Collapse
Affiliation(s)
- Hanfang Liu
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Xiaobo Guo
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Jin Yang
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Conglong Xia
- College of Pharmacy, Dali University, Dali 671000, China
| | - Yue Yao
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Xiao Li
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Xiaoyang Liu
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Junqi Yang
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Xiaokang Li
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Yixiang Xu
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Jian Li
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, School of Pharmacy, Shihezi University, Shihezi 832003, China
- Key Laboratory of Tropical Biological Resources of Ministry of Education, College of Pharmacy, Hainan University, Haikou 570228, China
| | - Manjiong Wang
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
2
|
Saifullah M, Mahmood T, Ahsan F, Bano S, Zaidi SMH, Khan MMU. Cardioprotective Potential of d-limonene against Isoproterenol induced Myocardial Infarction in Rats. Cell Biochem Biophys 2024:10.1007/s12013-024-01649-3. [PMID: 39738843 DOI: 10.1007/s12013-024-01649-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/15/2024] [Indexed: 01/02/2025]
Abstract
d-limonene is a type of colorless liquid hydrocarbon that falls under the category of cyclic monoterpene. It is the component found in the oil extracted from fruit peels. Isoproterenol, a synthetic β-adrenergic agonist, was administered to rats to induce myocardial injury by increasing heart rate and myocardial oxygen demand, leading to ischemia and oxidative stress. This study aims to investigate the properties of d limonene, against myocardial infarction induced by isoprenaline (ISO) in rats. Male Sprague Dawley rats were treated with d-limonene (200 & 400 mg/kg, p.o) daily for 28 days and administered ISO (85 mg/kg, s.c) on the 29th and 30th days at an interval of 24 hr to induce myocardial injury. Morphological and antioxidant parameters, biochemical markers, lipid profile, troponin-I, cardiac ATPase, heart mitochondrial, and lysosomal enzymes were assayed followed by histopathological screening. Rats treated with isoproterenol (85 mg/kg, s.c), administered twice at an interval of 24 h on 29th and 30th day showed a significant change in morphological and antioxidant parameters, biochemical markers, lipid profile, troponin-I, cardiac ATPase, heart mitochondrial, lysosomal enzymes activities and transcription factor (TNF-α/IL-6/NF-kB) expression. Pretreatment with d-limonene (200 and 400 mg/kg, p.o) for 28 days followed by ISO administration on 29th and 30th day significantly reversed the effects of isoproterenol-induced ischemic changes. Moreover, the biochemical results were validated by histopathological findings. The research indicates that d-limonene demonstrates cardioprotective potential against isoproterenol-induced myocardial infarction. This is attributed to its antioxidant properties, stabilization of myocardial membranes, improved scavenging of free radicals, and inhibition of membrane lipid peroxidation.
Collapse
Affiliation(s)
- Md Saifullah
- Department of Pharmacy, Integral University, Kursi Road, Dasauli, Lucknow, 226026, India
| | - Tarique Mahmood
- Department of Pharmacy, Integral University, Kursi Road, Dasauli, Lucknow, 226026, India.
| | - Farogh Ahsan
- Department of Pharmacy, Integral University, Kursi Road, Dasauli, Lucknow, 226026, India
| | - Shahzadi Bano
- Department of Chemistry, Integral University, Kursi Road, Dasauli, Lucknow, 226026, India
| | - Syed Mehdi Hasan Zaidi
- Department of Pharmacy, Integral University, Kursi Road, Dasauli, Lucknow, 226026, India
| | - Mohd Masih Uzzaman Khan
- Department of Pharmaceutical Chemistry and Pharmacognosy, Unaizah College of Pharmacy, Qassim University, Unaizah, 51911, Saudi Arabia
| |
Collapse
|
3
|
Allemailem KS, Almatroudi A, Alharbi HOA, AlSuhaymi N, Alsugoor MH, Aldakheel FM, Khan AA, Rahmani AH. Apigenin: A Bioflavonoid with a Promising Role in Disease Prevention and Treatment. Biomedicines 2024; 12:1353. [PMID: 38927560 PMCID: PMC11202028 DOI: 10.3390/biomedicines12061353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/05/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
Apigenin is a powerful flavone compound found in numerous fruits and vegetables, and it offers numerous health-promoting benefits. Many studies have evidenced that this compound has a potential role as an anti-inflammatory and antioxidant compound, making it a promising candidate for reducing the risk of pathogenesis. It has also been found to positively affect various systems in the body, such as the respiratory, digestive, immune, and reproductive systems. Apigenin is effective in treating liver, lung, heart, kidney, neurological diseases, diabetes, and maintaining good oral and skin health. Multiple studies have reported that this compound is capable of suppressing various types of cancer through the induction of apoptosis and cell-cycle arrest, suppressing cell migration and invasion, reduction of inflammation, and inhibiting angiogenesis. When used in combination with other drugs, apigenin increases their efficacy, reduces the risk of side effects, and improves the response to chemotherapy. This review broadly analyzes apigenin's potential in disease management by modulating various biological activities. In addition, this review also described apigenin's interaction with other compounds or drugs and the potential role of nanoformulation in different pathogeneses. Further extensive research is needed to explore the mechanism of action, safety, and efficacy of this compound in disease prevention and treatment.
Collapse
Affiliation(s)
- Khaled S. Allemailem
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia; (K.S.A.); (A.A.); (H.O.A.A.)
| | - Ahmad Almatroudi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia; (K.S.A.); (A.A.); (H.O.A.A.)
| | - Hajed Obaid A. Alharbi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia; (K.S.A.); (A.A.); (H.O.A.A.)
| | - Naif AlSuhaymi
- Department of Emergency Medical Services, Faculty of Health Sciences, AlQunfudah, Umm Al-Qura University, Makkah 21912, Saudi Arabia (M.H.A.)
| | - Mahdi H. Alsugoor
- Department of Emergency Medical Services, Faculty of Health Sciences, AlQunfudah, Umm Al-Qura University, Makkah 21912, Saudi Arabia (M.H.A.)
| | - Fahad M. Aldakheel
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 11433, Saudi Arabia
| | - Amjad Ali Khan
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Arshad Husain Rahmani
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia; (K.S.A.); (A.A.); (H.O.A.A.)
