1
|
Mally A, Jarzina S. Mapping Adverse Outcome Pathways for Kidney Injury as a Basis for the Development of Mechanism-Based Animal-Sparing Approaches to Assessment of Nephrotoxicity. FRONTIERS IN TOXICOLOGY 2022; 4:863643. [PMID: 35785263 PMCID: PMC9242087 DOI: 10.3389/ftox.2022.863643] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 03/11/2022] [Indexed: 02/04/2023] Open
Abstract
In line with recent OECD activities on the use of AOPs in developing Integrated Approaches to Testing and Assessment (IATAs), it is expected that systematic mapping of AOPs leading to systemic toxicity may provide a mechanistic framework for the development and implementation of mechanism-based in vitro endpoints. These may form part of an integrated testing strategy to reduce the need for repeated dose toxicity studies. Focusing on kidney and in particular the proximal tubule epithelium as a key target site of chemical-induced injury, the overall aim of this work is to contribute to building a network of AOPs leading to nephrotoxicity. Current mechanistic understanding of kidney injury initiated by 1) inhibition of mitochondrial DNA polymerase γ (mtDNA Polγ), 2) receptor mediated endocytosis and lysosomal overload, and 3) covalent protein binding, which all present fairly well established, common mechanisms by which certain chemicals or drugs may cause nephrotoxicity, is presented and systematically captured in a formal description of AOPs in line with the OECD AOP development programme and in accordance with the harmonized terminology provided by the Collaborative Adverse Outcome Pathway Wiki. The relative level of confidence in the established AOPs is assessed based on evolved Bradford-Hill weight of evidence considerations of biological plausibility, essentiality and empirical support (temporal and dose-response concordance).
Collapse
|
2
|
Birk B, Haake V, Sperber S, Herold M, Wallisch SK, Huener HA, Verlohner A, Amma MM, Walk T, Hernandez TR, Hewitt NJ, Kamp H, van Ravenzwaay B. Use of in vitro metabolomics in NRK cells to help predicting nephrotoxicity and differentiating the MoA of nephrotoxicants. Toxicol Lett 2021; 353:43-59. [PMID: 34626816 DOI: 10.1016/j.toxlet.2021.09.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 08/06/2021] [Accepted: 09/29/2021] [Indexed: 12/25/2022]
Abstract
We describe a strategy using an in vitro metabolomics assay with tubular rat NRK-52E cells to investigate the Modes of Action (MoAs) of nephrotoxic compounds. Chemicals were selected according to their MoAs based on literature information: acetaminophen, 4-aminophenol and S-(trichlorovinyl-)L-cysteine (TCVC), (covalent protein binding); gentamycin, vancomycin, polymycin B and CdCl2 (lysosomal overload) and tenofovir and cidofovir (mitochondrial DNA-interaction). After treatment and harvesting of the cells, intracellular endogenous metabolites were quantified relative to vehicle control. Metabolite patterns were evaluated in a purely data-driven pattern generation process excluding published information. This strategy confirmed the assignment of the chemicals to the respective MoA except for TCVC and CdCl2. Finally, TCVC was defined as unidentified and CdCl2 was reclassified to the MoA "covalent protein binding". Hierarchical cluster analysis of 58 distinct metabolites from the patterns enabled a clear visual separation of chemicals in each MoA. The assay reproducibility was very good and metabolic responses were consistent. These results support the use of metabolome analysis in NRK-52E cells as a suitable tool for understanding and investigating the MoA of nephrotoxicants. This assay could enable the early identification of nephrotoxic compounds and finally reduce animal testing.
Collapse
Affiliation(s)
- Barbara Birk
- Experimental Toxicology and Ecology, BASF SE, Ludwigshafen, Germany.
