1
|
Zohora FT, Aliyu M, Saboor-Yaraghi AA. Secretome-based acellular therapy of bone marrow-derived mesenchymal stem cells in degenerative and immunological disorders: A narrative review. Heliyon 2023; 9:e18120. [PMID: 37496898 PMCID: PMC10366432 DOI: 10.1016/j.heliyon.2023.e18120] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 06/25/2023] [Accepted: 07/07/2023] [Indexed: 07/28/2023] Open
Abstract
The bone marrow (BM) plays a pivotal role in homeostasis by supporting hematopoiesis and immune cells' activation, maturation, interaction, and deployment. "BMSC-derived secretome" refers to the complete repertoire of secreted molecules, including nucleic acids, chemokines, growth factors, cytokines, and lipids from BM-derived mesenchymal stem cells (BMSCs). BMSC-derived secretomes are the current molecular platform for acellular therapy. Secretomes are highly manipulable and can be synthesised in vast quantities using commercially accessible cell lines in the laboratory. Secretomes are less likely to elicit an immunological response because they contain fewer surface proteins. Moreover, the delivery of BMSC-derived secretomes has been shown in numerous studies to be an effective, cell-free therapy method for alleviating the symptoms of inflammatory and degenerative diseases. As a result, secretome delivery from BMSCs has the same therapeutic effects as BMSCs transplantation but may have fewer adverse effects. Additionally, BMSCs' secretome has therapeutic promise for organoids and parabiosis studies. This review focuses on recent advances in secretome-based cell-free therapy, including its manipulation, isolation, characterisation, and delivery systems. The diverse bioactive molecules of secretomes that successfully treat inflammatory and degenerative diseases of the musculoskeletal, cardiovascular, nervous, respiratory, reproductive, gastrointestinal, and anti-ageing systems were also examined in this review. However, secretome-based therapy has some unfavourable side effects that may restrict its uses. Some of the adverse effects of this modal therapy were briefly mentioned in this review.
Collapse
Affiliation(s)
- Fatema Tuz Zohora
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Malaysia
| | - Mansur Aliyu
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, International Campus, TUMS-IC, Tehran, Iran
- Department of Medical Microbiology, Faculty of Clinical Science, College of Health Sciences, Bayero University, Kano, Nigeria
| | - Ali Akbar Saboor-Yaraghi
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, International Campus, TUMS-IC, Tehran, Iran
| |
Collapse
|
2
|
Cancer Stem Cells and Their Vesicles, Together with Other Stem and Non-Stem Cells, Govern Critical Cancer Processes: Perspectives for Medical Development. Int J Mol Sci 2022; 23:ijms23020625. [PMID: 35054811 PMCID: PMC8775347 DOI: 10.3390/ijms23020625] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 12/17/2021] [Accepted: 12/30/2021] [Indexed: 02/01/2023] Open
Abstract
Stem cells, identified several decades ago, started to attract interest at the end of the nineties when families of mesenchymal stem cells (MSCs), concentrated in the stroma of most organs, were found to participate in the therapy of many diseases. In cancer, however, stem cells of high importance are specific to another family, the cancer stem cells (CSCs). This comprehensive review is focused on the role and the mechanisms of CSCs and of their specific extracellular vesicles (EVs), which are composed of both exosomes and ectosomes. Compared to non-stem (normal) cancer cells, CSCs exist in small populations that are preferentially distributed to the niches, such as minor specific tissue sites corresponding to the stroma of non-cancer tissues. At niches and marginal sites of other cancer masses, the tissue exhibits peculiar properties that are typical of the tumor microenvironment (TME) of cancers. The extracellular matrix (ECM) includes components different from non-cancer tissues. CSCs and their EVs, in addition to effects analogous to those of MSCs/EVs, participate in processes of key importance, specific to cancer: generation of distinct cell subtypes, proliferation, differentiation, progression, formation of metastases, immune and therapy resistance, cancer relapse. Many of these, and other, effects require CSC cooperation with surrounding cells, especially MSCs. Filtered non-cancer cells, especially macrophages and fibroblasts, contribute to collaborative cancer transition/integration processes. Therapy developments are mentioned as ongoing preclinical initiatives. The preliminary state of clinical medicine is presented in terms of both industrial development and future treatments. The latter will be administered to specific patients together with known drugs, with the aim of eradicating their tumor growth and metastases.
Collapse
|
3
|
Meldolesi J. News about Therapies of Alzheimer’s Disease: Extracellular Vesicles from Stem Cells Exhibit Advantages Compared to Other Treatments. Biomedicines 2022; 10:biomedicines10010105. [PMID: 35052785 PMCID: PMC8773509 DOI: 10.3390/biomedicines10010105] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 12/24/2021] [Accepted: 12/27/2021] [Indexed: 02/04/2023] Open
Abstract
Upon its discovery, Alzheimer’s, the neurodegenerative disease that affects many millions of patients in the world, remained without an effective therapy. The first drugs, made available near the end of last century, induced some effects, which remained only marginal. More promising effects are now present, induced by two approaches. Blockers of the enzyme BACE-1 induce, in neurons and glial cells, decreased levels of Aβ, the key peptide of the Alzheimer’s disease. If administered at early AD steps, the BACE-1 blockers preclude further development of the disease. However, they have no effect on established, irreversible lesions. The extracellular vesicles secreted by mesenchymal stem cells induce therapy effects analogous, but more convenient, than the effects of their original cells. After their specific fusion to target cells, the action of these vesicles depends on their ensuing release of cargo molecules, such as proteins and many miRNAs, active primarily on the cell cytoplasm. Operationally, these vesicles exhibit numerous advantages: they exclude, by their accurate selection, the heterogeneity of the original cells; exhibit molecular specificity due to their engineering and drug accumulation; and induce effective actions, mediated by variable concentrations of factors and molecules and by activation of signaling cascades. Their strength is reinforced by their combination with various factors and processes. The recent molecular and operations changes, induced especially by the stem cell target cells, result in encouraging and important improvement of the disease. Their further development is expected in the near future.