| |
Collapse
|
4
|
Liu C, Zhang X, Yang H, Zhao M, Liu Y, Zhao R, Li Z, Sun M. PEG-modified nano liposomes co-deliver Apigenin and RAGE-siRNA to protect myocardial ischemia injury. Int J Pharm 2024; 649:123673. [PMID: 38056796 DOI: 10.1016/j.ijpharm.2023.123673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 11/28/2023] [Accepted: 12/03/2023] [Indexed: 12/08/2023]
Abstract
Ischemic heart disease (IHD) is a cardiac disorder in which myocardial damage occurs as a result of myocardial ischemia and hypoxia. Evidence suggests that oxidative stress and inflammatory responses are critical in the development of myocardial ischemia. Therefore, the combination of antioxidant and anti-inflammatory applications is an effective strategy to combat ischemic heart disease. In this paper, polyethylene glycol (PEG)-modified cationic liposomes were used as carriers to deliver apigenin (Apn) with small interfering RNA (siRNA) targeting the receptor for glycosylation end products (RAGE) (siRAGE) into cardiomyocytes to prevent myocardial ischemic injury through antioxidant and anti-inflammatory effects. Our results showed that we successfully prepared cationic PEG liposomes loaded with Apn and siRAGE (P-CLP-A/R) with normal appearance and morphology, particle size and Zeta potential, and good encapsulation rate, drug loading and in vitro release degree. In vitro, P-CLP-A/R was able to prevent oxidative stress injury in H9C2 cells, downregulate the expression of RAGE, reduce the secretion of cellular inflammatory factors and inhibit apoptosis through the RAGE/NF-κB pathway; In vivo, P-CLP-A/R was able to prevent arrhythmia and myocardial pathological injury, and reduce apoptosis and the area of necrotic myocardium in rats. In conclusion, P-CLP-A/R has a protective effect on myocardial ischemic injury and is expected to be a potential drug for the prevention of ischemic heart disease in the future.
Collapse
Affiliation(s)
- Chang Liu
- College of Pharmacy, Beihua University, Jilin, Jilin 132013, PR China.
| | - Xiaojun Zhang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Changchun, Jilin 130022, PR China
| | - Huiying Yang
- College of Pharmacy, Beihua University, Jilin, Jilin 132013, PR China
| | - Meijun Zhao
- Department of Clinical Pharmacy, Affiliated Hospital of Jilin Medical College, Jilin, Jilin 132013, PR China
| | - Yanhong Liu
- Center for Prenatal Diagnosis, Centre for Reproductive Medicine, First Hospital of Jilin University, Changchun, Jilin 130061, PR China
| | - Risheng Zhao
- College of Pharmacy, Beihua University, Jilin, Jilin 132013, PR China
| | - Ziqing Li
- College of Pharmacy, Beihua University, Jilin, Jilin 132013, PR China
| | - Meng Sun
- College of Pharmacy, Beihua University, Jilin, Jilin 132013, PR China
| |
Collapse
|
5
|
Alhusaini AM, Alshehri SM, Sarawi WS, Alghibiwi HK, Alturaif SA, Al khbiah RA, Alali SM, Alsaif SM, Alsultan EN, Hasan IH. Implication of MAPK, Lipocalin-2, and Fas in the protective action of liposomal resveratrol against isoproterenol-induced kidney injury. Saudi Pharm J 2024; 32:101907. [PMID: 38178854 PMCID: PMC10764257 DOI: 10.1016/j.jsps.2023.101907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 12/05/2023] [Indexed: 01/06/2024] Open
Abstract
Background and Objective Isoproterenol (ISO) is a non-selective β-adrenergic receptor agonist. It can be used to treat bradycardia and cardiogenic shock. Despite its usefulness, the overstimulation of β-receptors by ISO can cause "cardiorenal syndrome," a term used to describe heart and kidney damage. Resveratrol (RES), a natural polyphenol, has marked anti-inflammatory and antioxidant activities. The present work was designed to study the protective efficacy of liposomal resveratrol (L-RES) against ISO-induced kidney injury. Materials and Methods The kidney injury was induced in rats by administering ISO (50 mg/kg, s.c.) twice a week for 2 weeks. RES and L-RES were administered at a dose (20 mg/kg/ day, p.o.) along with ISO for 2 weeks. Inflammatory and apoptotic biomarkers were analyzed, which were validated using histochemical analysis. Results ISO caused renal dysfunction, which manifested as elevated urea, creatinine and uric acid, besides cystatin c and MAPK protein overexpression. In addition, ISO induced gene expression of Fas and lipocalin-2 and provoked genomic DNA fragmentation in renal tissues as compared with the control group. Histological examination confirmed morphological alterations of the kidney tissues obtained from the ISO group. Concurrent treatment of either RES or L-RES with ISO significantly ameliorated kidney damage as demonstrated by the improvement of all measured parameters with the best results for L-RES. The histopathological findings were correlated with the above biochemical parameters. Conclusion L-RES could be a promising approach for the prevention of kidney injury induced by ISO, most likely via the downregulation of MAPK, cystatin c, Fas, and lipocalin-2.
