1
|
K R G, Balenahalli Narasingappa R, Vishnu Vyas G. Unveiling mechanisms of antimicrobial peptide: Actions beyond the membranes disruption. Heliyon 2024; 10:e38079. [PMID: 39386776 PMCID: PMC11462253 DOI: 10.1016/j.heliyon.2024.e38079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 09/07/2024] [Accepted: 09/17/2024] [Indexed: 10/12/2024] Open
Abstract
Antimicrobial peptides (AMPs) are a critical component of the innate immune system, playing a key role in defending against a variety of pathogenic microorganisms. While many AMPs act primarily on the cell membrane of target pathogens, leading to lysis and subsequent cell death, less is known about their nonlytic membrane activity. This nonlytic activity allows AMPs to target and disrupt bacterial cells without causing lysis, leading to bacterial death through alternative mechanisms.Understanding these nonlytic properties of AMPs is crucial, as they present a promising alternative to traditional antibiotics, which can induce bacterial resistance and have adverse effects on human health and the environment. The mechanisms by which AMPs exhibit nonlytic membrane activity are still being explored. However, it is believed that AMPs penetrate the bacterial membrane and interact directly with internal cellular components such as DNA, RNA, and various enzymes essential for microbial survival and replication. This interaction disrupts metabolic homeostasis, ultimately resulting in bacterial death.The nonlytic activity of AMPs also results in minimal damage to host cells and tissues, making them attractive candidates for the development of new, more effective antibiotics. This review emphasizes the mechanisms by which AMPs nonlytically target cellular components, including DNA, proteins, RNA, and other biomolecules, and discusses their clinical significance. Understanding these mechanisms may pave the way for developing alternatives to conventional antibiotics, offering a solution to the growing issue of antibiotic resistance.
Collapse
Affiliation(s)
- Gagandeep K R
- Department of Plant Biotechnology, University of Agricultural Sciences, Gandhi Krishi Vignana Kendra, Bengaluru, Karnataka, 560065, India
| | - Ramesh Balenahalli Narasingappa
- Department of Plant Biotechnology, University of Agricultural Sciences, Gandhi Krishi Vignana Kendra, Bengaluru, Karnataka, 560065, India
| | - Gatta Vishnu Vyas
- Department of Plant Biotechnology, University of Agricultural Sciences, Gandhi Krishi Vignana Kendra, Bengaluru, Karnataka, 560065, India
- ICAR-AICRP On Post Harvest Engineering and Technology, University of Agricultural Sciences, Gandhi Krishi Vignana Kendra, Bengaluru, 560065, India
| |
Collapse
|
2
|
Velayutham M, Priya PS, Sarkar P, Murugan R, Almutairi BO, Arokiyaraj S, Kari ZA, Tellez-Isaias G, Guru A, Arockiaraj J. Aquatic Peptide: The Potential Anti-Cancer and Anti-Microbial Activity of GE18 Derived from Pathogenic Fungus Aphanomyces invadans. Molecules 2023; 28:6746. [PMID: 37764521 PMCID: PMC10534430 DOI: 10.3390/molecules28186746] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/18/2023] [Accepted: 09/20/2023] [Indexed: 09/29/2023] Open
Abstract
Small molecules as well as peptide-based therapeutic approaches have attracted global interest due to their lower or no toxicity in nature, and their potential in addressing several health complications including immune diseases, cardiovascular diseases, metabolic disorders, osteoporosis and cancer. This study proposed a peptide, GE18 of subtilisin-like peptidase from the virulence factor of aquatic pathogenic fungus Aphanomyces invadans, which elicits anti-cancer and anti-microbial activities. To understand the potential GE18 peptide-induced biological effects, an in silico analysis, in vitro (L6 cells) and in vivo toxicity assays (using zebrafish embryo), in vitro anti-cancer assays and anti-microbial assays were performed. The outcomes of the in silico analyses demonstrated that the GE18 peptide has potent anti-cancer and anti-microbial activities. GE18 is non-toxic to in vitro non-cancerous cells and in vivo zebrafish larvae. However, the peptide showed significant anti-cancer properties against MCF-7 cells with an IC50 value of 35.34 µM, at 24 h. Besides the anti-proliferative effect on cancer cells, the peptide exposure does promote the ROS concentration, mitochondrial membrane potential and the subsequent upregulation of anti-cancer genes. On the other hand, GE18 elicits significant anti-microbial activity against P. aeruginosa, wherein GE18 significantly inhibits bacterial biofilm formation. Since the peptide has positively charged amino acid residues, it targets the cell membrane, as is evident in the FESEM analysis. Based on these outcomes, it is possible that the GE18 peptide is a significant anti-cancer and anti-microbial molecule.