Collapse
Affiliation(s)
- Jacopo Meldolesi
- San Raffaele Institute, Vita-Salute San Raffaele University, 20132 Milan, Italy;
- Faculty of Medicine, CNR Institute of Neuroscience, University Milano-Bicocca, 20132 Milan, Italy
| |
Collapse
|
4
|
Racchetti G, Meldolesi J. Extracellular Vesicles of Mesenchymal Stem Cells: Therapeutic Properties Discovered with Extraordinary Success. Biomedicines 2021; 9:667. [PMID: 34200818 PMCID: PMC8230522 DOI: 10.3390/biomedicines9060667] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/23/2021] [Accepted: 06/07/2021] [Indexed: 12/13/2022] Open
Abstract
Mesenchymal stem cells (MSCs), the cells distributed in the stromas of the body, are known for various properties including replication, the potential of various differentiations, the immune-related processes including inflammation. About two decades ago, these cells were shown to play relevant roles in the therapy of numerous diseases, dependent on their immune regulation and their release of cytokines and growth factors, with ensuing activation of favorable enzymes and processes. Such discovery induced great increase of their investigation. Soon thereafter, however, it became clear that therapeutic actions of MSCs are risky, accompanied by serious drawbacks and defects. MSC therapy has been therefore reduced to a few diseases, replaced for the others by their extracellular vesicles, the MSC-EVs. The latter vesicles recapitulate most therapeutic actions of MSCs, with equal or even better efficacies and without the serious drawbacks of the parent cells. In addition, MSC-EVs are characterized by many advantages, among which are their heterogeneities dependent on the stromas of origin, the alleviation of cell aging, the regulation of immune responses and inflammation. Here we illustrate the MSC-EV therapeutic effects, largely mediated by specific miRNAs, covering various diseases and pathological processes occurring in the bones, heart and vessels, kidney, and brain. MSC-EVs operate also on the development of cancers and on COVID-19, where they alleviate the organ lesions induced by the virus. Therapy by MSC-EVs can be improved by combination of their innate potential to engineering processes inducing precise targeting and transfer of drugs. The unique properties of MSC-EVs explain their intense studies, carried out with extraordinary success. Although not yet developed to clinical practice, the perspectives for proximal future are encouraging.
Collapse
Affiliation(s)
- Gabriella Racchetti
- Division of Neuroscience, San Raffaele Institute, Via Olgettina 58, 20132 Milan, Italy;
| | - Jacopo Meldolesi
- Division of Neuroscience, San Raffaele Institute, Via Olgettina 58, 20132 Milan, Italy;
- Department of Neuroscience, Faculty of Medicine, Vita-Salute San Raffaele University, Via Olgettina 58, 20132 Milan, Italy
| |
Collapse
|
5
|
Dilla RA, Xu Y, Zander ZK, Bernard N, Wiener CG, Vogt BD, Becker ML. Mechanically tunable, human mesenchymal stem cell viable poly(ethylene glycol)-oxime hydrogels with invariant precursor composition, concentration, and stoichiometry. MATERIALS TODAY. CHEMISTRY 2019; 11:244-252. [PMID: 31667447 PMCID: PMC6820350 DOI: 10.1016/j.mtchem.2018.11.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Hydrogels are used widely for exploratory tissue engineering studies. However, currently no hydrogel systems have been reported that exhibit a wide range of elastic modulus without changing precursor concentration, identity, or stoichiometry. Herein, ester and amide-based PEG-oxime hydrogels with tunable moduli (~5-30 kPa) were synthesized with identical precursor mass fraction, stoichiometry, and concentration by varying the pH and buffer concentration of the gelation solution, exploiting the kinetics of oxime bond formation. The observed modulus range can be attributed to increasing amounts of network defects in slower forming gels, as confirmed by equilibrium swelling and small angle neutron scattering (SANS) experiments. Finally, hMSC viability was confirmed in these materials in a 24 h assay. While only an initial demonstration of the potential utility, the controlled variation in defect density and modulus is an important step forward in isolating system variables for hypothesis-driven biological investigations.
Collapse
Affiliation(s)
- Rodger A Dilla
- The University of Akron, Department of Polymer Science, 44325, USA
| | - Yanyi Xu
- The University of Akron, Department of Polymer Science, 44325, USA
| | - Zachary K Zander
- The University of Akron, Department of Polymer Science, 44325, USA
| | - Neil Bernard
- The University of Akron, Department of Polymer Science, 44325, USA
| | - Clinton G Wiener
- The University of Akron, Department of Polymer Engineering, 44325, USA
| | - Bryan D Vogt
- The University of Akron, Department of Polymer Engineering, 44325, USA
| | - Matthew L Becker
- The University of Akron, Department of Polymer Science, 44325, USA
| |
Collapse
|
6
|
Park BN, Lim TS, Yoon JK, An YS. In vivo tracking of intravenously injected mesenchymal stem cells in an Alzheimer's animal model. Cell Transplant 2018; 27:1203-1209. [PMID: 30008224 PMCID: PMC6434469 DOI: 10.1177/0963689718788067] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Purpose: The purpose of this study was to investigate how intravenously injected bone marrow-derived mesenchymal stem cells (BMSCs) are distributed in the body of an Alzheimer’s disease (AD) animal model. Methods: Stem cells were collected from bone marrow of mice and labeled with Indium-111 (111In). The 111In-labeled BMSCs were infused intravenously into 3×Tg-AD mice in the AD group and non-transgenic mice (B6129SF2/J) as controls. Biodistribution was evaluated with a gamma counter and gamma camera 24 and 48 h after injecting the stem cells. Results: A gamma count of the brain showed a higher distribution of labeled cells in the AD model than in the control group at 24 (p = .0004) and 48 h (p = .0016) after injection of the BMSCs. Similar results were observed by gamma camera imaging (i.e., brain uptake in the AD model was significantly higher than that in the control group). Among the other organs, uptake by the spleen was the highest in both groups. More BMSCs were found in the lungs of the control group than in those of the AD group. Conclusions: These results suggest that more intravenously infused BMSCs reached the brain in the AD model than in the control group, but the numbers of stem cells reaching the brain was very small.
Collapse
Affiliation(s)
- Bok-Nam Park
- 1 Department of Nuclear Medicine and Molecular Imaging, Suwon, Korea
| | - Tae Sung Lim
- 2 Department of Neurology, Ajou University School of Medicine, Suwon, Korea
| | - Joon-Kee Yoon
- 1 Department of Nuclear Medicine and Molecular Imaging, Suwon, Korea
| | - Young-Sil An
- 1 Department of Nuclear Medicine and Molecular Imaging, Suwon, Korea
| |
Collapse
|
7
|
Elham H, Mahmoud H. The Effect of Pancreas Islet-Releasing Factors on the Direction of Embryonic Stem Cells Towards Pdx1 Expressing Cells. Appl Biochem Biotechnol 2018; 186:371-383. [DOI: 10.1007/s12010-018-2733-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Accepted: 03/12/2018] [Indexed: 11/24/2022]
|
8
|
The effect of transient oxygenation on stem cell mobilization and ischemia/reperfusion heart injury. PLoS One 2018; 13:e0192733. [PMID: 29438409 PMCID: PMC5811016 DOI: 10.1371/journal.pone.0192733] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 01/29/2018] [Indexed: 11/19/2022] Open
Abstract
For general anesthesia, pre-oxygenation is routinely performed prior to intubation. It is well-known that ischemic/hypoxic preconditioning induces stem cell mobilization and protects against ischemia/reperfusion (I/R) injury. In this study, we investigated the effect of transient oxygenation on stem cell mobilization and I/R injury of the heart. Mice were exposed to 100% oxygen for 5 or 20 minutes. We evaluated the number of c-kit+ stem/progenitor cells and the levels of SDF-1α and VEGF in peripheral blood at 1, 3, 6, and 24 hours after oxygenation. We also induced I/R injury of the heart at 3 hours post-oxygenation for 5 minutes and then examined stem cell recruitment and fibrotic changes in the heart 3 or 14 days later. The number of c-kit+ cells in peripheral blood was significantly increased at 1 or 24 hours after oxygenation for either 5 or 20 minutes. Oxygenation for 5 or 20 minutes did not significantly change the SDF-1α level measured in plasma. However, the plasma VEGF level was decreased at 3 hours post-oxygenation for 20 minutes (p = 0.051). Oxygenation for 5 minutes did not significantly alter the fibrotic area or cell apoptosis. Although oxygenation for 5 minutes increased the number of c-kit+ cells in hearts damaged by I/R injury, this difference was not significant between groups due to large variation between individuals (p = 0.14). Although transient oxygenation induces stem cell mobilization, it does not appear to protect against I/R injury of the heart in mice.