Collapse
Affiliation(s)
- Ahlam M. Alhusaini
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O Box 22452, Riyadh 11495, Saudi Arabia
| | - Samiyah M. Alshehri
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O Box 22452, Riyadh 11495, Saudi Arabia
| | - Wedad S. Sarawi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O Box 22452, Riyadh 11495, Saudi Arabia
| | - Hanan K. Alghibiwi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O Box 22452, Riyadh 11495, Saudi Arabia
| | - Sumayya A. Alturaif
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O Box 22452, Riyadh 11495, Saudi Arabia
| | - Reema A. Al khbiah
- Pharm D Program, College of Pharmacy, King Saud University, P.O Box 22452, Riyadh 11495, Saudi Arabia
| | - Shog M. Alali
- Pharm D Program, College of Pharmacy, King Saud University, P.O Box 22452, Riyadh 11495, Saudi Arabia
| | - Shaikha M. Alsaif
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O Box 22452, Riyadh 11495, Saudi Arabia
| | - Ebtesam N. Alsultan
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O Box 22452, Riyadh 11495, Saudi Arabia
| | - Iman H. Hasan
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O Box 22452, Riyadh 11495, Saudi Arabia
| |
Collapse
|
6
|
Nivetha S, Asha KRT, Srinivasan S, Murali R, Kanagalakshmi A. Hepatoprotective effect of p-Coumaric acid against KBrO 3 -induced apoptosis in HepG2 cells. Cell Biochem Funct 2023; 41:868-875. [PMID: 37573567 DOI: 10.1002/cbf.3837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 07/30/2023] [Accepted: 08/02/2023] [Indexed: 08/15/2023]
Abstract
In the present study, we investigated the effect of the p-Coumaric acid (PCA), a phenolic acid, on potassium bromate (KBrO3 ) induced oxidative damage, Ras/Raf/MEK signaling, and apoptosis in HepG2 cells. Our findings showed that PCA-treated cells prevented cytotoxicity compared with KBrO3- treated cells. Furthermore, KBrO3 -induced oxidative stress and lipid peroxidation was attenuated by PCA and it also increased the antioxidant levels such as SOD, CAT, and GPX. Additionally, PCA inhibited the KBrO3 -induced DNA damage in HepG2 cells. Moreover, PCA treatment suppressed the activation of Ras/Raf/MEK signaling and increased the expression of PRDX-1. In addition, PCA prevented the KBrO3 -induced apoptosis cascade by altering the expression of proapoptotic, Bax, caspase-3, and antiapoptotic, Bcl-2 proteins. The present study proves that PCA inhibited the KBrO3 -induced oxidative stress, DNA damage, and apoptotic signaling cascade in HepG2 cells.
Collapse
Affiliation(s)
- Selvaraj Nivetha
- Department of Biochemistry and Biotechnology, Annamalai University, Annamalainagar, Tamil Nadu, India
- Department of Biochemistry, Government Arts College, Paramakudi, Tamil Nadu, India
| | | | - Subramani Srinivasan
- Department of Biochemistry and Biotechnology, Annamalai University, Annamalainagar, Tamil Nadu, India
- Department of Biochemistry, Government Arts College for Women, Krishnagiri, Tamil Nadu, India
| | - Raju Murali
- Department of Biochemistry and Biotechnology, Annamalai University, Annamalainagar, Tamil Nadu, India
- Department of Biochemistry, Government Arts College for Women, Krishnagiri, Tamil Nadu, India
| | - Ambothi Kanagalakshmi
- Department of Biochemistry and Biotechnology, Annamalai University, Annamalainagar, Tamil Nadu, India
- Department of Biochemistry, Government Arts College for Women, Krishnagiri, Tamil Nadu, India
| |
Collapse
|
7
|
Wei J, Zhang Y, Li H, Wang F, Yao S. Toll-like receptor 4: A potential therapeutic target for multiple human diseases. Biomed Pharmacother 2023; 166:115338. [PMID: 37595428 DOI: 10.1016/j.biopha.2023.115338] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 08/14/2023] [Accepted: 08/14/2023] [Indexed: 08/20/2023] Open
Abstract
The immune response plays a pivotal role in the pathogenesis of diseases. Toll-like receptor 4 (TLR4), as an intrinsic immune receptor, exhibits widespread in vivo expression and its dysregulation significantly contributes to the onset of various diseases, encompassing cardiovascular disorders, neoplastic conditions, and inflammatory ailments. This comprehensive review centers on elucidating the architectural and distributive characteristics of TLR4, its conventional signaling pathways, and its mode of action in diverse disease contexts. Ultimately, this review aims to propose novel avenues and therapeutic targets for clinical intervention.
Collapse
Affiliation(s)
- Jinrui Wei
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, China
| | - Yan Zhang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, China
| | - Haopeng Li
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, China
| | - Fuquan Wang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, China
| | - Shanglong Yao
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, China.
| |
Collapse
|
8
|
Liu C, Guo X, Chen Y, Zhao M, Shi S, Luo Z, Song J, Zhang Z, Yang W, Liu K. Anti-photoaging effect and mechanism of flexible liposomes co-loaded with apigenin and doxycycline. Biomed Pharmacother 2023; 164:114998. [PMID: 37301137 DOI: 10.1016/j.biopha.2023.114998] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/30/2023] [Accepted: 06/07/2023] [Indexed: 06/12/2023] Open
Abstract
Prolonged exposure to UV light can lead to photo-ageing of the skin. Therefore, the development and application of anti-photoaging drugs is urgent. In this study, we co-loaded apigenin (Apn) and doxycycline (Doc), a broad-spectrum inhibitor of matrix metalloproteinases (MMPs), into flexible liposomes to exert anti-photoaging effects by combating oxidative stress, anti-inflammation, reducing the activation of MMPs and preventing collagen loss. The results showed that we prepared a flexible liposome (A/D-FLip) containing Apn and Doc. Its appearance, particle size and Zeta potential were normal and it had good encapsulation efficiency, drug loading, in vitro release and transdermal efficiency. In cellular experiments, A/D-FLip could inhibit oxidative stress damage, reduce inflammatory factors and decrease the activation of MMPs in Human immortalized keratinocytes (HaCaT) cells; in animal experiments, A/D-FLip could inhibit skin damage and reduce skin collagen loss by decreasing the activation of MMPs, thus inhibiting skin photoaging in mice. In conclusion, A/D-FLip has good anti-photoaging effects and it has the potential to become an effective skin care product or drug against UV damage and skin photoaging in the future.