Collapse
Affiliation(s)
- Manikandan Velayutham
- Department of Medical Biotechnology and Integrative Physiology, Institute of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Thandalam, Chennai 602105, Tamil Nadu, India
| | - P. Snega Priya
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Chengalpattu District, Kattankulathur 603203, Tamil Nadu, India
| | - Purabi Sarkar
- Department of Molecular Medicine, School of Allied Healthcare and Sciences, Jain Deemed-to-be University, Whitefield, Bangalore 560066, Karnataka, India
| | - Raghul Murugan
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Chengalpattu District, Kattankulathur 603203, Tamil Nadu, India
| | - Bader O. Almutairi
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Selvaraj Arokiyaraj
- Department of Food Science & Biotechnology, Sejong University, Seoul 05006, Republic of Korea
| | - Zulhisyam Abdul Kari
- Department of Agricultural Sciences, Faculty of Agro-Based Industry, Universiti Malaysia Kelantan, Jeli Campus, Jeli 17600, Malaysia
- Advanced Livestock and Aquaculture Research Group, Faculty of Agro-Based Industry, Universiti Malaysia Kelantan, Jeli Campus, Jeli 17600, Malaysia
| | | | - Ajay Guru
- Department of Cariology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600077, Tamil Nadu, India;
| | - Jesu Arockiaraj
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Chengalpattu District, Kattankulathur 603203, Tamil Nadu, India
| |
Collapse
|
3
|
Velayutham M, Sarkar P, Karuppiah KM, Arumugam P, Shajahan S, Abu Haija M, Ahamad T, Arasu MV, Al-Dhabi NA, Choi KC, Guru A, Arockiaraj J. PS9, Derived from an Aquatic Fungus Virulent Protein, Glycosyl Hydrolase, Arrests MCF-7 Proliferation by Regulating Intracellular Reactive Oxygen Species and Apoptotic Pathways. ACS OMEGA 2023; 8:18543-18553. [PMID: 37273629 PMCID: PMC10233697 DOI: 10.1021/acsomega.3c00336] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 03/01/2023] [Indexed: 06/06/2023]
Abstract
One of the most common diseases in women is breast cancer, which has the highest death globally. Surgery, chemotherapy, hormone treatments, and radiation are the current treatment options for breast cancer. However, these options have several adverse side effects. Recently, peptide-based drugs have gained attention as anticancer therapy. Studies report that peptides from biological toxins such as venom and virulent pathogenic molecules have potential therapeutic effects against multiple diseases, including cancers. This study reports on the in vitro anticancer effect of a short peptide, PS9, derived from a virulent protein, glycosyl hydrolase, of an aquatic fungus, Aphanomyces invadans. This peptide arrests MCF-7 proliferation by regulating intercellular reactive oxygen species (ROS) and apoptotic pathways. Based on the potential for the anticancer effect of PS9, from the in silico analysis, in vitro analyses using MCF-7 cells were executed. PS9 showed a dose-dependent activity; its IC50 value was 25.27-43.28 μM at 24 h. The acridine orange/ethidium bromide (AO/EtBr) staining, to establish the status of apoptosis in MCF-7 cells, showed morphologies for early and late apoptosis and necrotic cell death. The 2,7-dichlorodihydrofluorescein diacetate (DCFDA) staining and biochemical analyses showed a significant increase in reactive oxygen species (ROS). Besides, PS9 has been shown to regulate the caspase-mediated apoptotic pathway. PS9 is nontoxic, in vitro, and in vivo zebrafish larvae. Together, PS9 may have an anticancer effect in vitro.
