1
|
He L, Zuo Q, Ma S, Zhang G, Wang Z, Zhang T, Zhai J, Guo Y. Canagliflozin attenuates kidney injury, gut-derived toxins, and gut microbiota imbalance in high-salt diet-fed Dahl salt-sensitive rats. Ren Fail 2024; 46:2300314. [PMID: 38189082 PMCID: PMC10776083 DOI: 10.1080/0886022x.2023.2300314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 12/24/2023] [Indexed: 01/09/2024] Open
Abstract
PURPOSE To investigate the effects of canagliflozin (20 mg/kg) on Dahl salt-sensitive (DSS) rat gut microbiota and salt-sensitive hypertension-induced kidney injury and further explore its possible mechanism. METHODS Rats were fed a high-salt diet to induce hypertension and kidney injury, and physical and physiological indicators were measured afterwards. This study employed 16S rRNA sequencing technology and liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based metabolic profiling combined with advanced differential and association analyses to investigate the correlation between the microbiome and the metabolome in male DSS rats. RESULTS A high-salt diet disrupted the balance of the intestinal flora and increased toxic metabolites (methyhistidines, creatinine, homocitrulline, and indoxyl sulfate), resulting in severe kidney damage. Canagliflozin contributed to reconstructing the intestinal flora of DSS rats by significantly increasing the abundance of Corynebacterium spp., Bifidobacterium spp., Facklamia spp., Lactobacillus spp., Ruminococcus spp., Blautia spp., Coprococcus spp., and Allobaculum spp. Moreover, the reconstruction of the intestinal microbiota led to significant changes in host amino acid metabolite concentrations. The concentration of uremic toxins, such as methyhistidines, creatinine, and homocitrulline, in the serum of rats was decreased by canagliflozin, which resulted in oxidative stress and renal injury alleviation. CONCLUSION Canagliflozin may change the production of metabolites and reduce the level of uremic toxins in the blood circulation by reconstructing the intestinal flora of DSS rats fed a high-salt diet, ultimately alleviating oxidative stress and renal injury.
Collapse
Affiliation(s)
- Lili He
- Department of Geriatric Cardiology, Hebei General Hospital, Shijiazhuang, China
| | - Qingjuan Zuo
- Department of Geriatric Cardiology, Hebei General Hospital, Shijiazhuang, China
| | - Sai Ma
- Department of Internal Medicine, Hebei General Hospital, Shijiazhuang, China
| | - Guorui Zhang
- Department of Cardiology, The Third Hospital of Shijiazhuang City Affiliated to Hebei Medical University, Shijiazhuang, China
| | - Zhongli Wang
- Department of Physical Examination Center, Hebei General Hospital, Shijiazhuang, China
| | - Tingting Zhang
- Department of Geriatric Cardiology, Hebei General Hospital, Shijiazhuang, China
| | - Jianlong Zhai
- Department of Cardiology, Hebei General Hospital, Shijiazhuang, China
| | - Yifang Guo
- Department of Geriatric Cardiology, Hebei General Hospital, Shijiazhuang, China
| |
Collapse
|
2
|
Zhou Z, Niu H, Bian M, Zhu C. Kidney tea [ Orthosiphon aristatus (Blume) Miq.] improves diabetic nephropathy via regulating gut microbiota and ferroptosis. Front Pharmacol 2024; 15:1392123. [PMID: 38962302 PMCID: PMC11220284 DOI: 10.3389/fphar.2024.1392123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 05/27/2024] [Indexed: 07/05/2024] Open
Abstract