| | | | - Saskia Sperber
- Experimental Toxicology and Ecology, BASF SE, Ludwigshafen, Germany
| | | | | | | | | | - Meike M Amma
- Experimental Toxicology and Ecology, BASF SE, Ludwigshafen, Germany
| | | | | | | | - Hennicke Kamp
- Experimental Toxicology and Ecology, BASF SE, Ludwigshafen, Germany; BASF Metabolome Solutions GmbH, Berlin, Germany
| | | |
Collapse
|
3
|
Cooper AJL, Bruschi SA, Anders MW. Toxic, halogenated cysteine S-conjugates and targeting of mitochondrial enzymes of energy metabolism. Biochem Pharmacol 2002; 64:553-64. [PMID: 12167474 DOI: 10.1016/s0006-2952(02)01076-6] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Several haloalkenes are metabolized in part to nephrotoxic cysteine S-conjugates; for example, trichloroethylene and tetrafluoroethylene are converted to S-(1,2-dichlorovinyl)-L-cysteine (DCVC) and S-(1,1,2,2-tetrafluoroethyl)-L-cysteine (TFEC), respectively. Although DCVC-induced toxicity has been investigated since the 1950s, the toxicity of TFEC and other haloalkene-derived cysteine S-conjugates has been studied more recently. Some segments of the US population are exposed to haloalkenes either through drinking water or in the workplace. Therefore, it is important to define the toxicological consequences of such exposures. Most halogenated cysteine S-conjugates are metabolized by cysteine S-conjugate beta-lyases to pyruvate, ammonia, and an alpha-chloroenethiolate (with DCVC) or an alpha-difluoroalkylthiolate (with TFEC) that may eliminate halide to give a thioacyl halide, which reacts with epsilon-amino groups of lysine residues in proteins. Nine mammalian pyridoxal 5'-phosphate (PLP)-containing enzymes catalyze cysteine S-conjugate beta-lyase reactions, including mitochondrial aspartate aminotransferase (mitAspAT), and mitochondrial branched-chain amino acid aminotransferase (BCAT(m)). Most of the cysteine S-conjugate beta-lyases are syncatalytically inactivated. TFEC-induced toxicity is associated with covalent modification of several mitochondrial enzymes of energy metabolism. Interestingly, the alpha-ketoglutarate- and branched-chain alpha-keto acid dehydrogenase complexes (KGDHC and BCDHC), but not the pyruvate dehydrogenase complex (PDHC), are susceptible to inactivation. mitAspAT and BCAT(m) may form metabolons with KGDHC and BCDHC, respectively, but no PLP enzyme is known to associate with PDHC. Consequently, we hypothesize that not only do these metabolons facilitate substrate channeling, but they also facilitate toxicant channeling, thereby promoting the inactivation of proximate mitochondrial enzymes and the induction of mitochondrial dysfunction.
Collapse
Affiliation(s)
- Arthur J L Cooper
- Department of Biochemistry, Weill Medical College of Cornell University, New York, NY 10021, USA.
| | | | | |
Collapse
|
4
|
Cooper AJ, Wang J, Gartner CA, Bruschi SA. Co-purification of mitochondrial HSP70 and mature protein disulfide isomerase with a functional rat kidney high-M(r) cysteine S-conjugate beta-lyase. Biochem Pharmacol 2001; 62:1345-53. [PMID: 11709194 DOI: 10.1016/s0006-2952(01)00802-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
S-(1,1,2,2-Tetrafluoroethyl)-L-cysteine (TFEC, the cysteine S-conjugate of tetrafluoroethylene) is an example of a nephrotoxic, halogenated cysteine S-conjugate. Toxicity results in part from the cysteine S-conjugate beta-lyase(s)-catalyzed conversion of TFEC to a thioacylating fragment with the associated production of pyruvate and ammonia. In the present study, we have demonstrated that rat kidney homogenates contain at least three enzyme fractions that are capable of catalyzing a cysteine S-conjugate beta-lyase reaction with TFEC. One of these fractions contains a high-M(r) lyase. At least two proteins co-purify with this high-M(r) complex. N-Terminal analysis (15 cycles) revealed that the smaller species was mature protein disulfide isomerase (M(r) approximately 54,200) from which the 24 amino acid endoplasmic reticulum signal peptide had been removed. Internal amino acid sequencing (15 cycles) revealed that the larger species was mitochondrial HSP70 (mtHSP70; M(r) approximately 75,000). The present findings offer an explanation for the previous observation that mtHSP70 in kidney mitochondria is heavily thioacylated when rats are injected with TFEC (Bruschi et al., J Biol Chem 1993;268:23157-61).