Collapse
Affiliation(s)
- Chang Liu
- College of Pharmacy, Beihua University, Jilin 132013, PR China.
| | - Xiao Guo
- College of Pharmacy, Beihua University, Jilin 132013, PR China; Gongqing Institute of Science and Technology, Jiujiang, Jiangxi 332020, PR China
| | - Yutong Chen
- College of Pharmacy, Beihua University, Jilin 132013, PR China
| | - Meijun Zhao
- Department of Clinical Pharmacy, Affiliated Hospital of Jilin Medical College, Jilin 132013, PR China
| | - Shuai Shi
- Department of Cardiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, PR China
| | - Zheng Luo
- College of Pharmacy, Beihua University, Jilin 132013, PR China
| | - Jian Song
- College of Pharmacy, Beihua University, Jilin 132013, PR China
| | - Zhihong Zhang
- College of Pharmacy, Beihua University, Jilin 132013, PR China
| | - Wenchuang Yang
- College of Pharmacy, Beihua University, Jilin 132013, PR China
| | - Keyi Liu
- College of Pharmacy, Beihua University, Jilin 132013, PR China
| |
Collapse
|
9
|
Thomas SD, Jha NK, Jha SK, Sadek B, Ojha S. Pharmacological and Molecular Insight on the Cardioprotective Role of Apigenin. Nutrients 2023; 15:nu15020385. [PMID: 36678254 PMCID: PMC9866972 DOI: 10.3390/nu15020385] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 12/14/2022] [Accepted: 12/23/2022] [Indexed: 01/15/2023] Open
Abstract
Apigenin is a naturally occurring dietary flavonoid found abundantly in fruits and vegetables. It possesses a wide range of biological properties that exert antioxidant, anti-inflammatory, anticancer, and antibacterial effects. These effects have been reported to be beneficial in the treatment of atherosclerosis, stroke, hypertension, ischemia/reperfusion-induced myocardial injury, and diabetic cardiomyopathy, and provide protection against drug-induced cardiotoxicity. These potential therapeutic effects advocate the exploration of the cardioprotective actions of apigenin. This review focuses on apigenin, and the possible pharmacological mechanisms involved in the protection against cardiovascular diseases. We further discuss its therapeutic uses and highlight its potential applications in the treatment of various cardiovascular disorders. Apigenin displays encouraging results, which may have implications in the development of novel strategies for the treatment of cardiovascular diseases. With the commercial availability of apigenin as a dietary supplement, the outcomes of preclinical studies may provide the investigational basis for future translational strategies evaluating the potential of apigenin in the treatment of cardiovascular disorders. Further preclinical and clinical investigations are required to characterize the safety and efficacy of apigenin and establish it as a nutraceutical as well as a therapeutic agent to be used alone or as an adjuvant with current drugs.
Collapse
Affiliation(s)
- Shilu Deepa Thomas
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, Greater Noida 201310, Uttar Pradesh, India
- Department of Biotechnology, School of Applied & Life Sciences (SALS), Uttaranchal University, Dehradun 248007, Uttarakhand, India
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Saurabh Kumar Jha
- Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, Greater Noida 201310, Uttar Pradesh, India
- Department of Biotechnology, School of Applied & Life Sciences (SALS), Uttaranchal University, Dehradun 248007, Uttarakhand, India
- Department of Biotechnology Engineering and Food Technology, Chandigarh University, Mohali 140413, Punjab, India
| | - Bassem Sadek
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
- Zayed Bin Sultan Center for Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
- Correspondence: (B.S.); (S.O.)
| | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
- Zayed Bin Sultan Center for Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
- Correspondence: (B.S.); (S.O.)
| |
Collapse
|
10
|
Bețiu AM, Noveanu L, Hâncu IM, Lascu A, Petrescu L, Maack C, Elmér E, Muntean DM. Mitochondrial Effects of Common Cardiovascular Medications: The Good, the Bad and the Mixed. Int J Mol Sci 2022; 23:13653. [PMID: 36362438 PMCID: PMC9656474 DOI: 10.3390/ijms232113653] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 10/20/2022] [Accepted: 10/28/2022] [Indexed: 07/25/2023] Open
Abstract
Mitochondria are central organelles in the homeostasis of the cardiovascular system via the integration of several physiological processes, such as ATP generation via oxidative phosphorylation, synthesis/exchange of metabolites, calcium sequestration, reactive oxygen species (ROS) production/buffering and control of cellular survival/death. Mitochondrial impairment has been widely recognized as a central pathomechanism of almost all cardiovascular diseases, rendering these organelles important therapeutic targets. Mitochondrial dysfunction has been reported to occur in the setting of drug-induced toxicity in several tissues and organs, including the heart. Members of the drug classes currently used in the therapeutics of cardiovascular pathologies have been reported to both support and undermine mitochondrial function. For the latter case, mitochondrial toxicity is the consequence of drug interference (direct or off-target effects) with mitochondrial respiration/energy conversion, DNA replication, ROS production and detoxification, cell death signaling and mitochondrial dynamics. The present narrative review aims to summarize the beneficial and deleterious mitochondrial effects of common cardiovascular medications as described in various experimental models and identify those for which evidence for both types of effects is available in the literature.
Collapse
Affiliation(s)
- Alina M. Bețiu
- Doctoral School Medicine-Pharmacy, “Victor Babeș” University of Medicine and Pharmacy from Timișoara, Eftimie Murgu Sq. No. 2, 300041 Timișoara, Romania
- Center for Translational Research and Systems Medicine, “Victor Babeș” University of Medicine and Pharmacy from Timișoara, Eftimie Murgu Sq. No. 2, 300041 Timișoara, Romania
| | - Lavinia Noveanu
- Department of Functional Sciences—Pathophysiology, “Victor Babeș” University of Medicine and Pharmacy from Timișoara, Eftimie Murgu Sq. No. 2, 300041 Timișoara, Romania
| | - Iasmina M. Hâncu
- Doctoral School Medicine-Pharmacy, “Victor Babeș” University of Medicine and Pharmacy from Timișoara, Eftimie Murgu Sq. No. 2, 300041 Timișoara, Romania