Introduction Diabetic nephropathy (DN) is the leading cause of end-stage renal disease. Due to its complex pathogenesis, new therapeutic agents are urgently needed. Orthosiphon aristatus (Blume) Miq., commonly known as kidney tea, is widely used in DN treatment in China. However, the mechanisms have not been fully elucidated. Methods We used db/db mice as the DN model and evaluated the efficacy of kidney tea in DN treatment by measuring fasting blood glucose (FBG), serum inflammatory cytokines, renal injury indicators and histopathological changes. Furthermore, 16S rDNA gene sequencing, untargeted serum metabolomics, electron microscope, ELISA, qRT-PCR, and Western blotting were performed to explore the mechanisms by which kidney tea exerted therapeutic effects. Results Twelve polyphenols were identified from kidney tea, and its extract ameliorated FBG, inflammation and renal injury in DN mice. Moreover, kidney tea reshaped the gut microbiota, reduced the abundance of Muribaculaceae, Lachnoclostridium, Prevotellaceae_UCG-001, Corynebacterium and Akkermansia, and enriched the abundance of Alloprevotella, Blautia and Lachnospiraceae_NK4A136_group. Kidney tea altered the levels of serum metabolites in pathways such as ferroptosis, arginine biosynthesis and mTOR signaling pathway. Importantly, kidney tea improved mitochondrial damage, increased SOD activity, and decreased the levels of MDA and 4-HNE in the renal tissues of DN mice. Meanwhile, this functional tea upregulated GPX4 and FTH1 expression and downregulated ACSL4 and NCOA4 expression, indicating that it could inhibit ferroptosis in the kidneys. Conclusion Our findings imply that kidney tea can attenuate DN development by modulating gut microbiota and ferroptosis, which presents a novel scientific rationale for the clinical application of kidney tea.
Collapse
Affiliation(s)
- Zheng Zhou
- Department of Chinese Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hongjuan Niu
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Meng Bian
- Department of Chinese Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Chunsheng Zhu
- Department of Chinese Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
3
|
Wu Y, Mo J, Liang J, Pu X, Dong Y, Zhu X, Zhao H, Qiu H, Wu S, Lu T. Multiomic study of the protective mechanism of Persicaria capitata (Buch.-Ham. ex D.Don) H.Gross against streptozotocin-induced diabetic nephropathy in Guizhou miniature pigs. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 128:155499. [PMID: 38492367 DOI: 10.1016/j.phymed.2024.155499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 02/23/2024] [Accepted: 02/26/2024] [Indexed: 03/18/2024]
Abstract
BACKGROUND Persicaria capitata (Buch.-Ham. ex D.Don) H.Gross (P. capitata, PCB), a traditional drug of the Miao people in China, is potential traditional drug used for the treatment of diabetic nephropathy (DN). PURPOSE The purpose of this study is to investigate the function of P. capitata and clarify its protective mechanism against DN. METHODS We induced DN in the Guizhou miniature pig with injections of streptozotocin, and P. capitata was added to the pigs' diet to treat DN. In week 16, all the animals were slaughtered, samples were collected, and the relative DN indices were measured. 16S rRNA sequencing, metagenomics, metabolomics, RNA sequencing, and proteomics were used to explore the protective mechanism of P. capitata against DN. RESULTS Dietary supplementation with P. capitata significantly reduced the extent of the disease, not only in term of the relative disease indices but also in hematoxylin-eosin-stained tissues. A multiomic analysis showed that two microbes (Clostridium baratii and Escherichia coli), five metabolites (oleic acid, linoleic acid, 4-phenylbutyric acid, 18-β-glycyrrhetinic acid, and ergosterol peroxide), four proteins (ENTPD5, EPHX1, ARVCF and TREH), four important mRNAs (encoding ENTPD5, EPHX1, ARVCF, and TREH), six lncRNAs (TCONS_00024194, TCONS_00085825, TCONS_00006937, TCONS_00070981, TCONS_00074099, and TCONS_00097913), and two circRNAs (novel_circ_0001514 and novel_circ_0017507) are all involved in the protective mechanism of P. capitata against DN. CONCLUSIONS Our results provide multidimensional theoretical support for the study and application of P. capitata.