Collapse
Affiliation(s)
- Manikandan Velayutham
- Department
of Medical Biotechnology and Integrative Physiology, Institute of
Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Thandalam, Chennai 602105, Tamil Nadu, India
| | - Purabi Sarkar
- Department
of Molecular Medicine, School of Allied Healthcare and Sciences, Jain Deemed-to-be University, Whitefield, Bangalore 560066, Karnataka, India
| | - Kanchana M. Karuppiah
- Department
of Medical Research, Medical College Hospital and Research Centre, SRM Institute of Science and Technology, Kattankulathur, Chennai 603203, Tamil Nadu, India
| | - Priyadharsan Arumugam
- Department
of Conservative Dentistry and Endodontics, Saveetha Dental College
and Hospitals, SIMATS, Chennai 600077, Tamil Nadu, India
| | - Shanavas Shajahan
- Department
of Conservative Dentistry and Endodontics, Saveetha Dental College
and Hospitals, SIMATS, Chennai 600077, Tamil Nadu, India
- Department
of Chemistry, Khalifa University of Science
and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Mohammad Abu Haija
- Department
of Chemistry, Khalifa University of Science
and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates
- Center for
Catalysis and Separations, Khalifa University
of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Tansir Ahamad
- Department
of Chemistry, College of Science, King Saud
University, Riyadh 11451, Saudi Arabia
| | - Mariadhas Valan Arasu
- Department
of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Naif Abdullah Al-Dhabi
- Department
of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Ki-Choon Choi
- Grassland
and Forage Division, National Institute
of Animal Science, RDA, Seonghwan-Eup, Cheonan-Si, Chungnam 330-801, Republic of Korea
| | - Ajay Guru
- Department
of Conservative Dentistry and Endodontics, Saveetha Dental College
and Hospitals, SIMATS, Chennai 600077, Tamil Nadu, India
| | - Jesu Arockiaraj
- Department
of Biotechnology, College of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Chennai 603203, Tamil Nadu, India
| |
Collapse
|
4
|
Velayutham M, Sarkar P, Sudhakaran G, Al-Ghanim KA, Maboob S, Juliet A, Guru A, Muthupandian S, Arockiaraj J. Anti-Cancer and Anti-Inflammatory Activities of a Short Molecule, PS14 Derived from the Virulent Cellulose Binding Domain of Aphanomyces invadans, on Human Laryngeal Epithelial Cells and an In Vivo Zebrafish Embryo Model. Molecules 2022; 27:7333. [PMID: 36364155 PMCID: PMC9654460 DOI: 10.3390/molecules27217333] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/17/2022] [Accepted: 10/25/2022] [Indexed: 08/20/2023] Open
Abstract
In this study, the anti-cancer and anti-inflammatory activities of PS14, a short peptide derived from the cellulase binding domain of pathogenic fungus, Aphanomyces invadans, have been evaluated, in vitro and in vivo. Bioinformatics analysis of PS14 revealed the physicochemical properties and the web-based predictions, which indicate that PS14 is non-toxic, and it has the potential to elicit anti-cancer and anti-inflammatory activities. These in silico results were experimentally validated through in vitro (L6 or Hep-2 cells) and in vivo (zebrafish embryo or larvae) models. Experimental results showed that PS14 is non-toxic in L6 cells and the zebrafish embryo, and it elicits an antitumor effect Hep-2 cells and zebrafish embryos. Anticancer activity assays, in terms of MTT, trypan blue and LDH assays, showed a dose-dependent inhibitory effect on cell proliferation. Moreover, in the epithelial cancer cells and zebrafish embryos, the peptide challenge (i) caused significant changes in the cytomorphology and induced apoptosis; (ii) triggered ROS generation; and (iii) showed a significant up-regulation of anti-cancer genes including BAX, Caspase 3, Caspase 9 and down-regulation of Bcl-2, in vitro. The anti-inflammatory activity of PS14 was observed in the cell-free in vitro assays for the inhibition of proteinase and lipoxygenase, and heat-induced hemolysis and hypotonicity-induced hemolysis. Together, this study has identified that PS14 has anti-cancer and anti-inflammatory activities, while being non-toxic, in vitro and in vivo. Future experiments can focus on the clinical or pharmacodynamics aspects of PS14.