Collapse
|
9
|
Seruya M, Shah A, Pedrotty D, du Laney T, Melgiri R, McKee JA, Young HE, Niklason LE. Clonal Population of Adult Stem Cells: Life Span and Differentiation Potential. Cell Transplant 2017; 13:93-101. [PMID: 15129755 DOI: 10.3727/000000004773301762] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Adult stem cells derived from bone marrow, connective tissue, and solid organs can exhibit a range of differentiation potentials. Some controversy exists regarding the classification of mesenchymal stem cells as bona fide stem cells, which is in part derived from the limited ability to propagate true clonal populations of precursor cells. We isolated putative mesenchymal stem cells from the connective tissue of an adult rat (rMSC), and generated clonal populations via three rounds of dilutional cloning. The replicative potential of the clonal rMSC line far exceeded Hayflick's limit of 50–70 population doublings. The high capacity for self-renewal in vitro correlated with telomerase activity, as demonstrated by telomerase repeat amplification protocol (TRAP) assay. Exposure to nonspecific differentiation culture medium revealed multilineage differentiation potential of rMSC clones. Immunostaining confirmed the appearance of mesodermal phenotypes, including adipocytes possessing lipid-rich vacuoles, chondrocytes depositing pericellular type II collagen, and skeletal myoblasts expressing MyoD1. Importantly, the spectrum of differentiation capability was sustained through repeated passaging. Furthermore, serum-free conditions that led to high-efficiency smooth muscle differentiation were identified. rMSCs plated on collagen IV-coated surfaces and exposed to transforming growth factor-β1 (TGF-β1) differentiated into a homogeneous population expressing α-actin and calponin. Hence, clonogenic analysis confirmed the presence of a putative MSC population derived from the connective tissue of rat skeletal muscle. The ability to differentiate into a smooth muscle cell (SMC) phenotype, combined with a high proliferative capacity, make such a connective tissue-derived MSC population ideal for applications in vascular tissue construction.
Collapse
Affiliation(s)
- Mitchel Seruya
- Columbia University College of Physicians and Surgeons, New York, NY 10032, USA
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Yan F, Li X, Li N, Zhang R, Wang Q, Ru Y, Hao X, Ni J, Wang H, Wu G. Immunoproapoptotic molecule scFv-Fdt-tBid modified mesenchymal stem cells for prostate cancer dual-targeted therapy. Cancer Lett 2017; 402:32-42. [PMID: 28529067 DOI: 10.1016/j.canlet.2017.05.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 04/24/2017] [Accepted: 05/11/2017] [Indexed: 01/14/2023]
Abstract
Highly efficient target therapy is urgently needed for prostate cancer with overexpression of γ-seminoprotein (γ-SM). Recent studies indicated that mesenchymal stem cells (MSCs) are attractive candidate for cell-based, targeted therapy due to their tumor tropism. Here we designed a dual-target therapeutic system in which MSCs were engineered to produce and deliver scFv-Fdt-tBid, a novel γ-SM-targeted immunoproapoptotic molecule. Such engineered MSCs (MSC.scFv-Fdt-tBid) would home to tumor sites and release the fusion protein to induce the apoptosis of prostate cancer cells. Our data demonstrated that scFv-Fdt-tBid showed a selective, potent and dose-dependent inhibition for γ-SM-positive cells (LNCaP, C4-2, 22Rv1) rather than γ-SM-negative cells and MSCs. Importantly, MSC.scFv-Fdt-tBid caused cell death through an apoptosis-dependent manner. Further, the tropism of MSC.scFv-Fdt-tBid to prostate cancer was verified both in vitro and in vivo. Finally, the in vivo experiments demonstrated that MSC.scFv-Fdt-tBid significantly inhibited γ-SM-positive tumor growth without toxic side effects. Collectively, this study represented a novel immunoproapoptotic molecule scFv-Fdt-tBid for γ-SM-positive tumors and demonstrated the therapeutic efficiency and safety of scFv-Fdt-tBid-modified MSCs against prostate cancers.
Collapse
Affiliation(s)
- Fengqi Yan
- Department of Urology, Tang Du Hospital, The Fourth Military Medical University, Shaanxi, Xian, 710038, China; Department of Urology, Xi Jing Hospital, The Fourth Military Medical University, Shaanxi, Xian, 710032, China
| | - Xia Li
- Department of Biochemistry and Molecular Biology, The Fourth Military Medical University, Shaanxi, Xian, 710032, China
| | - Nan Li
- Department of Respiratory Medicine, The Third Hospital of Xi'an, Shaanxi, Xian, 710018, China
| | - Rui Zhang
- Department of Biochemistry and Molecular Biology, The Fourth Military Medical University, Shaanxi, Xian, 710032, China
| | - Qinhao Wang
- Department of Biochemistry and Molecular Biology, The Fourth Military Medical University, Shaanxi, Xian, 710032, China
| | - Yi Ru
- Department of Biochemistry and Molecular Biology, The Fourth Military Medical University, Shaanxi, Xian, 710032, China
| | - Xiaoke Hao
- Department of Laboratory, Xi Jing Hospital, The Fourth Military Medical University, Shaanxi, Xian, 710032, China
| | - Jianxin Ni
- Department of Urology, Xi Jing Hospital, The Fourth Military Medical University, Shaanxi, Xian, 710032, China
| | - He Wang
- Department of Urology, Tang Du Hospital, The Fourth Military Medical University, Shaanxi, Xian, 710038, China.
| | - Guojun Wu
- Department of Urology, Xi Jing Hospital, The Fourth Military Medical University, Shaanxi, Xian, 710032, China.
| |
Collapse
|
11
|
Gonzalez-Garza MT, Cruz-Vega DE. Regenerative capacity of autologous stem cell transplantation in elderly: a report of biomedical outcomes. Regen Med 2017; 12:169-178. [DOI: 10.2217/rme-2016-0038] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The occurrence of chronic diseases such as neurological, metabolic and cardiovascular degenerative disorders increases with age. Cell therapy is an emerging approach to the treatment of these conditions. Of particular interest is the application of autologous stem cells because it eliminates post-transplantation immune rejection and there are less ethical concerns associated with their use. The regenerative capacity of stem cells harvested from elderly people is however controversial. In this review, we analyze if self-renewal potential, differentiation capability and expression of stemness genes in stem cells collected from elderly patients validate their application in clinical trials and examine the results.