Collapse
Affiliation(s)
- Yanjun Wu
- Guizhou University of Traditional Chinese Medicine, Dongqing road, Guiyang, Guizhou 550025, China
| | - Jiayuan Mo
- College of Animal Science & Technology, Guangxi University, Nanning 530004, China
| | - Jing Liang
- College of Animal Science & Technology, Guangxi University, Nanning 530004, China
| | - Xiang Pu
- Guizhou University of Traditional Chinese Medicine, Dongqing road, Guiyang, Guizhou 550025, China
| | - Yuanqiu Dong
- Guizhou University of Traditional Chinese Medicine, Dongqing road, Guiyang, Guizhou 550025, China
| | - Xiang Zhu
- Guizhou University of Traditional Chinese Medicine, Dongqing road, Guiyang, Guizhou 550025, China
| | - Hai Zhao
- Guizhou University of Traditional Chinese Medicine, Dongqing road, Guiyang, Guizhou 550025, China
| | - Huaming Qiu
- Guizhou University of Traditional Chinese Medicine, Dongqing road, Guiyang, Guizhou 550025, China
| | - Shuguang Wu
- Guizhou University of Traditional Chinese Medicine, Dongqing road, Guiyang, Guizhou 550025, China
| | - Taofeng Lu
- Guizhou University of Traditional Chinese Medicine, Dongqing road, Guiyang, Guizhou 550025, China.
| |
Collapse
|
4
|
Yang Q, Qian L, He S, Zhang C. Hesperidin alleviates zinc-induced nephrotoxicity via the gut-kidney axis in swine. Front Cell Infect Microbiol 2024; 14:1390104. [PMID: 38741891 PMCID: PMC11089138 DOI: 10.3389/fcimb.2024.1390104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 04/16/2024] [Indexed: 05/16/2024] Open
Abstract
Introduction Zinc (Zn) is an essential trace element in animals, but excessive intake can lead to renal toxicity damage. Thus, the exploration of effective natural antagonists to reduce the toxicity caused by Zn has become a major scientific problem. Methods Here, we found that hesperidin could effectively alleviate the renal toxicity induced by Zn in pigs by using hematoxylin-eosin staining, transmission electron microscope, immunohistochemistry, fluorescence quantitative PCR, and microfloral DNA sequencing. Results The results showed that hesperidin could effectively attenuate the pathological injury in kidney, and reduce autophagy and apoptosis induced by Zn, which evidenced by the downregulation of LC3, ATG5, Bak1, Bax, Caspase-3 and upregulation of p62 and Bcl2. Additionally, hesperidin could reverse colon injury and the decrease of ZO-1 protein expression. Interestingly, hesperidin restored the intestinal flora structure disturbed by Zn, and significantly reduced the abundance of Tenericutes (phylum level) and Christensenella (genus level). Discussion Thus, altered intestinal flora and intestinal barrier function constitute the gut-kidney axis, which is involved in hesperidin alleviating Zn-induced nephrotoxicity. Our study provides theoretical basis and practical significance of hesperidin for the prevention and treatment of Zn-induced nephrotoxicity through gut-kidney axis.
Collapse
Affiliation(s)
| | | | | | - Chuanshi Zhang
- Laboratory of Veterinary Pharmacology, Department of Animal Science and Technology, Chongqing Three Gorges Vocational College, Chongqing, China
| |
Collapse
|
5
|
Bajetto G, Arnodo D, Biolatti M, Trifirò L, Albano C, Pasquero S, Gugliesi F, Campo E, Spyrakis F, Prandi C, De Andrea M, Dell’Oste V, Visentin I, Blangetti M. Antiherpetic Activity of a Root Exudate from Solanum lycopersicum. Microorganisms 2024; 12:373. [PMID: 38399777 PMCID: PMC10892521 DOI: 10.3390/microorganisms12020373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/05/2024] [Accepted: 02/09/2024] [Indexed: 02/25/2024] Open
Abstract
The rise of drug resistance to antivirals poses a significant global concern for public health; therefore, there is a pressing need to identify novel compounds that can effectively counteract strains resistant to current antiviral treatments. In light of this, researchers have been exploring new approaches, including the investigation of natural compounds as alternative sources for developing potent antiviral therapies. Thus, this work aimed to evaluate the antiviral properties of the organic-soluble fraction of a root exudate derived from the tomato plant Solanum lycopersicum in the context of herpesvirus infections. Our findings demonstrated that a root exudate from Solanum lycopersicum exhibits remarkable efficacy against prominent members of the family Herpesviridae, specifically herpes simplex virus type 1 (HSV-1) (EC50 25.57 µg/mL, SI > 15.64) and human cytomegalovirus (HCMV) (EC50 9.17 µg/mL, SI 32.28) by inhibiting a molecular event during the herpesvirus replication phase. Moreover, the phytochemical fingerprint of the Solanum lycopersicum root exudate was characterized through mass spectrometry. Overall, these data have unveiled a novel natural product with antiherpetic activity, presenting a promising and valuable alternative to existing drugs.