Collapse
Affiliation(s)
- Manikandan Velayutham
- Department of Biotechnology, College of Science and Humanities, SRM Institute of Science and Technology, Chennai 603 203, Tamil Nadu, India
| | - Purabi Sarkar
- Department of Molecular Medicine, School of Allied Healthcare and Sciences, Jain Deemed-to-be University, Bangalore 560 066, Karnataka, India
| | - Gokul Sudhakaran
- Department of Biotechnology, College of Science and Humanities, SRM Institute of Science and Technology, Chennai 603 203, Tamil Nadu, India
| | | | - Shahid Maboob
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Annie Juliet
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Ajay Guru
- Department of Conservative Dentistry and Endodontics, Saveetha Dental College and Hospitals, SIMATS, Chennai 600 077, Tamil Nadu, India
| | - Saravanan Muthupandian
- AMR and Nanomedicine Lab, Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciencess (SIMATS), Chennai 600 077, Tamil Nadu, India
| | - Jesu Arockiaraj
- Department of Biotechnology, College of Science and Humanities, SRM Institute of Science and Technology, Chennai 603 203, Tamil Nadu, India
| |
Collapse
|
5
|
Li X, Zuo S, Wang B, Zhang K, Wang Y. Antimicrobial Mechanisms and Clinical Application Prospects of Antimicrobial Peptides. Molecules 2022; 27:2675. [PMID: 35566025 PMCID: PMC9104849 DOI: 10.3390/molecules27092675] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/14/2022] [Accepted: 04/19/2022] [Indexed: 12/16/2022] Open
Abstract
Antimicrobial peptides are a type of small-molecule peptide that widely exist in nature and are components of the innate immunity of almost all living things. They play an important role in resisting foreign invading microorganisms. Antimicrobial peptides have a wide range of antibacterial activities against bacteria, fungi, viruses and other microorganisms. They are active against traditional antibiotic-resistant strains and do not easily induce the development of drug resistance. Therefore, they have become a hot spot of medical research and are expected to become a new substitute for fighting microbial infection and represent a new method for treating drug-resistant bacteria. This review briefly introduces the source and structural characteristics of antimicrobial peptides and describes those that have been used against common clinical microorganisms (bacteria, fungi, viruses, and especially coronaviruses), focusing on their antimicrobial mechanism of action and clinical application prospects.
Collapse
Affiliation(s)
- Xin Li
- Department of Infectious Diseases, First Hospital of Jilin University, Changchun 130021, China; (X.L.); (B.W.)
| | - Siyao Zuo
- Department of Dermatology and Venereology, First Hospital of Jilin University, Changchun 130021, China;
| | - Bin Wang
- Department of Infectious Diseases, First Hospital of Jilin University, Changchun 130021, China; (X.L.); (B.W.)
| | - Kaiyu Zhang
- Department of Infectious Diseases, First Hospital of Jilin University, Changchun 130021, China; (X.L.); (B.W.)
| | - Yang Wang
- Department of Infectious Diseases, First Hospital of Jilin University, Changchun 130021, China; (X.L.); (B.W.)