Collapse
Affiliation(s)
| | - Delia Elva Cruz-Vega
- Tecnologico de Monterrey, Escuela Nacional de Medicina, Morones Prieto 3000 Pte, CP64710, Monterrey, Mexico
| |
Collapse
|
12
|
Vijayavenkataraman S, Lu W, Fuh J. 3D bioprinting – An Ethical, Legal and Social Aspects (ELSA) framework. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.bprint.2016.08.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
13
|
Manzini BM, da Silva Santos Duarte A, Sankaramanivel S, Ramos AL, Latuf-Filho P, Escanhoela C, Kharmandayan P, Olalla Saad ST, Boin I, Malheiros Luzo ÂC. Useful properties of undifferentiated mesenchymal stromal cells and adipose tissue as the source in liver-regenerative therapy studied in an animal model of severe acute fulminant hepatitis. Cytotherapy 2016; 17:1052-65. [PMID: 26139545 DOI: 10.1016/j.jcyt.2015.04.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 04/13/2015] [Accepted: 04/27/2015] [Indexed: 02/08/2023]
Abstract
BACKGROUND AIMS End-stage liver diseases frequently require liver transplantation. Cell therapy could be an alternative. This study aimed to analyze whether undifferentiated mesenchymal stromal cells (U-MSCs) or MSC-derived hepatocyte-like cells (DHLCs) from adipose tissue (AT), umbilical cord blood (UCB) and bone marrow (BM) would better restore damaged liver. METHODS AT was obtained from lipo-aspiration, UCB from an Umbilical Cord Blood Bank and BM from a BM Transplantation Unit. AT (collagenase digestion), UCB and BM (Ficoll gradient) were cultured (Dulbecco's modified Eagle's medium, low glucose, FBS) for 3 days. Detached adherent cells, at passage 4, were characterized as MSCs. Genetic stability was investigated by means of telomerase enzyme activity and karyotype. Hepatocyte differentiation protocol was performed with the use of Dulbecco's modified Eagle's medium, hepatocyte growth factor, basic fibroblast growth factor and nicotinamide (7 days); maturation medium (oncostatin, dexamethasone, insulin, transferrin and selenium) was added at 36 days. Hepatogenesis analyses were performed by use of morphology and albumin, AF, tyrosine-aminotransferase and glutamine synthetase gene expression and quantitative reverse transcription-polymerase chain reaction on days 9, 18, 25 and 36. Functionality was assessed through glycogen storage detection, indocyanine green absorption and transplantation procedure. U-MSCs and DHLCs were injected 48 h after induced fulminant hepatitis (intraperitoneal injection of carbon tetrachloride) in SCID/BALB-c mice. Histopathologic analyses were performed on days 7 and 15. Human origin included albumin and CK19 human markers. RESULTS All MSCs differentiated into functional hepatocyte-like cells, stored glycogen and absorbed indocyanine green. AT-MSC DHLC gene expression was more consistent with a normal hepatogenic-differentiation profile. UCB-MSCs expanded weakly, impairing their use for the transplantation procedure. AT and BM U-MSCs and DHLCs regenerated liver injury equally. Regenerated hepatocytes exhibited human origin. CONCLUSIONS AT might be the source and U-MSCS the stem cells useful for liver-regenerative therapy.
Collapse
Affiliation(s)
- Bruna Maria Manzini
- Umbilical Cord Blood Bank, Hematology Hemotherapy Centre/INCT do Sangue, University of Campinas, São Paulo, Brazil
| | | | | | - Aline Lisie Ramos
- Hematology Hemotherapy Centre/INCT do Sangue, University of Campinas, São Paulo, Brazil
| | - Paulo Latuf-Filho
- Research Center in Pediatrics, Faculty of Medical Sciences, University of Campinas, São Paulo, Brazil
| | - Cecilia Escanhoela
- Pathology Department, Faculty of Medical Sciences, University of Campinas, São Paulo, Brazil
| | - Paulo Kharmandayan
- Plastic Surgery Department, Faculty of Medical Sciences, University of Campinas, São Paulo, Brazil
| | - Sara Teresinha Olalla Saad
- Internal Medicine Department, Faculty of Medical Sciences, Haematology Hemotherapy Centre/INCT do Sangue, University of Campinas, São Paulo, Brazil
| | - Ilka Boin
- Liver Transplantation Unit-Gastroenterology Department, Faculty of Medical Sciences, University of Campinas São Paulo, Brazil
| | - Ângela Cristina Malheiros Luzo
- Umbilical Cord Blood Bank, Hematology Hemotherapy Centre/INCT do Sangue, University of Campinas, São Paulo, Brazil; Liver Transplantation Unit-Gastroenterology Department, Faculty of Medical Sciences, University of Campinas São Paulo, Brazil.
| |
Collapse
|
14
|
Choi JH, Lim SM, Yoo YI, Jung J, Park JW, Kim GJ. Microenvironmental Interaction Between Hypoxia and Endothelial Cells Controls the Migration Ability of Placenta-Derived Mesenchymal Stem Cells via α4 Integrin and Rho Signaling. J Cell Biochem 2015; 117:1145-57. [PMID: 26448639 DOI: 10.1002/jcb.25398] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 10/06/2015] [Indexed: 12/13/2022]
Abstract
Mesenchymal stem cells (MSCs) are a powerful source for cell therapy in degenerative diseases. The migration ability of MSCs is an important factor that enhances the therapeutic effect of the cells when they are transplanted into target tissues or organs. Hypoxia and the endothelial barrier, which are representative migration microenvironmental factors, are known to be regulated by the integrin-mediated pathway in several cancers. However, their regulatory mechanisms in MSCs remain unclear. Here, the objectives of the study were to compare the expression of markers related to integrin-mediated signaling in placenta-derived MSCs (PDMSCs) dependent on hypoxia and co-cultured with human umbilical vein endothelial cells (HUVECs) and to evaluate their correlations between migration ability and microenvironmetal factors including hypoxia and endothelial cells. The migration abilities of PDMSCs exposed to hypoxic conditions were significantly increased compared with normal fibroblasts (WI-38) and control (P < 0.05). Interestingly, decreased integrin α4 in PDMSCs under hypoxia induce to increase migration abilities of PDMSCs. Also, Rho family-related markers were significantly increased in PDMSCs under hypoxic conditions compared with normoxia (P < 0.05). Furthermore, the migration ability of PDMSCs was decreased by Rho kinase inhibitor treatment (Y-27632) and co-culturing with HUVECs in an ex vivo system. ROCK activity was increased by inhibiting integrin α4 with HUVECs and hypoxia compared with the absence of HUVECs and under normoxia. The findings suggest microenvironment event by hypoxia and the interaction with endothelial cells may be useful as a regulator of MSC migration and provide insight into the migratory mechanism of MSCs in stem cell-based therapy.