Collapse
Affiliation(s)
- Greta Bajetto
- Department of Public Health and Pediatric Sciences, University of Turin, 10126 Turin, Italy; (G.B.); (M.B.); (L.T.); (C.A.); (S.P.); (F.G.); (M.D.A.)
- Center for Translational Research on Autoimmune and Allergic Disease (CAAD), 28100 Novara, Italy
| | - Davide Arnodo
- Department of Chemistry, University of Turin, 10125 Turin, Italy; (D.A.); (C.P.)
| | - Matteo Biolatti
- Department of Public Health and Pediatric Sciences, University of Turin, 10126 Turin, Italy; (G.B.); (M.B.); (L.T.); (C.A.); (S.P.); (F.G.); (M.D.A.)
| | - Linda Trifirò
- Department of Public Health and Pediatric Sciences, University of Turin, 10126 Turin, Italy; (G.B.); (M.B.); (L.T.); (C.A.); (S.P.); (F.G.); (M.D.A.)
| | - Camilla Albano
- Department of Public Health and Pediatric Sciences, University of Turin, 10126 Turin, Italy; (G.B.); (M.B.); (L.T.); (C.A.); (S.P.); (F.G.); (M.D.A.)
| | - Selina Pasquero
- Department of Public Health and Pediatric Sciences, University of Turin, 10126 Turin, Italy; (G.B.); (M.B.); (L.T.); (C.A.); (S.P.); (F.G.); (M.D.A.)
| | - Francesca Gugliesi
- Department of Public Health and Pediatric Sciences, University of Turin, 10126 Turin, Italy; (G.B.); (M.B.); (L.T.); (C.A.); (S.P.); (F.G.); (M.D.A.)
| | - Eva Campo
- Department of Agricultural, Forestry, and Food Sciences, University of Turin, 10095 Turin, Italy; (E.C.); (I.V.)
| | - Francesca Spyrakis
- Department of Drug Science and Technology, University of Turin, 10125 Turin, Italy;
| | - Cristina Prandi
- Department of Chemistry, University of Turin, 10125 Turin, Italy; (D.A.); (C.P.)
| | - Marco De Andrea
- Department of Public Health and Pediatric Sciences, University of Turin, 10126 Turin, Italy; (G.B.); (M.B.); (L.T.); (C.A.); (S.P.); (F.G.); (M.D.A.)
- Center for Translational Research on Autoimmune and Allergic Disease (CAAD), 28100 Novara, Italy
| | - Valentina Dell’Oste
- Department of Public Health and Pediatric Sciences, University of Turin, 10126 Turin, Italy; (G.B.); (M.B.); (L.T.); (C.A.); (S.P.); (F.G.); (M.D.A.)
| | - Ivan Visentin
- Department of Agricultural, Forestry, and Food Sciences, University of Turin, 10095 Turin, Italy; (E.C.); (I.V.)
| | - Marco Blangetti
- Department of Chemistry, University of Turin, 10125 Turin, Italy; (D.A.); (C.P.)
