1
|
Singla S, Jena G. Studies on the mechanism of local and extra-intestinal tissue manifestations in AOM-DSS-induced carcinogenesis in BALB/c mice: role of PARP-1, NLRP3, and autophagy. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:4321-4337. [PMID: 38091080 DOI: 10.1007/s00210-023-02878-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 11/28/2023] [Indexed: 05/23/2024]
Abstract
Colitis-associated colorectal cancer (CACC) is one of the devastating complications of long-term inflammatory bowel disease and is associated with substantial morbidity and mortality. Combination of azoxymethane (AOM) and dextran sulfate sodium (DSS) has been extensively used for inflammation-mediated colon tumor development due to its reproducibility, potency, histological and molecular changes, and resemblance to human CACC. In the tumor microenvironment and extra-intestinal tissues, PARP-1, NLRP3 inflammasome, and autophagy's biological functions are complicated and encompass intricate interactions between these molecular components. The focus of the present investigation is to determine the colonic and extra-intestinal tissue damage induced by AOM-DSS and related molecular mechanisms. Azoxymethane (10 mg/kg, i.p.; single injection) followed by DSS (3 cycles, 7 days per cycle) over a period of 10 weeks induced colitis-associated colon cancer in male BALB/c mice. By initiating carcinogenesis with a single injection of azoxymethane (AOM) and then establishing inflammation with dextran sulfate sodium (DSS), a two-stage murine model for CACC was developed. Biochemical parameters, ELISA, histopathological and immunohistochemical analysis, and western blotting have been performed to evaluate the colonic, hepatic, testicular and pancreatic damage. In addition, the AOM/DSS-induced damage has been assessed by analyzing the expression of a variety of molecular targets, including proliferating cell nuclear antigen (PCNA), interleukin-10 (IL-10), AMP-activated protein kinase (AMPK), poly (ADP-ribose) polymerase-1 (PARP-1), cysteine-associated protein kinase-1 (caspase-1), NLR family pyrin domain containing 3 (NLRP3), beclin-1, and interleukin-1β (IL-1β). Present findings revealed that AOM/DSS developed tumors in colon tissue followed by extra-intestinal hepatic, testicular, and pancreatic damages.
Collapse
Affiliation(s)
- Shivani Singla
- Facility for Risk Assessment and Intervention Studies, Dept. of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, S.A.S, Nagar, Punjab, 160062, India
| | - Gopabandhu Jena
- Facility for Risk Assessment and Intervention Studies, Dept. of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, S.A.S, Nagar, Punjab, 160062, India.
| |
Collapse
|
2
|
Vaidya B, Gupta P, Laha JK, Roy I, Sharma SS. Amelioration of Parkinson's disease by pharmacological inhibition and knockdown of redox sensitive TRPC5 channels: Focus on mitochondrial health. Life Sci 2023:121871. [PMID: 37352915 DOI: 10.1016/j.lfs.2023.121871] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/08/2023] [Accepted: 06/16/2023] [Indexed: 06/25/2023]
Abstract
AIMS Transient receptor potential canonical 5 (TRPC5) channels are redox-sensitive cation-permeable channels involved in temperature and mechanical sensation. Increased expression and over-activation of these channels has been implicated in several central nervous system disorders such as epilepsy, depression, traumatic brain injury, anxiety, Huntington's disease and stroke. TRPC5 channel activation causes increased calcium influx which in turn activates numerous downstream signalling pathways involved in the pathophysiology of neurological disorders. Therefore, we hypothesized that pharmacological blockade and knockdown of TRPC5 channels could attenuate the behavioural deficits and molecular changes seen in CNS disease models such as MPTP/MPP+ induced Parkinson's disease (PD). MATERIALS AND METHODS In the present study, PD was induced after bilateral intranigral infusion of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) to the Sprague Dawley rats. Additionally, SH-SY5Y neurons were exposed to 1-methyl-4-phenylpyridinium (MPP+) to further determine the role of TRPC5 channels in PD. KEY FINDINGS We used clemizole hydrochloride, a potent TRPC5 channel blocker, to reverse the behavioural deficits, molecular changes and biochemical parameters in MPTP/MPP+-induced-PD. Furthermore, knockdown of TRPC5 expression using siRNA also closely phenocopies these effects. We further observed restoration of tyrosine hydroxylase levels and improved mitochondrial health following clemizole treatment and TRPC5 knockdown. These changes were accompanied by diminished calcium influx, reduced levels of reactive oxygen species and decreased apoptotic signalling in the PD models. SIGNIFICANCE These findings collectively suggest that increased expression of TRPC5 channels is a potential risk factor for PD and opens a new therapeutic window for the development of pharmacological agents targeting neurodegeneration and PD.