Collapse
Affiliation(s)
- Jong Ho Choi
- Department of Biomedical Science, CHA University, Seongnam-si, Republic of Korea
| | - Seung Mook Lim
- Department of Biomedical Science, CHA University, Seongnam-si, Republic of Korea
| | - Yong In Yoo
- Department of Biomedical Science, CHA University, Seongnam-si, Republic of Korea
| | - Jieun Jung
- Department of Nanobiomedical Science, Dankook University, Cheonan-si, Republic of Korea
| | - Jong-Won Park
- Department of Biomedical Sciences and Pharmacology, Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Gi Jin Kim
- Department of Biomedical Science, CHA University, Seongnam-si, Republic of Korea
| |
Collapse
|
15
|
El-Taji OMS, Khattak AQ, Hussain SA. Bladder reconstruction: The past, present and future. Oncol Lett 2015; 10:3-10. [PMID: 26170968 DOI: 10.3892/ol.2015.3161] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 03/26/2015] [Indexed: 12/28/2022] Open
Abstract
Ileal conduit urinary diversion is the gold standard treatment for urinary tract reconstruction following cystectomy. This procedure uses gastrointestinal segments for bladder augmentation, a technique that is often associated with significant complications. The substantial progression in the fields of tissue engineering and regenerative medicine over the previous two decades has resulted in the development of techniques that may lead to the construction of functional de novo urinary bladder substitutes. The present review identifies and discusses the complications associated with current treatment options post-cystectomy. The current techniques, achievements and perspectives of the use of biomaterials and stem cells in the field of urinary bladder reconstruction are also reviewed.
Collapse
Affiliation(s)
- Omar M S El-Taji
- Department of Surgical Oncology, Royal Liverpool University Hospital, Liverpool L7 8XP, UK
| | - Altaf Q Khattak
- Department of Urology, St. Helen's & Knowsley NHS Teaching Hospitals, University of Liverpool, Prescot L35 5DR, United Kingdom
| | - Syed A Hussain
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool L69 3GA, United Kingdom
| |
Collapse
|
16
|
Lee JH, Shim W, Choolakadavil Khalid N, Kang WS, Lee M, Kim HS, Choi J, Lee G, Kim JH. Random networks of single-walled carbon nanotubes promote mesenchymal stem cell's proliferation and differentiation. ACS APPLIED MATERIALS & INTERFACES 2015; 7:1560-7. [PMID: 25546303 DOI: 10.1021/am506833q] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Studies on the interaction of cells with single-walled carbon nanotubes (SWCNTs) have been receiving increasing attention owing to their potential for various cellular applications. In this report, we investigated the interactions between biological cells and nanostructured SWCNTs films and focused on how morphological structures of SWCNT films affected cellular behavior such as cell proliferation and differentiation. One directionally aligned SWCNT Langmuir-Blodgett (LB) film and random network SWCNT film were fabricated by LB and vacuum filteration methods, respectively. We demonstrate that our SWCNT LB and network film based scaffolds do not show any cytotoxicity, while on the other hand, these scaffolds promote differentiation property of rat mesenchymal stem cells (rMSCs) when compared with that on conventional tissue culture polystyrene substrates. Especially, the SWCNT network film with average thickness and roughness values of 95 ± 5 and 9.81 nm, respectively, demonstrated faster growth rate and higher cell thickness for rMSCs. These results suggest that systematic manipulation of the thickness, roughness, and directional alignment of SWCNT films would provide the convenient strategy for controlling the growth and maintenance of the differentiation property of stem cells. The SWCNT film could be an alternative culture substrate for various stem cells, which often require close control of the growth and differentiation properties.
Collapse
Affiliation(s)
- Jae-Hyeok Lee
- Department of Molecular Science and Technology, Ajou University , Suwon 443-749, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
He L, Tu HJ, He WF, Guo LL, Yu SX, Li J, Wu Q, Li J. Lentiviral-mediated overexpression of homeobox A4 by human umbilical cord mesenchymal stem cells repairs full-thickness skin defects. Mol Med Rep 2015; 11:3517-22. [PMID: 25592724 DOI: 10.3892/mmr.2015.3208] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Accepted: 10/01/2014] [Indexed: 11/06/2022] Open
Abstract
A number of types of stem cells have been shown to be effective in wound repair. In the present study the effect of homeobox A4 (HOXA4) overexpression by human umbilical cord mesenchymal stem cells (hUMSCs) on full‑thickness skin repair was evaluated. Isolated hUMSCs were transfected with a lentivirus expressing HOXA4 and cultured for 21 days. Expression of the epidermal cell‑specific markers, cytokeratins 14 and 18, was detected by immunohistochemistry and flow cytometry. Full‑thickness skin defects (1.5 cm x 1.5 cm) were made on the backs of 45 nude mice, which were randomly divided into the following three treatment groups: Collagen membrane with lenti‑HOXA4 hUMSC seed cells; collagen membrane with lentivirus expressing green fluorescent protein; and collagen membrane alone. On days 7, 14 and 21 following transplantation, tissue samples were harvested and examined by histology and western blot analysis. Flow cytometry showed that the transfection efficiency was 95.41% at a multiplicity of infection of 100, and that the lenti‑HOXA4 hUMSCs differentiated into epidermal cells, expressing cytokeratins 14 and 18. In addition, re‑epithelialization of wounds treated with lenti‑HOXA4 hUMSCs was significantly greater than that in the control groups in the first week. By week three the epidermis was significantly thicker in the lenti‑HOXA4 group than the control groups. Thus, transplantation of hUMSCs modified with Ad‑HOXA4 promoted wound healing.