- Center for Translational Research and Systems Medicine, “Victor Babeș” University of Medicine and Pharmacy from Timișoara, Eftimie Murgu Sq. No. 2, 300041 Timișoara, Romania
| | - Ana Lascu
- Center for Translational Research and Systems Medicine, “Victor Babeș” University of Medicine and Pharmacy from Timișoara, Eftimie Murgu Sq. No. 2, 300041 Timișoara, Romania
- Department of Functional Sciences—Pathophysiology, “Victor Babeș” University of Medicine and Pharmacy from Timișoara, Eftimie Murgu Sq. No. 2, 300041 Timișoara, Romania
| | - Lucian Petrescu
- Doctoral School Medicine-Pharmacy, “Victor Babeș” University of Medicine and Pharmacy from Timișoara, Eftimie Murgu Sq. No. 2, 300041 Timișoara, Romania
- Center for Translational Research and Systems Medicine, “Victor Babeș” University of Medicine and Pharmacy from Timișoara, Eftimie Murgu Sq. No. 2, 300041 Timișoara, Romania
| | - Christoph Maack
- Comprehensive Heart Failure Center (CHFC), University Clinic Würzburg, 97078 Würzburg, Germany
- Department of Internal Medicine 1, University Clinic Würzburg, 97078 Würzburg, Germany
| | - Eskil Elmér
- Mitochondrial Medicine, Department of Clinical Sciences Lund, Faculty of Medicine, Lund University, BMC A13, 221 84 Lund, Sweden
- Abliva AB, Medicon Village, 223 81 Lund, Sweden
| | - Danina M. Muntean
- Center for Translational Research and Systems Medicine, “Victor Babeș” University of Medicine and Pharmacy from Timișoara, Eftimie Murgu Sq. No. 2, 300041 Timișoara, Romania
- Department of Functional Sciences—Pathophysiology, “Victor Babeș” University of Medicine and Pharmacy from Timișoara, Eftimie Murgu Sq. No. 2, 300041 Timișoara, Romania
| |
Collapse
|
11
|
Bhattacharjee S, Elancheran R, Dutta K, Deb PK, Devi R. Cardioprotective potential of the antioxidant-rich bioactive fraction of Garcinia pedunculata Roxb. ex Buch.-Ham. against isoproterenol-induced myocardial infarction in Wistar rats. Front Pharmacol 2022; 13:1009023. [PMID: 36267270 PMCID: PMC9577557 DOI: 10.3389/fphar.2022.1009023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 09/12/2022] [Indexed: 11/15/2022] Open
Abstract
This Study aimed to characterise the phenolic compounds in Garcinia pedunculata extract and assess their potential antioxidant activity as well as its cardioprotective potential in isoproterenol-induced cardiac hypertrophy in an experimental animal model. In vitro antioxidant properties were determined using DPPH, ABTS, FRAP, PMD assays. In vitro lipid peroxidation experiment was also performed with heart tissues. Cardioprotective and cardiotoxicity effects were determined using the cell line studies. The cardioprotective effect of GP was assessed in a rat model of isoproterenol-(ISO-) induced cardiac hypertrophy by subcutaneous administration. Heart weight/tail length ratio and cardiac hypertrophy indicators were reduced after oral administration of GP. Additionally, GP reduced oxidative stress and heart inflammation brought on by ISO. In H9c2 cells, the antihypertrophic and anti-inflammatory effects of the extract of GP were seen in the presence of ISO, which were further supported by the in vivo observations. This study makes a compelling case for the possibility that supplementing with dried GP fruit can prevent heart hypertrophy by reducing oxidative stress and inflammation.
Collapse
Affiliation(s)
- Swarnali Bhattacharjee
- Life Sciences Division, Institute of Advanced Study in Science and Technology, Guwahati, Assam, India
- Department of Zoology, Gauhati University, Guwahati, Assam, India
| | - R. Elancheran
- Department of Chemistry, Annamalai University, Chidambaram, TamilNadu, India
- *Correspondence: R. Elancheran, ; Rajlakshmi Devi,
| | - Kasturi Dutta
- Life Sciences Division, Institute of Advanced Study in Science and Technology, Guwahati, Assam, India
| | - Prashanta Kumar Deb
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Shoolini University, Solan, Himachal Pradesh, India
| | - Rajlakshmi Devi
- Life Sciences Division, Institute of Advanced Study in Science and Technology, Guwahati, Assam, India
- *Correspondence: R. Elancheran, ; Rajlakshmi Devi,
| |
Collapse
|
12
|
Liao M, Xie Q, Zhao Y, Yang C, Lin C, Wang G, Liu B, Zhu L. Main active components of Si-Miao-Yong-An decoction (SMYAD) attenuate autophagy and apoptosis via the PDE5A-AKT and TLR4-NOX4 pathways in isoproterenol (ISO)-induced heart failure models. Pharmacol Res 2022; 176:106077. [PMID: 35026404 DOI: 10.1016/j.phrs.2022.106077] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 12/24/2021] [Accepted: 01/07/2022] [Indexed: 02/08/2023]
Abstract
Heart failure (HF), the main cause of death in patients with many cardiovascular diseases, has been reported to be closely related to the complicated pathogenesis of autophagy, apoptosis, and inflammation. Notably, Si-Miao-Yong-An decoction (SMYAD) is a traditional Chinese medicine (TCM) used to treat cardiovascular disease; however, the main active components and their relevant mechanisms remain to be discovered. Based on our previous ultra-performance liquid chromatography coupled to quadrupole time-of-flight mass spectrometry (UPLC-Q/TOF-MS) results, we identified angoriside C (AC) and 3,5-dicaffeoylquinic acid (3,5-DiCQA) as the main active components of SMYAD. In vivo results showed that AC and 3,5-DiCQA effectively improved cardiac function, reduced the fibrotic area, and alleviated isoproterenol (ISO)-induced myocarditis in rats. Moreover, AC and 3,5-DiCQA inhibited ISO-induced autophagic cell death by inhibiting the PDE5A/AKT/mTOR/ULK1 pathway and inhibited ISO-induced apoptosis by inhibiting the TLR4/NOX4/BAX pathway. In addition, the autophagy inhibitor 3-MA was shown to reduce ISO-induced apoptosis, indicating that ISO-induced autophagic cell death leads to excess apoptosis. Taken together, the main active components AC and 3,5-DiCQA of SMYAD inhibit the excessive autophagic cell death and apoptosis induced by ISO by inhibiting the PDE5A-AKT and TLR4-NOX4 pathways, thereby reducing myocardial inflammation and improving heart function to alleviate and treat a rat ISO-induced heart failure model and cell heart failure models. More importantly, the main active components of SMYAD will provide new insights into a promising strategy that will promote the discovery of more main active components of SMYAD for therapeutic purposes in the future.