Collapse
Affiliation(s)
- A J Cooper
- Department of Biochemistry, Weill Medical College of Cornell University, New York, NY, USA.
| | | | | | | |
Collapse
|
5
|
Park LC, Gibson GE, Bunik V, Cooper AJ. Inhibition of select mitochondrial enzymes in PC12 cells exposed to S-(1,1,2,2-tetrafluoroethyl)-L-cysteine. Biochem Pharmacol 1999; 58:1557-65. [PMID: 10535746 DOI: 10.1016/s0006-2952(99)00247-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Many halogenated foreign compounds are detoxified by conversion to the corresponding cysteine S-conjugate, which is N-acetylated and excreted. However, several halogenated cysteine S-conjugates [e.g. S-(1,1,2,2-tetrafluoroethy)-L-cysteine (TFEC)] are converted to mitochondrial toxicants by cysteine S-conjugate beta-lyases. In the present work, we showed that TFEC appreciably inactivated highly purified alpha-ketoglutarate dehydrogenase complex (KGDHC) in the presence of a cysteine S-conjugate beta-lyase. Incubation of PC12 cells (which contain endogenous cysteine S-conjugate beta-lyase activity) with TFEC led to a concentration- and time-dependent loss of endogenous KGDHC activity. A 24-hr exposure to 1 mM TFEC decreased KGDHC activity in the cells by 90%. Although treatment with TFEC did not inhibit intrinsic pyruvate dehydrogenase complex (PDHC) activity, it inhibited dichloroacetate/Mg2+-mediated activation/dephosphorylation of PDHC in the PC12 cells by 90%. To determine the selectivity of enzymes targeted by TFEC, several cytosolic and mitochondrial enzymes involved in energy metabolism [malate dehydrogenase, glyceraldehyde 3-phosphate dehydrogenase, glutamate dehydrogenase, lactate dehydrogenase, cytosolic and mitochondrial aspartate aminotransferases (AspAT)] were also assayed in the PC12 cells exposed to 1 mM TFEC for 24 hr. Of these enzymes, only mitochondrial AspAT, a key enzyme of the malate-aspartate shuttle, was inhibited. The present results demonstrate a selective vulnerability of mitochondrial enzymes to toxic cysteine S-conjugates. The data indicate that TFEC may be a useful cellular/mitochondrial toxicant for elucidating the consequences of the diminished mitochondrial function that accompanies numerous neurodegenerative diseases.
Collapse
Affiliation(s)
- L C Park
- Department of Neurology and Neuroscience, Weill Medical College of Cornell University, New York, NY, USA
| | | | | | | |
Collapse
|
6
|
Reeves WB, Shah SV. Activation of potassium channels contributes to hypoxic injury in proximal tubules. J Clin Invest 1994; 94:2289-94. [PMID: 7989584 PMCID: PMC330056 DOI: 10.1172/jci117592] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The mechanisms responsible for the loss of cell potassium during renal ischemia are poorly understood. The present studies examined the hypothesis that potassium channels are activated as an early response to hypoxia and contribute to potassium loss independent from an inhibition of active K+ uptake. Potassium flux in suspensions of freshly isolated rat proximal tubules was measured using an ion-selective electrode. Exposure of the tubules to hypoxia for only 2.5 min resulted in a rise in the passive leak rate of K+ but no decrease in active K+ uptake. The passive leak of K+ was associated with a 40% decrease in cell ATP content. The passive K+ efflux was inhibited by 5 mM Ba2+ (95%) and by 15 mM tetraethylammonium (85%) suggesting that K+ channels were the primary route of K+ movement. The effects of K+ channel blockade on the development of hypoxic injury were also examined. Tetraethylammonium and glibenclamide, an inhibitor of ATP-sensitive K+ channels, reduced hypoxic injury as assessed by the release of lactate dehydrogenase or measurement of DNA damage. These results suggest that activation of K+ channels is an early response to hypoxia and contributes to hypoxic renal injury.