| |
Collapse
|
6
|
Velayutham M, Sarkar P, Rajakrishnan R, Kuppusamy P, Juliet A, Arockiaraj J. Antiproliferation of MP12 derived from a fungus, Aphanomyces invadans virulence factor, cysteine-rich trypsin inhibitor on human laryngeal epithelial cells, and in vivo zebrafish embryo model. Toxicon 2022; 210:100-108. [PMID: 35217022 DOI: 10.1016/j.toxicon.2022.02.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/18/2022] [Accepted: 02/19/2022] [Indexed: 11/19/2022]
Abstract
Peptide-based drug development is an emerging and promising approach in cancer therapeutics. The present study focuses on understanding the mechanism of MP12 peptide (MDNHVCIPLCPP) derived from cysteine-rich trypsin inhibitor protein of virulence factor of pathogenic fungus Aphanomyces invadans. MP12 is involved in antiproliferative activity against the human laryngeal epithelial cell (Hep-2), demonstrated in this study. MP12 sequence showed a significant binding score and has multiple hydrogen bond interactions with the proteins that play a vital role in apoptotic pathways such as Bcl-2, caspase-3, caspase-7, and XIAP. Based on the bioinformatics characterization and molecular docking result, further study was focused on MP12 antiproliferative activity. The peptide showed a dose-dependent inhibition against Hep-2 cell line proliferation, analyzed over MTT and neutral red uptake assays. The IC50 value of the MP12 peptide was calculated based on the antiproliferative property (24.7 ± 0.34 μM). MP12 treated Hep-2 cells showed significant shrinkage in cell morphology compared to untreated cells, inhibiting the cell cycle. The gene expression analysis validated that the MP12 significantly upregulates the caspase-3, caspase-7, and caspase-9 genes. The developmental toxicity study using zebrafish embryos as in vivo model proved that the MP12 is nontoxic. Based on the obtained results, we proposed that the peptide MP12 derived from cysteine-rich trypsin inhibitor protein of virulence molecule of pathogenic fungus have a potential antiproliferative activity. However, further clinical trials need to be focused on the mechanism and therapeutic application against laryngeal cancer.
Collapse
Affiliation(s)
- Manikandan Velayutham
- Department of Biotechnology, College of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, 603 203, Chennai, Tamil Nadu, India
| | - Purabi Sarkar
- School of Allied Healthcare and Sciences, Jain Deemed-to-be University, Whitefield, Bangalore, 560 066, Karnataka, India
| | - R Rajakrishnan
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Palaniselvam Kuppusamy
- Department of Animal Biotechnology, Jeonbuk National University, Jeonju, 54896, South Korea
| | - Annie Juliet
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, 1 University Station A4800, Austin, TX, 78712, USA
| | - Jesu Arockiaraj
- Department of Biotechnology, College of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, 603 203, Chennai, Tamil Nadu, India.
| |
Collapse
|
7
|
Dümig M, Binder J, Gaculenko A, Daul F, Winandy L, Hasenberg M, Gunzer M, Fischer R, Künzler M, Krappmann S. The infectious propagules of Aspergillus fumigatus are coated with antimicrobial peptides. Cell Microbiol 2021; 23:e13301. [PMID: 33331054 DOI: 10.1111/cmi.13301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 12/11/2020] [Accepted: 12/13/2020] [Indexed: 11/29/2022]
Abstract
Fungal spores are unique cells that mediate dispersal and survival in the environment. For pathogenic fungi encountering a susceptible host, these specialised structures may serve as infectious particles. The main causative agent of the opportunistic disease aspergillosis, Aspergillus fumigatus, produces asexual spores, the conidia, that become dissipated by air flows or water currents but also serve as propagules to infect a susceptible host. We demonstrate that the defX gene of this mould encodes putative antimicrobial peptides resembling cysteine-stabilised (CS)αβ defensins that are expressed in a specific spatial and temporal manner in the course of asexual spore formation. Localisation studies on strains expressing a fluorescent proxy or tagged defX alleles expose that these antimicrobial peptides are secreted to coat the conidial surface. Deletion mutants reveal that the spore-associated defX gene products delay the growth of Gram-positive Staphylococcus aureus and demonstrate that the defX gene and presumably its encoded spore-associated defensins confer a growth advantage to the fungal opponent over bacterial competitors. These findings have implications with respect to the ecological niche of A. fumigatus that serves as a 'virulence school' for this human pathogenic mould; further relevance is given for the infectious process resulting in aspergillosis, considering competition with the host microbiome or co-infecting microorganisms to break colonisation resistance at host surfaces.