Collapse
Affiliation(s)
- Minru Liao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qiang Xie
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yuqian Zhao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China; School of Traditional Chinese Materia Medica, Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Chengcan Yang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Congcong Lin
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Guan Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Bo Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Lingjuan Zhu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China; School of Traditional Chinese Materia Medica, Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China.
| |
Collapse
|
13
|
Cinar I, Yayla M, Tavaci T, Toktay E, Ugan RA, Bayram P, Halici H. In Vivo and In Vitro Cardioprotective Effect of Gossypin Against Isoproterenol-Induced Myocardial Infarction Injury. Cardiovasc Toxicol 2022; 22:52-62. [PMID: 34599475 DOI: 10.1007/s12012-021-09698-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 09/08/2021] [Indexed: 10/20/2022]
Abstract
The aim of the study was to examine the protective effects and possible mechanism of gossypin against isoproterenol (ISO)-mediated myocardial damage in vivo and H9c2 cell damage in vitro. H9c2 cells were categorized into five groups. Viability was evaluated with MTT and LDH release in H9c2 cells. Apoptotic parameter analysis was performed with cytochrome c (Cyt-c), caspase-3 (CASP-3), and BCL2/Bax mRNA expression levels. In vivo, gossypin was administered orally to mice at doses of 5, 10, and 20 mg/kg for 7 days. ISO groups were injected with isoproterenol (150 mg/kg) subcutaneously (on 8th and 9th) for 2 days. Afterward, lactate dehydrogenase (LDH), creatine kinase-MB (CK-MB) levels and Troponin-I (Tn-I) amount from their serum, oxidative stress parameters superoxide dismutase (SOD) activity, glutathione (GSH) and malondialdehyde (MDA) levels, and tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), interleukin-1β (IL-1 β), and NF-kB mRNA expression levels with inflammatory markers from heart tissue were evaluated. In addition, IL-1B, BCL-2, and cas-3 immunohistochemical staining was performed from heart tissue and TNF-a level was measured by ELISA method. Administration of Gossypin protected the cells by dose-dependent, eliminating the reduced cell viability and increased LDH release of ISO in H9c2 cells. In mice serum analyses, increased LDH, CK-MB levels, and Tn-I levels were normalized by gossypin. ISO administration in heart tissue is regulated by gossypin with increased SOD activity, GSH amount, TNF-α, IL-6, IL-1β, and NF-kB mRNA expression levels and decreased MDA amount. Overall, the present results demonstrated that gossypin has a potential cardioprotective treatment for ischemic heart disease on in vivo and in vitro.
Collapse
Affiliation(s)
- Irfan Cinar
- Department of Pharmacology, Faculty of Medicine, Kastamonu University, 3700, Kastamonu, Turkey.
| | - Muhammed Yayla
- Faculty of Medicine, Department of Pharmacology, Kafkas University, Kars, Turkey
| | - Taha Tavaci
- Faculty of Medicine, Department of Pharmacology, Atatürk University, Erzurum, Turkey
| | - Erdem Toktay
- Faculty of Medicine, Department of Histology and Embriology, Kafkas University, Kars, Turkey
| | - Rustem Anil Ugan
- Faculty of Pharmacy, Department of Pharmacology, Atatürk University, Erzurum, Turkey
| | - Pınar Bayram
- Faculty of Medicine, Department of Histology and Embriology, Kafkas University, Kars, Turkey
| | - Hamza Halici
- Faculty of Medicine, Department of Pharmacology, Atatürk University, Erzurum, Turkey
| |
Collapse
|
14
|
Alam W, Rocca C, Khan H, Hussain Y, Aschner M, De Bartolo A, Amodio N, Angelone T, Cheang WS. Current Status and Future Perspectives on Therapeutic Potential of Apigenin: Focus on Metabolic-Syndrome-Dependent Organ Dysfunction. Antioxidants (Basel) 2021; 10:antiox10101643. [PMID: 34679777 PMCID: PMC8533599 DOI: 10.3390/antiox10101643] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/13/2021] [Accepted: 10/15/2021] [Indexed: 12/15/2022] Open
Abstract
Metabolic syndrome and its associated disorders such as obesity, insulin resistance, atherosclerosis and type 2 diabetes mellitus are globally prevalent. Different molecules showing therapeutic potential are currently available for the management of metabolic syndrome, although their efficacy has often been compromised by their poor bioavailability and side effects. Studies have been carried out on medicinal plant extracts for the treatment and prevention of metabolic syndrome. In this regard, isolated pure compounds have shown promising efficacy for the management of metabolic syndrome, both in preclinical and clinical settings. Apigenin, a natural bioactive flavonoid widely present in medicinal plants, functional foods, vegetables and fruits, exerts protective effects in models of neurological disorders and cardiovascular diseases and most of these effects are attributed to its antioxidant action. Various preclinical and clinical studies carried out so far show a protective effect of apigenin against metabolic syndrome. Herein, we provide a comprehensive review on both in vitro and in vivo evidence related to the promising antioxidant role of apigenin in cardioprotection, neuroprotection and renoprotection, and to its beneficial action in metabolic-syndrome-dependent organ dysfunction. We also provide evidence on the potential of apigenin in the prevention and/or treatment of metabolic syndrome, analysing the potential and limitation of its therapeutic use.
Collapse
Affiliation(s)
- Waqas Alam
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan;
| | - Carmine Rocca
- Laboratory of Cellular and Molecular Cardiovascular Physiology, Department of Biology, Ecology and Earth Sciences (Di.B.E.S.T.), University of Calabria, 87036 Rende, Italy; (C.R.); (A.D.B.)
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan;
- Correspondence: or (H.K.); (N.A.); (T.A.)
| | - Yaseen Hussain
- College of Pharmaceutical Sciences, Soochow University, Suzhou 221400, China;
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Forchheimer 209, 1300 Morris Park Avenue, Bronx, NY 10461, USA;
| | - Anna De Bartolo
- Laboratory of Cellular and Molecular Cardiovascular Physiology, Department of Biology, Ecology and Earth Sciences (Di.B.E.S.T.), University of Calabria, 87036 Rende, Italy; (C.R.); (A.D.B.)
| | - Nicola Amodio
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy
- Correspondence: or (H.K.); (N.A.); (T.A.)
| | - Tommaso Angelone
- Laboratory of Cellular and Molecular Cardiovascular Physiology, Department of Biology, Ecology and Earth Sciences (Di.B.E.S.T.), University of Calabria, 87036 Rende, Italy; (C.R.); (A.D.B.)