Collapse
Affiliation(s)
- Ling He
- Key Laboratory of Hematology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Huai-Jun Tu
- Department of Neurology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Wen-Feng He
- Key Laboratory of Hematology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Ling-Ling Guo
- Key Laboratory of Hematology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Song-Xia Yu
- Key Laboratory of Hematology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Jie Li
- Key Laboratory of Hematology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Qiong Wu
- Key Laboratory of Hematology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Jian Li
- Key Laboratory of Hematology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
18
|
Chen WCW, Saparov A, Corselli M, Crisan M, Zheng B, Péault B, Huard J. Isolation of blood-vessel-derived multipotent precursors from human skeletal muscle. J Vis Exp 2014:e51195. [PMID: 25177794 DOI: 10.3791/51195] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Since the discovery of mesenchymal stem/stromal cells (MSCs), the native identity and localization of MSCs have been obscured by their retrospective isolation in culture. Recently, using fluorescence-activated cell sorting (FACS), we and other researchers prospectively identified and purified three subpopulations of multipotent precursor cells associated with the vasculature of human skeletal muscle. These three cell populations: myogenic endothelial cells (MECs), pericytes (PCs), and adventitial cells (ACs), are localized respectively to the three structural layers of blood vessels: intima, media, and adventitia. All of these human blood-vessel-derived stem cell (hBVSC) populations not only express classic MSC markers but also possess mesodermal developmental potentials similar to typical MSCs. Previously, MECs, PCs, and ACs have been isolated through distinct protocols and subsequently characterized in separate studies. The current isolation protocol, through modifications to the isolation process and adjustments in the selective cell surface markers, allows us to simultaneously purify all three hBVSC subpopulations by FACS from a single human muscle biopsy. This new method will not only streamline the isolation of multiple BVSC subpopulations but also facilitate future clinical applications of hBVSCs for distinct therapeutic purposes.
Collapse
Affiliation(s)
- William C W Chen
- Stem Cell Research Center, Department of Bioengineering and Orthopedic Surgery, University of Pittsburgh;
| | - Arman Saparov
- Department of Orthopedic Surgery, University of Pittsburgh; Nazarbayev University Research and Innovation System, Nazarbayev University
| | - Mirko Corselli
- Department of Orthopaedic Surgery, UCLA Orthopaedic Hospital and the Orthopaedic Hospital Research Center, University of California at Los Angeles
| | - Mihaela Crisan
- Department of Cell Biology, Erasmus MC Stem Cell Institute
| | - Bo Zheng
- OHSU Center for Regenerative Medicine, Oregon Health & Science University
| | - Bruno Péault
- Centre for Cardiovascular Science and MRC Centre for Regenerative Medicine, Queen's Medical Research Institute and University of Edinburgh; David Geffen School of Medicine and the Orthopaedic Hospital Research Center, University of California at Los Angeles
| | - Johnny Huard
- Stem Cell Research Center, Department of Orthopedic Surgery and McGowan Institute for Regenerative Medicine, University of Pittsburgh;
| |
Collapse
|
19
|
Tian H, Guo M, Zhuang Y, Chu J, Zhang S. Enhanced proliferation of bone marrow mesenchymal stem cells by co-culture with TM4 mouse Sertoli cells: involvement of the EGF/PI3K/AKT pathway. Mol Cell Biochem 2014; 393:155-64. [PMID: 24748323 DOI: 10.1007/s11010-014-2055-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Accepted: 04/03/2014] [Indexed: 01/23/2023]
Abstract
Bone marrow mesenchymal stem cells (BM-MSCs) are considered as a promising option in the field of regenerative medicine and tissue engineering. However, little is known about how TM4 mouse Sertoli cells, which are known to enhance stem cells proliferation in co-culture, may influence the proliferation of BM-MSCs and which signaling pathways are involved in. To address these questions, an in vitro transwell system was used. We found that TM4 cells could produce soluble factors which enhanced the growth of BM-MSCs without inhibiting the multipotency. Furthermore, cell cycle analysis showed that co-culture with the TM4 cells accelerated the progress of BM-MSCs from the G1 to the S phase. The expression of the phospho-akt, mdm2, as well as pho-CDC2, and cyclin D1 were markedly upregulated in co-cultured BM-MSCs. The observed promoting effect was significantly inhibited by the administration of the PI3K/AKT inhibitor, LY294002. Among the various growth factors produced by TM4 cells, the epithelial growth factor (EGF) stimulated the proliferation of the BM-MSCs more significantly compared with the other growth factors examined in this study. Neutralization of EGF via a blocking antibody significantly limited the promoting growth effect in BM-MSCs. These results suggest that TM4 cells provide a favorable in vitro environment for BM-MSCs growth and imply the involvement of the EGF/PI3K/AKT pathway.
Collapse
Affiliation(s)
- Huan Tian
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, P.O. Box 329, 130 Meilong Rd, Shanghai, 200237, P.R. China
| | | | | | | | | |
Collapse
|
20
|
Saeed H, Iqtedar M. Stem cell function and maintenance - ends that matter: role of telomeres and telomerase. J Biosci 2014; 38:641-9. [PMID: 23938394 DOI: 10.1007/s12038-013-9346-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Stem cell research holds a promise to treat and prevent age-related degenerative changes in humans. Literature is replete with studies showing that stem cell function declines with aging, especially in highly proliferative tissues/ organs. Among others, telomerase and telomere damage is one of the intrinsic physical instigators that drive agerelated degenerative changes. In this review we provide brief overview of telomerase-deficient aging affects in diverse stem cells populations. Furthermore, potential disease phenotypes associated with telomerase dysregulation in a specific stem cell population is also discussed in this review. Additionally, the role of telomerase in stem cell driven cancer is also briefly touched upon.
Collapse
Affiliation(s)
- Hamid Saeed
- Department of Endocrinology, School of Medicine, Stanford University, Stanford, CA, USA.
| | | |
Collapse
|
21
|
Cellular kinetics of perivascular MSC precursors. Stem Cells Int 2013; 2013:983059. [PMID: 24023546 PMCID: PMC3760099 DOI: 10.1155/2013/983059] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Accepted: 07/13/2013] [Indexed: 12/26/2022] Open
Abstract
Mesenchymal stem/stromal cells (MSCs) and MSC-like multipotent stem/progenitor cells have been widely investigated for regenerative medicine and deemed promising in clinical applications. In order to further improve MSC-based stem cell therapeutics, it is important to understand the cellular kinetics and functional roles of MSCs in the dynamic regenerative processes. However, due to the heterogeneous nature of typical MSC cultures, their native identity and anatomical localization in the body have remained unclear, making it difficult to decipher the existence of distinct cell subsets within the MSC entity. Recent studies have shown that several blood-vessel-derived precursor cell populations, purified by flow cytometry from multiple human organs, give rise to bona fide MSCs, suggesting that the vasculature serves as a systemic reservoir of MSC-like stem/progenitor cells. Using individually purified MSC-like precursor cell subsets, we and other researchers have been able to investigate the differential phenotypes and regenerative capacities of these contributing cellular constituents in the MSC pool. In this review, we will discuss the identification and characterization of perivascular MSC precursors, including pericytes and adventitial cells, and focus on their cellular kinetics: cell adhesion, migration, engraftment, homing, and intercellular cross-talk during tissue repair and regeneration.