Collapse
Affiliation(s)
- Michaela Dümig
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen and Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Jasmin Binder
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen and Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Anastasia Gaculenko
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen and Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Franziska Daul
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen and Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Lex Winandy
- Department of Microbiology, Institute for Applied Biosciences, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Mike Hasenberg
- Imaging Centre Essen (IMCES) - Electron Microscopy Unit, University Hospital and University Duisburg-Essen, Essen, Germany.,Institute for Experimental Immunology and Imaging, University Hospital and University Duisburg-Essen, Essen, Germany
| | - Matthias Gunzer
- Institute for Experimental Immunology and Imaging, University Hospital and University Duisburg-Essen, Essen, Germany
| | - Reinhard Fischer
- Department of Microbiology, Institute for Applied Biosciences, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Markus Künzler
- Department of Biology, Institute of Microbiology, ETH Zürich, Zürich, Switzerland
| | - Sven Krappmann
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen and Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.,Medical Immunology Campus Erlangen, Erlangen, Germany
| |
Collapse
|
8
|
Shen B, Cao Z, Wu Y, Yi W, Zhu Z, Lv Z, Zhu C, Yu Y. Purlisin, a toxin‐like defensin derived from clinical pathogenic fungus
Purpureocillium lilacinum
with both antimicrobial and potassium channel inhibitory activities. FASEB J 2020; 34:15093-15107. [PMID: 32918769 DOI: 10.1096/fj.202000029rr] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 08/16/2020] [Accepted: 08/31/2020] [Indexed: 01/22/2023]
Affiliation(s)
- Bingzheng Shen
- Department of Pharmacy Renmin Hospital of Wuhan University Wuhan China
- State Key Laboratory of Virology, College of Life Sciences Wuhan University Wuhan China
| | - Zhijian Cao
- State Key Laboratory of Virology, College of Life Sciences Wuhan University Wuhan China
| | - Yingliang Wu
- State Key Laboratory of Virology, College of Life Sciences Wuhan University Wuhan China
| | - Wei Yi
- Department of Neurosurgery Renmin Hospital of Wuhan University Wuhan China
| | - Zhanyong Zhu
- Department of Plastic Surgery Renmin Hospital of Wuhan University Wuhan China
| | - Zhihua Lv
- Department of Clinical Laboratory Renmin Hospital of Wuhan University Wuhan China
| | - Chengliang Zhu
- Department of Clinical Laboratory Renmin Hospital of Wuhan University Wuhan China
| | - Yan Yu
- Department of Gastroenterology Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology Wuhan China
| |
Collapse
|
9
|
Tajti G, Wai DCC, Panyi G, Norton RS. The voltage-gated potassium channel K V1.3 as a therapeutic target for venom-derived peptides. Biochem Pharmacol 2020; 181:114146. [PMID: 32653588 DOI: 10.1016/j.bcp.2020.114146] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 07/05/2020] [Accepted: 07/07/2020] [Indexed: 02/07/2023]
Abstract
The voltage-gated potassium channel KV1.3 is a well-established therapeutic target for a range of autoimmune diseases, in addition to being the site of action of many venom-derived peptides. Numerous studies have documented the efficacy of venom peptides that target KV1.3, in particular from sea anemones and scorpions, in animal models of autoimmune diseases such as rheumatoid arthritis, psoriasis and multiple sclerosis. Moreover, an analogue of the sea anemone peptide ShK (known as dalazatide) has successfully completed Phase 1 clinical trials in mild-to-moderate plaque psoriasis. In this article we consider other potential therapeutic applications of inhibitors of KV1.3, including in inflammatory bowel disease and neuroinflammatory conditions such as Alzheimer's and Parkinson's diseases, as well as fibrotic diseases. We also summarise strategies for facilitating the entry of peptides to the central nervous system, given that this will be a pre-requisite for the treatment of most neuroinflammatory diseases. Venom-derived peptides that have been reported recently to target KV1.3 are also described. The increasing number of autoimmune and other conditions in which KV1.3 is upregulated and is therefore a potential therapeutic target, combined with the fact that many venom-derived peptides are potent inhibitors of KV1.3, suggests that venoms are likely to continue to serve as a rich source of new pharmacological tools and therapeutic leads targeting this channel.