- National Institute of Cardiovascular Research I.N.R.C., 40126 Bologna, Italy
- Correspondence: or (H.K.); (N.A.); (T.A.)
| | - Wai San Cheang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macao 999078, China;
| |
Collapse
|
15
|
Goudarzi M, Kalantar M, Sadeghi E, Karamallah MH, Kalantar H. Protective effects of apigenin on altered lipid peroxidation, inflammation, and antioxidant factors in methotrexate-induced hepatotoxicity. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2021; 394:523-531. [PMID: 33057777 DOI: 10.1007/s00210-020-01991-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 10/07/2020] [Indexed: 12/14/2022]
Abstract
Methotrexate (MTX) is used as an effective chemotherapeutic agent against autoimmune diseases and tumors. Oxidative stress and inflammation are involved in the pathogenesis of MTX-induced damage. This study aimed at examining the ameliorating effects of apigenin (API) as a natural antioxidant on MTX-induced hepatotoxicity. The rats were classified into four groups: group I: normal saline-treated, group II: MTX-treated (20 mg/kg, ip, single dose at day 7), group III: MTX + API-treated (20 mg/kg, po), and group IV: API-treated. API was administrated for 9 days. Alanine aminotransferase (ALT), alkaline phosphatase (ALP), and aspartate aminotransferase (AST) were used as biochemical factors of MTX-induced hepatic injury. In hepatic tissues, the levels of malondialdehyde (MDA), nitric oxide (NO), glutathione (GSH), and activities of antioxidant enzymes such as catalase (CAT), glutathione peroxidase (GPx), and superoxide dismutase (SOD) as oxidative stress markers along with inflammatory factors such as tumor necrosis factor-alpha (TNF-α) and interleukin 1 beta (IL-1β) were assessed. Our results showed that MTX administration significantly increased ALP, ASP, ALT, MDA, NO, TNF-α, and IL-1β levels and significantly decreased antioxidant factors such as GSH, CAT, GPx, and SOD. The API pretreatment group showed a significant rise in hepatic antioxidant markers, besides significant reductions in the serum levels of AST, ALT, and ALP and hepatic content of MDA, TNF-α, NO, and IL-1β. In addition, the hepatoprotective effect of API was confirmed by histological evaluation of the liver. API can prevent MTX-induced hepatotoxicity through mitigation of oxidative stress and inflammation.
Collapse
Affiliation(s)
- Mehdi Goudarzi
- Medicinal Plant Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mojtaba Kalantar
- Faculty of Medicine, Shoushtar University of Medical Sciences, Shoushtar, Iran
| | - Elahe Sadeghi
- Toxicology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | | | - Hadi Kalantar
- Medicinal Plant Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
- Department of Toxicology, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
16
|
Kim JK, Park SU. Recent insights into the biological functions of apigenin. EXCLI JOURNAL 2020; 19:984-991. [PMID: 32788912 PMCID: PMC7415933 DOI: 10.17179/excli2020-2579] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 07/02/2020] [Indexed: 12/31/2022]
Affiliation(s)
- Jae Kwang Kim
- Division of Life Sciences and Bio-Resource and Environmental Center, Incheon National University, Incheon 22012, Korea
| | - Sang Un Park
- Department of Crop Science, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 34134, Korea
| |
Collapse
|
17
|
Siddiqui SS, Rahman S, Rupasinghe HV, Vazhappilly CG. Dietary Flavonoids in p53-Mediated Immune Dysfunctions Linking to Cancer Prevention. Biomedicines 2020; 8:biomedicines8080286. [PMID: 32823757 PMCID: PMC7460013 DOI: 10.3390/biomedicines8080286] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/03/2020] [Accepted: 08/11/2020] [Indexed: 12/14/2022] Open
Abstract
The p53 protein plays a central role in mediating immune functioning and determines the fate of the cells. Its role as a tumor suppressor, and in transcriptional regulation and cytokine activity under stress conditions, is well defined. The wild type (WT) p53 functions as a guardian for the genome, while the mutant p53 has oncogenic roles. One of the ways that p53 combats carcinogenesis is by reducing inflammation. WT p53 functions as an anti-inflammatory molecule via cross-talk activity with multiple immunological pathways, such as the major histocompatibility complex I (MHCI) associated pathway, toll-like receptors (TLRs), and immune checkpoints. Due to the multifarious roles of p53 in cancer, it is a potent target for cancer immunotherapy. Plant flavonoids have been gaining recognition over the last two decades to use as a potential therapeutic regimen in ameliorating diseases. Recent studies have shown the ability of flavonoids to suppress chronic inflammation, specifically by modulating p53 responses. Further, the anti-oxidant Keap1/Nrf2/ARE pathway could play a crucial role in mitigating oxidative stress, leading to a reduction of chronic inflammation linked to the prevention of cancer. This review aims to discuss the pharmacological properties of plant flavonoids in response to various oxidative stresses and immune dysfunctions and analyzes the cross-talk between flavonoid-rich dietary intake for potential disease prevention.
Collapse
Affiliation(s)
- Shoib Sarwar Siddiqui
- Department of Biotechnology, American University of Ras Al Khaimah, Ras Al Khaimah PO Box 10021, UAE;
| | - Sofia Rahman
- School of Natural Sciences and Mathematics, The University of Texas at Dallas, Richardson, TX 75080, USA;
| | - H.P. Vasantha Rupasinghe
- Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, NS B2N 5E3, Canada;
- Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Cijo George Vazhappilly
- Department of Biotechnology, American University of Ras Al Khaimah, Ras Al Khaimah PO Box 10021, UAE;
- Correspondence:
| |
Collapse
|
18
|
Zhang B, Wang H, Yang Z, Cao M, Wang K, Wang G, Zhao Y. Protective effect of alpha-pinene against isoproterenol-induced myocardial infarction through NF-κB signaling pathway. Hum Exp Toxicol 2020; 39:1596-1606. [PMID: 32602371 DOI: 10.1177/0960327120934537] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Monoterpenes present in the essential oils exhibit anti-inflammatory properties. In this study, we investigated the preventive effect of alpha-pinene (AP), a monoterpene, against isoproterenol (ISO)-induced myocardial infarction and inflammation in Wistar rats. Male Wistar rats were pretreated with AP (50 mg/kg body weight (bw)) administration for 21 days and ISO (85 mg/kg bw) was administered subcutaneously for last two consecutive days (20th day and 21st day). We noticed that there was an increased activity of cardiac marker enzymes in ISO-treated rats. We also observed that elevated levels of lipid peroxidative indices decreased activities of antioxidant status in plasma, erythrocyte, and heart tissue in ISO-induced rats. Furthermore, ISO-treated rats showed an increase in the levels of inflammatory mediators like tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) in the serum. Besides, we confirmed the upregulated expression of TNF-α, IL-6, and nuclear factor kappa-light-chain-enhancer of activated B cells in ISO-induced rat heart tissue. Conversely, we found that AP pretreatment significantly decreased levels of cardiac markers like serum cardiac troponin T and cardiac troponin I, lipid peroxidative markers, and restored antioxidants status in ISO-treated rats. Besides, AP administration attenuated ISO-induced inflammatory marker expression. The present findings demonstrated that AP significantly protects the myocardium and exerts cardioprotective and anti-inflammatory effects in experimental rats.