Collapse
|
22
|
Murphy SV, Atala A. Cell therapy for cystic fibrosis. J Tissue Eng Regen Med 2013; 9:210-23. [DOI: 10.1002/term.1746] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Revised: 01/11/2013] [Accepted: 03/16/2013] [Indexed: 12/13/2022]
Affiliation(s)
- Sean V. Murphy
- Wake Forest Institute for Regenerative Medicine; Wake Forest University Health Sciences; Winston-Salem NC USA
| | - Anthony Atala
- Wake Forest Institute for Regenerative Medicine; Wake Forest University Health Sciences; Winston-Salem NC USA
| |
Collapse
|
23
|
Matrix metalloproteinases: inflammatory regulators of cell behaviors in vascular formation and remodeling. Mediators Inflamm 2013; 2013:928315. [PMID: 23840100 PMCID: PMC3694547 DOI: 10.1155/2013/928315] [Citation(s) in RCA: 299] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Accepted: 05/15/2013] [Indexed: 12/21/2022] Open
Abstract
Abnormal angiogenesis and vascular remodeling contribute to pathogenesis of a number of disorders such as tumor, arthritis, atherosclerosis, restenosis, hypertension, and neurodegeneration. During angiogenesis and vascular remodeling, behaviors of stem/progenitor cells, endothelial cells (ECs), and vascular smooth muscle cells (VSMCs) and its interaction with extracellular matrix (ECM) play a critical role in the processes. Matrix metalloproteinases (MMPs), well-known inflammatory mediators are a family of zinc-dependent proteolytic enzymes that degrade various components of ECM and non-ECM molecules mediating tissue remodeling in both physiological and pathological processes. MMPs including MMP-1, MMP-2, MMP-3, MMP-7, MMP-8, MMP-9, MMP-12, and MT1-MMP, are stimulated and activated by various stimuli in vascular tissues. Once activated, MMPs degrade ECM proteins or other related signal molecules to promote recruitment of stem/progenitor cells and facilitate migration and invasion of ECs and VSMCs. Moreover, vascular cell proliferation and apoptosis can also be regulated by MMPs via proteolytically cleaving and modulating bioactive molecules and relevant signaling pathways. Regarding the importance of vascular cells in abnormal angiogenesis and vascular remodeling, regulation of vascular cell behaviors through modulating expression and activation of MMPs shows therapeutic potential.
Collapse
|
24
|
|
25
|
The role of adipose derived stem cells, smooth muscle cells and low intensity laser irradiation (LILI) in tissue engineering and regenerative medicine. Open Life Sci 2013. [DOI: 10.2478/s11535-013-0145-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractTissue engineering and regenerative medicine has become the treatment of choice for several degenerative diseases. It involves the repairing or replacing of diseased or damaged cells or tissues. Stem cells have a key role to play in this multidisciplinary science because of their capacity to differentiate into several lineages. Adipose derived stem cells (ADSCs) are adult mesenchymal stem cells that are easily harvested and have the capacity to differentiate into cartilage, bone, smooth muscle, fat, liver and nerve cells. ADSCs have been found to differentiate into smooth muscle cells which play major roles in diseases such as asthma, hypertension, cancer and arteriosclerosis. Low Intensity Laser Irradiation (LILI), which involves the application of monochromatic light, has been found to increase viability, proliferation and differentiation in several types of cells including ADSCs. This review discusses the role of ADSCs, smooth muscle cells and LILI in the science of tissue engineering and regenerative medicine.
Collapse
|
26
|
Wong HL, Siu WS, Shum WT, Gao S, Leung PC, Ko CH. Application of Chinese herbal medicines to revitalize adult stem cells for tissue regeneration. Chin J Integr Med 2012; 18:903-8. [PMID: 23238998 DOI: 10.1007/s11655-012-1293-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Indexed: 12/11/2022]
Abstract
It has been established in the recent several decades that adult stem cells play a crucial role in tissue renewal and regeneration. Adult stem cells locate in certain organs can differentiate into functional entities such as macrophages and bone cells. Hematopoietic stem cells (HSCs) and mesenchymal stem cells (MSCs) are two of the most important populations of adult stem cells. The application of these stem cells offers a new insight in treating various pathological conditions, through replenishing cells of specific functions by turning on or off the differentiating program within quiescent stem cell niches. Apart from that, they are also capable to travel through the circulation, migrate to injury sites and differentiate to enhance regeneration process. Recently, Chinese medicine (CM) has shown to be potential candidates to activate adult stem cells for tissue regeneration. This review summarizes our own, as well as others' findings concerning the use of Chinese herbal medicine in the regulation processes of adult stem cells differentiation and their movement in tissue repair and rejuvenation. A number of Chinese herbs are used as therapeutic agents and presumably preventive agents on metabolic disorders. In our opinion, the activation of adult stem cells self-regeneration not only provides a novel way to repair tissue damage, but also reduces the use of targeted drug that adversely altering the normal metabolism of human subjects.
Collapse
Affiliation(s)
- Hing-Lok Wong
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | | | | | | | | | | |
Collapse
|
27
|
Choi JH, Lyu SY, Lee HJ, Jung J, Park WB, Kim GJ. Korean mistletoe lectin regulates self-renewal of placenta-derived mesenchymal stem cells via autophagic mechanisms. Cell Prolif 2012; 45:420-9. [PMID: 22925501 DOI: 10.1111/j.1365-2184.2012.00839.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
OBJECTIVES The balance between survival and death is a key point for regulation of physiology of stem cells. Recently, applications of natural products to enhance efficiencies in culturing and differentiation of stem cells are increasing. Korean mistletoe lectin (Viscum album L. var. coloratum agglutinin, VCA) has been known to be toxic to some cancer cells, but it is still unclear whether VCA has a cytotoxic or indeed a proliferative effect on mesenchymal stem cells (MSCs). Here, we have compared effects of VCA in naïve placenta-derived stem cells (PDSCs), immortalized PDSCs and cancer cells (HepG2), and analysed their mechanisms. MATERIALS AND METHODS MTT assay was performed to analyse effects of VCA on naïve PDSCs, immortalized PDSCs and HepG2. FACS, ROS, caspase-3 assay, western blotting and immunofluorescence were performed to detect signalling events involved in self-renewal of the above cell types. RESULTS VCA had cancer cell-specific toxicity to HepG2 cells even with low concentrations of VCA (1-5 pg/ml), toxicity was observed to immortalized PDSCs and HepG2s, while proliferation of naïve PDSCs was significantly increased (P < 0.05). ROS production by VCA treatment in naïve PDSCs was significantly lower compared to controls (P < 0.05). Furthermore, autophagy was activated in naïve PDSCs treated with VCA through increase in type II LC3 and decrease in phosphorylated mTOR. CONCLUSIONS VCA can promote MSC proliferation through an activated autophagic mechanism.