Collapse
Affiliation(s)
- Bhupesh Vaidya
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education, S.A.S. Nagar, Mohali, Punjab, India
| | - Pankaj Gupta
- Department of Pharmaceutical Technology (Process Chemistry), National Institute of Pharmaceutical Education and Research, S. A. S. Nagar, Punjab 160062, India
| | - Joydev K Laha
- Department of Pharmaceutical Technology (Process Chemistry), National Institute of Pharmaceutical Education and Research, S. A. S. Nagar, Punjab 160062, India
| | - Ipsita Roy
- Department of Biotechnology, National Institute of Pharmaceutical Education, S.A.S. Nagar, Mohali, Punjab, India
| | - Shyam Sunder Sharma
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education, S.A.S. Nagar, Mohali, Punjab, India.
| |
Collapse
|
3
|
Patankar JV, Bubeck M, Acera MG, Becker C. Breaking bad: necroptosis in the pathogenesis of gastrointestinal diseases. Front Immunol 2023; 14:1203903. [PMID: 37409125 PMCID: PMC10318896 DOI: 10.3389/fimmu.2023.1203903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 06/07/2023] [Indexed: 07/07/2023] Open
Abstract
A delicate balance between programmed cell death and proliferation of intestinal epithelial cells (IEC) exists in the gut to maintain homeostasis. Homeostatic cell death programs such as anoikis and apoptosis ensure the replacement of dead epithelia without overt immune activation. In infectious and chronic inflammatory diseases of the gut, this balance is invariably disturbed by increased levels of pathologic cell death. Pathological forms of cell death such as necroptosis trigger immune activation barrier dysfunction, and perpetuation of inflammation. A leaky and inflamed gut can thus become a cause of persistent low-grade inflammation and cell death in other organs of the gastrointestinal (GI) tract, such as the liver and the pancreas. In this review, we focus on the advances in the molecular and cellular understanding of programmed necrosis (necroptosis) in tissues of the GI tract. In this review, we will first introduce the reader to the basic molecular aspects of the necroptosis machinery and discuss the pathways leading to necroptosis in the GI system. We then highlight the clinical significance of the preclinical findings and finally evaluate the different therapeutic approaches that attempt to target necroptosis against various GI diseases. Finally, we review the recent advances in understanding the biological functions of the molecules involved in necroptosis and the potential side effects that may occur due to their systemic inhibition. This review is intended to introduce the reader to the core concepts of pathological necroptotic cell death, the signaling pathways involved, its immuno-pathological implications, and its relevance to GI diseases. Further advances in our ability to control the extent of pathological necroptosis will provide better therapeutic opportunities against currently intractable GI and other diseases.
Collapse
Affiliation(s)
- Jay V. Patankar
- Department of Medicine 1, University of Erlangen-Nuremberg, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| | - Marvin Bubeck
- Department of Medicine 1, University of Erlangen-Nuremberg, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| | - Miguel Gonzalez Acera
- Department of Medicine 1, University of Erlangen-Nuremberg, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| | - Christoph Becker
- Department of Medicine 1, University of Erlangen-Nuremberg, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| |
Collapse
|
4
|
Singla S, Kumar V, Jena G. 3-aminobenzamide protects against colitis associated diabetes mellitus in male BALB/c mice: Role of PARP-1, NLRP3, SIRT-1, AMPK. Biochimie 2023; 211:96-109. [PMID: 36934779 DOI: 10.1016/j.biochi.2023.03.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 03/15/2023] [Accepted: 03/16/2023] [Indexed: 03/19/2023]
Abstract
Diabetes and ulcerative colitis are chronic diseases associated with inflammation, dysbiosis, impaired immune function and infection risk. In patients with type 1 diabetes enteropathy, gastrointestinal manifestations are seen relatively frequently. The current investigation was aimed to decipher the role of 3-aminobenzamide (3-AB) in ulcerative colitis associated Diabetes mellitus in male BALB/c mice. Ulcerative colitis associated Diabetes mellitus experimental murine model was developed by 3 cycles (each cycle consists of seven days) of Dextran Sulphate Sodium (DSS; 2.5 %w/v) with recovery time of one week in-between along with Streptozotocin (STZ; 40 mg/kg; i.p. x 5 days; consecutively) was given at the Ist recovery period. As an intervention, 3-aminobenzamide (3-AB; 5 and 10 mg/kg; intraperitoneally) was given beginning with the second DSS cycle and then continue till sacrifice. 3-aminobenzamide treatment significantly reduced the severity of colitis-associated diabetes mellitus by altering the expression of a number of molecular targets, including sirtuin 1 (SIRT 1), proliferating cell nuclear antigen (PCNA), poly[ADP-ribose] polymerase 1 (PARP-1), cysteine protease-1 (Caspase-1), nuclear factor kappa-light-chain-enhancer of activated B cells (NFkBp65), NLR family pyrin domain containing 3 (NLRP3), insulin growth factor 1 (IGF-1), interleukin-1β (IL-1β), interleukin-10 (IL-10) and β-catenin. Further, 3-AB at high dose (10 mg/kg; intraperitoneally) significantly restored the epithelial tight junction integrity as evaluated by TEM analysis and restored occludin expression analysed by immunofluorescence analysis. Present study revealed that the high dose of 3-AB (10 mg/kg; intraperitoneally) showed significant and consistent protective effects against colitis associated Diabetes mellitus by modulating various molecular targets.