Collapse
Affiliation(s)
- W B Reeves
- Division of Nephrology, University of Arkansas for Medical Sciences, Little Rock 72205
| | | |
Collapse
|
7
|
Yu K, Chen Q, Liu H, Zhan Y, Stevens JL. Signalling the molecular stress response to nephrotoxic and mutagenic cysteine conjugates: differential roles for protein synthesis and calcium in the induction of c-fos and c-myc mRNA in LLC-PK1 cells. J Cell Physiol 1994; 161:303-11. [PMID: 7962114 DOI: 10.1002/jcp.1041610215] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Nephrotoxic and mutagenic cysteine conjugates (NCC) are activated by the enzyme cysteine conjugate, beta-lyase, to reactive acylating species which bind covalently to cellular macromolecules. We now show that an early event after treatment of LLC-PK1 cells with NCC is the induction of mRNA for both c-fos and c-myc. Treatment with S-(1,2-dichlorovinyl)-L-cysteine (DCVC) induced c-fos (53-fold) and c-myc mRNA (20-fold) and increased transcription about 3-fold for both genes. Covalent binding was required for induction of both mRNAs. Dithiothreitol partially prevented induction of both c-fos and c-myc RNA. Buffering the DCVC-induced increase in cytosolic free calcium had no effect on c-fos mRNA, but partially blocked c-myc mRNA induction. Cycloheximide blocked the induction of c-myc mRNA in the absence of an effect on c-fos induction. The data suggest that the increase in c-fos mRNA is a primary response to DCVC toxicity and occurs without a requirement for protein synthesis or an increase in intracellular free calcium. In contrast, c-myc induction requires protein synthesis, suggesting that the presence of another primary response factor may regulate induction either transcriptionally or posttranscriptionally. The data suggest that different signalling pathways regulate induction of c-fos and c-myc mRNA in response to stress caused by reactive acylating species.
Collapse
Affiliation(s)
- K Yu
- W. Alton Jones Cell Science Center, Lake Placid, New York 12946
| | | | | | | | | |
Collapse
|
8
|
Chen Q, Jones TW, Stevens JL. Early cellular events couple covalent binding of reactive metabolites to cell killing by nephrotoxic cysteine conjugates. J Cell Physiol 1994; 161:293-302. [PMID: 7525611 DOI: 10.1002/jcp.1041610214] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Addition of the nephrotoxic cysteine conjugate, S-(1,2-dichlorovinyl)-L-cysteine (DCVC), to the LLC-PK1 line of renal epithelial cells leads to covalent binding of reactive intermediates followed by thiol depletion, lipid peroxidation, and cell death (Chen et al., 1990, J. Biol. Chem., 265:21603-21611). The present study was designed to determine if increased intracellular free calcium might play a role in this pathway of DCVC-induced toxicity by comparing the temporal relationships among increased intracellular free calcium, lipid peroxidation, and cytotoxicity. Intracellular free calcium increased 1 hr after DCVC treatment, long before LDH release occurred. The elevation of intracellular free calcium and cytotoxicity was prevented by inhibiting DCVC metabolism with AOA. The cell-permeable chelators, Quin-2AM and EGTA-AM, prevented the toxicity. Pretreatment of cells with a nontoxic concentration of ionomycin increased intracellular free calcium and potentiated DCVC-induced LDH release. However, the antioxidant, DPPD, which blocks lipid peroxidation and toxicity, did not affect the increase in intracellular free calcium, whereas buffering intracellular calcium with Quin-2AM or EGTA-AM blocked both lipid peroxidation and toxicity without preventing the depletion of nonprotein sulfhydryls by DCVC. Ruthenium red, an inhibitor of mitochondrial calcium uptake, also blocked cell death. We hypothesize that covalent binding of the reactive fragment from DCVC metabolism leads to deregulation of intracellular calcium homeostasis and elevation of intracellular free calcium. Increased intracellular free calcium may in turn be coupled to mitochondrial damage and the accumulation of endogenous oxidants which cause lipid peroxidation and cell death.