| |
Collapse
|
6
|
Han YZ, Zheng HJ, Du BX, Zhang Y, Zhu XY, Li J, Wang YX, Liu WJ. Role of Gut Microbiota, Immune Imbalance, and Allostatic Load in the Occurrence and Development of Diabetic Kidney Disease. J Diabetes Res 2023; 2023:8871677. [PMID: 38094870 PMCID: PMC10719010 DOI: 10.1155/2023/8871677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 11/15/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
Diabetic kidney disease (DKD) is a prevailing complication arising from diabetes mellitus. Unfortunately, there are no trustworthy and efficacious treatment modalities currently available. In recent times, compelling evidence has emerged regarding the intricate correlation between the kidney and the gut microbiota, which is considered the largest immune organ within the human physique. Various investigations have demonstrated that the perturbation of the gut microbiota and its associated metabolites potentially underlie the etiology and progression of DKD. This phenomenon may transpire through perturbation of both the innate and the adaptive immunity, leading to a burdensome allostatic load on the body and ultimately culminating in the development of DKD. Within this literature review, we aim to delve into the intricate interplay between the gut microbiota, its metabolites, and the immune system in the context of DKD. Furthermore, we strive to explore and elucidate potential chemical interventions that could hold promise for the treatment of DKD, thereby offering invaluable insights and directions for future research endeavors.
Collapse
Affiliation(s)
- Yi Zhen Han
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Hui Juan Zheng
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Bo Xuan Du
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yi Zhang
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Xing Yu Zhu
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Jing Li
- Graduate School, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Yao Xian Wang
- Beijing University of Chinese Medicine, Beijing, China
| | - Wei Jing Liu
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
7
|
Zhao H, Yang CE, Liu T, Zhang MX, Niu Y, Wang M, Yu J. The roles of gut microbiota and its metabolites in diabetic nephropathy. Front Microbiol 2023; 14:1207132. [PMID: 37577423 PMCID: PMC10413983 DOI: 10.3389/fmicb.2023.1207132] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 07/13/2023] [Indexed: 08/15/2023] Open
Abstract
Diabetic nephropathy (DN) is a severe microvascular complication of diabetes, which increases the risk of renal failure and causes a high global disease burden. Due to the lack of sustainable treatment, DN has become the primary cause of end-stage renal disease worldwide. Gut microbiota and its metabolites exert critical regulatory functions in maintaining host health and are associated with many pathogenesis of aging-related chronic diseases. Currently, the theory gut-kidney axis has opened a novel angle to understand the relationship between gut microbiota and multiple kidney diseases. In recent years, accumulating evidence has revealed that the gut microbiota and their metabolites play an essential role in the pathophysiologic processes of DN through the gut-kidney axis. In this review, we summarize the current investigations of gut microbiota and microbial metabolites involvement in the progression of DN, and further discuss the potential gut microbiota-targeted therapeutic approaches for DN.
Collapse
Affiliation(s)
- Hui Zhao
- Clinical Experimental Center, Xi’an Engineering Technology Research Center for Cardiovascular Active Peptides, the Affiliated Xi’an International Medical Center Hospital, Northwest University, Xi’an, Shaanxi, China
- Faculty of Life Science and Medicine, Northwest University, Xi’an, Shaanxi, China
| | - Cheng-E Yang
- Department of Cardiology, Xi'an International Medical Center Hospital, Xi’an, Shaanxi, China
| | - Tian Liu
- Clinical Experimental Center, Xi’an Engineering Technology Research Center for Cardiovascular Active Peptides, the Affiliated Xi’an International Medical Center Hospital, Northwest University, Xi’an, Shaanxi, China
| | - Ming-Xia Zhang
- Clinical Experimental Center, Xi’an Engineering Technology Research Center for Cardiovascular Active Peptides, the Affiliated Xi’an International Medical Center Hospital, Northwest University, Xi’an, Shaanxi, China
| | - Yan Niu
- Clinical Experimental Center, Xi’an Engineering Technology Research Center for Cardiovascular Active Peptides, the Affiliated Xi’an International Medical Center Hospital, Northwest University, Xi’an, Shaanxi, China
| | - Ming Wang
- College of Food Science and Engineering, Northwest University, Xi’an, Shaanxi, China
| | - Jun Yu
- Clinical Experimental Center, Xi’an Engineering Technology Research Center for Cardiovascular Active Peptides, the Affiliated Xi’an International Medical Center Hospital, Northwest University, Xi’an, Shaanxi, China
| |
Collapse
|