Collapse
Affiliation(s)
- Shivani Singla
- Facility for Risk Assessment and Intervention Studies, Dept. of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, S.A.S Nagar, Mohali, Chandigarh, Punjab, 160062, India.
| | - Vinod Kumar
- High Resolution Transmission Electron Microscopy Facility, Dept. of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, S.A.S Nagar, Mohali, Chandigarh, Punjab, 160062, India.
| | - Gopabandhu Jena
- Facility for Risk Assessment and Intervention Studies, Dept. of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, S.A.S Nagar, Mohali, Chandigarh, Punjab, 160062, India.
| |
Collapse
|
5
|
Liu Z, Bai X, Zhang H, Wang Z, Yang H, Qian J. Sex-specific comparison of clinical characteristics and prognosis in Crohn’s disease: A retrospective cohort study of 611 patients in China. Front Physiol 2022; 13:972038. [PMID: 36246126 PMCID: PMC9557081 DOI: 10.3389/fphys.2022.972038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 09/14/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Real-world data on the impact of sex on the disease progression and prognosis of Crohn’s disease (CD) from large-scale Chinese cohorts are lacking.Aims: This study aimed to evaluate sex disparities in the clinical characteristics of, disease progression behaviours of and surgery-related risk factors for CD.Methods: A retrospective cohort study comprising 611 patients consecutively diagnosed with CD at Peking Union Medical College Hospital from January 2000 to December 2020 was conducted. Multivariate Cox regression and survival analyses was performed to assess the risk factors for disease progression and CD-related surgery in sex subgroups.Results: Male sex was an independent protective factor against multisystemic extraintestinal manifestations [EIMs] (HR: 0.52, p = 0.03) and a risk factor for intestinal perforation (HR: 1.85, p = 0.01). Male patients had longer EIM-free survival (p = 0.024) and shorter intestinal perforation-free survival (PFS) than females (p = 0.012). Of the 397 patients with the A2 classification, male patients had a higher risk of CD-related surgery (HR: 1.80, p = 0.028) and shorter surgery-free survival (SFS) than female patients (p = 0.04).Conclusion: Sex disparities in disease progression and outcomes of CD were revealed in a single Chinese centre. Male sex was independently associated with worse disease progression and prognosis including multisystemic EIMs and perforation, which suggests the need for individualized management according to risk classification.
Collapse
|
6
|
Vaidya B, Roy I, Sharma SS. Neuroprotective Potential of HC070, a Potent TRPC5 Channel Inhibitor in Parkinson's Disease Models: A Behavioral and Mechanistic Study. ACS Chem Neurosci 2022; 13:2728-2742. [PMID: 36094343 DOI: 10.1021/acschemneuro.2c00403] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Transient receptor potential canonical 5 (TRPC5) channels are predominantly expressed in the striatum and substantia nigra of the brain. These channels are permeable to calcium ions and are activated by oxidative stress. The physiological involvement of TRPC5 channels in temperature and mechanical sensation is well documented; however, evidence for their involvement in the pathophysiology of neurodegenerative disorders like Parkinson's disease (PD) is sparse. Thus, in the present study, the role of TRPC5 channels and their associated downstream signaling was elucidated in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine/1-methyl-4-phenylpyridinium (MPTP/MPP+) model of PD. Bilateral intranigral administration of MPTP and 24 h MPP+ exposure were performed to induce PD in the Sprague-Dawley rats and SH-SY5Y cells, respectively. MPTP led to behavioral anomalies and TRPC5 overexpression accompanied by increased calcium influx, apoptosis, oxidative stress, and mitochondrial dysfunctions. In addition, tyrosine hydroxylase (TH) expression was significantly lower in the midbrain and substantia nigra compared to sham animals. Intraperitoneal administration of potent and selective TRPC5 inhibitor, HC070 (0.1 and 0.3 mg/kg) reversed the cognitive and motor deficits seen in MPTP-lesioned rats. It also restored the TH and TRPC5 expression both in the striatum and midbrain. Furthermore, in vitro and in vivo studies suggested improvements in mitochondrial health along with reduced oxidative stress, apoptosis, and calcium-mediated excitotoxicity. Together, these results showed that inhibition of TRPC5 channels plays a crucial part in the reversal of pathology in the MPTP/MPP+ model of Parkinson's disease.
Collapse
Affiliation(s)
- Bhupesh Vaidya
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education, S.A.S. Nagar, Mohali 160062, Punjab, India
| | - Ipsita Roy
- Department of Biotechnology, National Institute of Pharmaceutical Education, S.A.S. Nagar, Mohali 160062, Punjab, India
| | - Shyam Sunder Sharma
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education, S.A.S. Nagar, Mohali 160062, Punjab, India
| |
Collapse
|