Collapse
Affiliation(s)
- Q Chen
- W. Alton Jones Cell Science Center, Lake Placid, New York 12946
| | | | | |
Collapse
|
9
|
Davis JW, Petry TW. Inhibition of S-(1,2-dichlorovinyl)-L-cysteine-induced lipid peroxidation by antioxidants in rabbit renal cortical slices: dissociation of lipid peroxidation and toxicity. JOURNAL OF BIOCHEMICAL TOXICOLOGY 1994; 9:121-30. [PMID: 7983677 DOI: 10.1002/jbt.2570090303] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Precision-cut, rabbit renal slices were used to examine the effects of three novel antioxidants (U-74006, U-74500, and U-78517) on S-(1,2-dichlorovinyl)-L-cysteine (DCVC)-induced lipid peroxidation and toxicity. Slices exposed to DCVC showed a dose- and time-dependent increase in lipid peroxidation (TBARS) and a decrease in cellular viability, as evidenced by the loss of intracellular potassium, during the course of a 3 hour incubation. Subsequent studies employed DCVC concentrations of 100 microM. Microemulsion formulations of U-78517, U-74500, and U-74006 (100 microM) inhibited DCVC-induced lipid peroxidation by 100 +/-, 50 +/-, and < 5% (not significant), respectively. However, none of these antioxidants had a significant effect on DCVC-dependent cytotoxicity, as indicated by intracellular potassium release. The effects of U-78517, the most potent of the three antioxidants, were similar to those observed with two model antioxidants, diphenyl-p-phenylenediamine (DPPD) and the iron chelator, deferoxamine. Aminooxyacetic (AOAA), an inhibitor of renal cysteine conjugate beta-lyase, had only a minimal effect on DCVC-induced lipid peroxidation, and no effect on toxicity. These data represent the first report of DCVC-induced lipid peroxidation in rabbit renal cortical slices, a system which has been widely used to investigate mechanisms of nephrotoxicity, including that induced by DCVC. Our results demonstrate that DCVC-induced lipid peroxidation in renal slices can be inhibited by a variety of antioxidant compounds operating by different mechanisms. Because inhibition of lipid peroxidation had minimal effect on DCVC-dependent cytotoxicity, the data suggest that DCVC-induced lipid peroxidation is not a major mechanism in the cytotoxicity induced by this compound.
Collapse
Affiliation(s)
- J W Davis
- Investigative Toxicology, Upjohn Laboratories, Upjohn Co., Kalamazoo, MI 49001
| | | |
Collapse
|
10
|
Lock EA. The role of mechanistic studies in understanding target organ toxicity. ARCHIVES OF TOXICOLOGY. SUPPLEMENT. = ARCHIV FUR TOXIKOLOGIE. SUPPLEMENT 1994; 16:151-60. [PMID: 8192576 DOI: 10.1007/978-3-642-78640-2_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- E A Lock
- Research Toxicology Section, Zeneca Central Toxicology Laboratory, Macclesfield, Cheshire, UK
| |
Collapse
|
11
|
Groves CE, Hayden PJ, Lock EA, Schnellmann RG. Differential cellular effects in the toxicity of haloalkene and haloalkane cysteine conjugates to rabbit renal proximal tubules. JOURNAL OF BIOCHEMICAL TOXICOLOGY 1993; 8:49-56. [PMID: 8492303 DOI: 10.1002/jbt.2570080108] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The relationship between the covalent binding, uptake, and toxicity produced by S-(1,2-dichlorovinyl)-L-cysteine (DCVC) and S-(1,1,2,2-tetrafluoroethyl)-L-cysteine (TFEC) was investigated in suspensions of rabbit renal proximal tubules (RPT). The DCVC and TFEC at concentrations of 25 microM produced a time-dependent (1-6 hours) loss of RPT viability. The TFEC was biotransformed rapidly by beta-lyase to a reactive metabolite which bound covalently to tubular protein. Approximately 63% of the TFEC-equivalents inside the cell were bound to protein. Covalent binding of TFEC-equivalents was associated with a 30% decrease in tubular basal and state 3 respiration, a sevenfold increase in lipid peroxidation, and, ultimately, cell death. The DCVC was biotransformed rapidly to a reactive metabolite which bound covalently to tubular protein. Approximately 90% of the DCVC-equivalents inside the cell were bound covalently to tubular protein. Following exposure to 25 microM DCVC, the binding of DCVC-equivalents was associated with a 17-fold increase in lipid peroxidation but, in contrast to TFEC, had no effect on tubular respiration. However, exposure of RPT to 100 microM DCVC resulted in a ninefold increase in the binding of DCVC-equivalents and a 30% decrease in tubular state 3 respiration. The beta-lyase inhibitor aminooxyacetic acid (AOAA) blocked the covalent binding, mitochondrial dysfunction, lipid peroxidation, and cell death produced by TFEC. The AOAA decreased the covalent binding and the lipid peroxidation produced by DCVC by approximately 60-70% but had no effect on cell death.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- C E Groves
- Department of Physiology, College of Medicine, University of Arizona, Tucson 85724
| | | | | | | |
Collapse
|