Collapse
Affiliation(s)
- Gabor Tajti
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Dorothy C C Wai
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Gyorgy Panyi
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary.
| | - Raymond S Norton
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia; ARC Centre for Fragment-Based Design, Monash University, Parkville, VIC 3052, Australia.
| |
Collapse
|
10
|
Sampaio de Oliveira KB, Leite ML, Rodrigues GR, Duque HM, da Costa RA, Cunha VA, de Loiola Costa LS, da Cunha NB, Franco OL, Dias SC. Strategies for recombinant production of antimicrobial peptides with pharmacological potential. Expert Rev Clin Pharmacol 2020; 13:367-390. [PMID: 32357080 DOI: 10.1080/17512433.2020.1764347] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
INTRODUCTION The need to develop new drugs for the control of pathogenic microorganisms has redoubled efforts to prospect for antimicrobial peptides (AMPs) from natural sources and to characterize its structure and function. These molecules present a broad spectrum of action against different microorganisms and frequently present promiscuous action, with anticancer and immunomodulatory activities. Furthermore, AMPs can be used as biopharmaceuticals in the treatment of hospital-acquired infections and other serious diseases with relevant social and economic impacts.Areas covered: The low yield and the therefore difficult extraction and purification process in AMPs are problems that limit their industrial application and scientific research. Thus, optimized heterologous expression systems were developed to significantly boost AMP yields, allow high efficiency in purification and structural optimization for the increase of therapeutic activity.Expert opinion: This review provides an update on recent developments in the recombinant production of ribosomal and non-ribosomal synthesis of AMPs and on strategies to increase the expression of genes encoding AMPs at the transcriptional and translational levels and regulation of the post-translational modifications. Moreover, there are detailed reports of AMPs that have already reached marketable status or are in the pipeline under advanced stages of preclinical testing.
Collapse
Affiliation(s)
- Kamila Botelho Sampaio de Oliveira
- Centro de Análises Proteômicas e Bioquímicas, Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília , Brasília, Brazil
| | - Michel Lopes Leite
- Centro de Análises Proteômicas e Bioquímicas, Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília , Brasília, Brazil
| | - Gisele Regina Rodrigues
- Centro de Análises Proteômicas e Bioquímicas, Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília , Brasília, Brazil
| | - Harry Morales Duque
- Centro de Análises Proteômicas e Bioquímicas, Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília , Brasília, Brazil
| | - Rosiane Andrade da Costa
- Centro de Análises Proteômicas e Bioquímicas, Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília , Brasília, Brazil
| | - Victor Albuquerque Cunha
- Centro de Análises Proteômicas e Bioquímicas, Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília , Brasília, Brazil
| | - Lorena Sousa de Loiola Costa
- Centro de Análises Proteômicas e Bioquímicas, Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília , Brasília, Brazil
| | - Nicolau Brito da Cunha
- Centro de Análises Proteômicas e Bioquímicas, Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília , Brasília, Brazil
| | - Octavio Luiz Franco
- Centro de Análises Proteômicas e Bioquímicas, Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília , Brasília, Brazil.,Universidade de Brasília, Pós-graduação em Patologia Molecular, Campus Darcy Ribeiro , Brasília, Brazil.,S-Inova Biotech, Pós-graduação em Biotecnologia, Universidade Católica Dom Bosco , Campo Grande, Mato Grosso do Sul, Brazil
| | - Simoni Campos Dias
- Centro de Análises Proteômicas e Bioquímicas, Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília , Brasília, Brazil.,Universidade de Brasília, Pós-graduação em Biologia Animal, Campus Darcy Ribeiro , Brasília, Brazil
| |
Collapse
|