Collapse
Affiliation(s)
- B Zhang
- Department of Health Care Center, Beijing Friendship Hospital Medical, 12517Capital Medical University, Beijing, China
| | - H Wang
- Department of Pharmacy, 34706The First Affiliated Hospital of Nanhua University, Hengyang City, Hunan Province, China
| | - Z Yang
- Department of ICU, 381901The First People's Hospital of Huaihua, Huaihua City, Hunan Province, China
| | - M Cao
- Department of Cardiovascular, 232831The People's Hospital of Tianjin, Tianjin City, China
| | - K Wang
- Department of Endocrinology, 12476Tianyou Hospital Affiliated to Tongji University, Shanghai, China
| | - G Wang
- Department of Endocrinology, 12476The Putuo People's Hospital Affiliated to Tongji University, Shanghai, China
| | - Y Zhao
- Department of Cardiovascular Biology, 12418Changsha Central Hospital, Changsha City, Hunan Province, China
| |
Collapse
|
19
|
Thangaiyan R, Arjunan S, Govindasamy K, Khan HA, Alhomida AS, Prasad NR. Galangin Attenuates Isoproterenol-Induced Inflammation and Fibrosis in the Cardiac Tissue of Albino Wistar Rats. Front Pharmacol 2020; 11:585163. [PMID: 33328989 PMCID: PMC7734335 DOI: 10.3389/fphar.2020.585163] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 10/27/2020] [Indexed: 02/05/2023] Open
Abstract
Galangin (GA) is an active flavonoid of the rhizome of Alpinia galanga that belongs to the ginger family. GA exhibit potent anti-inflammatory properties. Therefore, we evaluated the preventive effects of GA against isoproterenol (ISO)-induced inflammation and myocardial fibrosis in male albino Wistar rats. We found that GA (1 mg/kg b.wt.) pretreatment attenuated the ISO-mediated (5 mg/kg b.wt. for 14 consecutive days) elevation of heart rate, activities of aspartate aminotransferase (AST), alanine aminotransferase (ALT), lactate dehydrogenase (LDH), creatine kinase (CK), creatine kinase-MB (CKMB) in the rat serum. We also noticed that GA prevented the ISO-mediated cardiac markers i.e. cardiac troponin T and I (cTnT and cTnI) expression in the serum of rats. Further, GA pretreatment prevented ISO-mediated lipid peroxidation and diminished blood pressure and loss of antioxidants status in the heart tissue of ISO treated rats. In addition, GA treatment modulates ISO-induced alterations the expressions of tissue inhibitor of metalloproteinases-1 (TIMP-1), p-AKT, glycogen synthase kinase-3β (p-GSK-3β) and peroxisome proliferators-activated receptor-γ (PPAR-γ) in the heart tissue. Furthermore, molecular analysis (PCR array and western blot) revealed that GA pretreatment prevented inflammation and fibrosis related gene expression pattern in ISO-induced rats. Taken together, the results indicate the cardioprotective effect of GA against ISO-induced inflammation and fibrosis. The antioxidant and anti-inflammatory potential of GA could be considered for its cardioprotective effect in the ISO-treated rats.
Collapse
Affiliation(s)
- Radhiga Thangaiyan
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Tamilnadu, India
- *Correspondence: Radhiga Thangaiyan, ; Nagarajan Rajendra Prasad,
| | - Sundaresan Arjunan
- CAS in Marine Biology, Department of Marine Sciences, Annamalai University, Tamilnadu, India
| | - Kanimozhi Govindasamy
- Department of Biochemistry, Dharmapuram Gnanambigai Government Arts College for Women, Tamilnadu, India
| | - Haseeb A. Khan
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Abdullah S. Alhomida
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Nagarajan Rajendra Prasad
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Tamilnadu, India
- *Correspondence: Radhiga Thangaiyan, ; Nagarajan Rajendra Prasad,
| |
Collapse
|
20
|
The Inhibitory Effect of Flavonoid Aglycones on the Metabolic Activity of CYP3A4 Enzyme. Molecules 2018; 23:molecules23102553. [PMID: 30301254 PMCID: PMC6222669 DOI: 10.3390/molecules23102553] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 09/29/2018] [Accepted: 10/05/2018] [Indexed: 01/08/2023] Open
Abstract
Flavonoids are natural compounds that have been extensively studied due to their positive effects on human health. There are over 4000 flavonoids found in higher plants and their beneficial effects have been shown in vitro as well as in vivo. However, data on their pharmacokinetics and influence on metabolic enzymes is scarce. The aim of this study was to focus on possible interactions between the 30 most commonly encountered flavonoid aglycones on the metabolic activity of CYP3A4 enzyme. 6β-hydroxylation of testosterone was used as marker reaction of CYP3A4 activity. Generated product was determined by HPLC coupled with diode array detector. Metabolism and time dependence, as well as direct inhibition, were tested to determine if inhibition was reversible and/or irreversible. Out of the 30 flavonoids tested, 7 significantly inhibited CYP3A4, most prominent being acacetin that inhibited 95% of enzyme activity at 1 µM concentration. Apigenin showed reversible inhibition, acacetin, and chrysin showed combined irreversible and reversible inhibition while chrysin dimethylether, isorhamnetin, pinocembrin, and tangeretin showed pure irreversible inhibition. These results alert on possible flavonoid–drug interactions on the level of CYP3A4.
Collapse
|