Collapse
Affiliation(s)
- J H Choi
- Department of Biomedical Science, CHA University, Kangnak-ku, Seoul, South Korea
| | | | | | | | | | | |
Collapse
|
28
|
Murphy SV, Atala A. Organ engineering--combining stem cells, biomaterials, and bioreactors to produce bioengineered organs for transplantation. Bioessays 2012; 35:163-72. [PMID: 22996568 DOI: 10.1002/bies.201200062] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Often the only treatment available for patients suffering from diseased and injured organs is whole organ transplant. However, there is a severe shortage of donor organs for transplantation. The goal of organ engineering is to construct biological substitutes that will restore and maintain normal function in diseased and injured tissues. Recent progress in stem cell biology, biomaterials, and processes such as organ decellularization and electrospinning has resulted in the generation of bioengineered blood vessels, heart valves, livers, kidneys, bladders, and airways. Future advances that may have a significant impact for the field include safe methods to reprogram a patient's own cells to directly differentiate into functional replacement cell types. The subsequent combination of these cells with natural, synthetic and/or decellularized organ materials to generate functional tissue substitutes is a real possibility. This essay reviews the current progress, developments, and challenges facing researchers in their goal to create replacement tissues and organs for patients.
Collapse
Affiliation(s)
- Sean Vincent Murphy
- Wake Forest Institute for Regenerative Medicine, Wake Forest University Health Sciences, Winston-Salem, NC, USA
| | | |
Collapse
|
29
|
Human blood-vessel-derived stem cells for tissue repair and regeneration. J Biomed Biotechnol 2012; 2012:597439. [PMID: 22500099 PMCID: PMC3303622 DOI: 10.1155/2012/597439] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2011] [Revised: 10/31/2011] [Accepted: 11/01/2011] [Indexed: 12/12/2022] Open
Abstract
Multipotent stem/progenitor cells with similar developmental potentials have been independently identified from diverse human tissue/organ cultures. The increasing recognition of the vascular/perivascular origin of mesenchymal precursors suggested blood vessels being a systemic source of adult stem/progenitor cells. Our group and other laboratories recently isolated multiple stem/progenitor cell subsets from blood vessels of adult human tissues. Each of the three structural layers of blood vessels: intima, media, and adventitia has been found to include at least one precursor population, that is, myogenic endothelial cells (MECs), pericytes, and adventitial cells (ACs), respectively. MECs and pericytes efficiently regenerate myofibers in injured and dystrophic skeletal muscles as well as improve cardiac function after myocardial infarction. The applications of ACs in vascular remodeling and angiogenesis/vasculogenesis have been examined. Our recent finding that MECs and pericytes can be purified from cryogenically banked human primary muscle cell culture further indicates their potential applications in personalized regenerative medicine.
Collapse
|
30
|
Park BN, Shim W, Lee G, Bang OY, An YS, Yoon JK, Ahn YH. Early distribution of intravenously injected mesenchymal stem cells in rats with acute brain trauma evaluated by 99mTc-HMPAO labeling. Nucl Med Biol 2011; 38:1175-82. [DOI: 10.1016/j.nucmedbio.2011.05.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Accepted: 05/17/2011] [Indexed: 02/01/2023]
|
31
|
Gauglitz GG, Jeschke MG. Combined gene and stem cell therapy for cutaneous wound healing. Mol Pharm 2011; 8:1471-9. [PMID: 21657247 DOI: 10.1021/mp2001457] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In current medical practice, wound therapy remains a clinical challenge and much effort has been focused on the development of novel therapeutic approaches for wound treatment. Gene therapy, initially developed for treatment of congenital defects, represents a promising option for enhancing wound repair. In order to accelerate wound closure, genes encoding for growth factors or cytokines have shown the most potential. The majority of gene delivery systems are based on viral transfection, naked DNA application, high pressure injection, and liposomal vectors. Besides advances stemming from breakthroughs in recombinant growth factors and bioengineered skin, there has been a significant increase in the understanding of stem cell biology in the field of cutaneous wound healing. A variety of sources, such as bone marrow, umbilical cord blood, adipose tissue and skin/hair follicles, have been utilized to isolate stem cells and to modulate the healing response of acute and chronic wounds. Recent data have demonstrated the feasibility of autologous adult stem cell therapy in cutaneous repair and regeneration. Very recently, stem cell based skin engineering in conjunction with gene recombination, in which the stem cells act as both the seed cells and the vehicle for gene delivery to the wound site, represents the most attractive field for generating a regenerative strategy for wound therapy. The aim of this article is to discuss the use and the potential of these novel technologies in order to improve wound healing capacities.
Collapse
Affiliation(s)
- Gerd G Gauglitz
- Department of Dermatology and Allergy, Ludwig Maximilian University, Munich, Germany
| | | |
Collapse
|
32
|
Olson JL, Atala A, Yoo JJ. Tissue engineering: current strategies and future directions. Chonnam Med J 2011; 47:1-13. [PMID: 22111050 PMCID: PMC3214857 DOI: 10.4068/cmj.2011.47.1.1] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Accepted: 04/08/2011] [Indexed: 12/15/2022] Open
Abstract
Novel therapies resulting from regenerative medicine and tissue engineering technology may offer new hope for patients with injuries, end-stage organ failure, or other clinical issues. Currently, patients with diseased and injured organs are often treated with transplanted organs. However, there is a shortage of donor organs that is worsening yearly as the population ages and as the number of new cases of organ failure increases. Scientists in the field of regenerative medicine and tissue engineering are now applying the principles of cell transplantation, material science, and bioengineering to construct biological substitutes that can restore and maintain normal function in diseased and injured tissues. In addition, the stem cell field is a rapidly advancing part of regenerative medicine, and new discoveries in this field create new options for this type of therapy. For example, new types of stem cells, such as amniotic fluid and placental stem cells that can circumvent the ethical issues associated with embryonic stem cells, have been discovered. The process of therapeutic cloning and the creation of induced pluripotent cells provide still other potential sources of stem cells for cell-based tissue engineering applications. Although stem cells are still in the research phase, some therapies arising from tissue engineering endeavors that make use of autologous, adult cells have already entered the clinical setting, indicating that regenerative medicine holds much promise for the future.
Collapse
Affiliation(s)
- Jennifer L Olson
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, NC, USA
| | | | | |
Collapse
|
33
|
Abstract
There are a number of conditions of the bladder that can lead to loss of function. Many of these require reconstructive procedures. However, current techniques may lead to a number of complications. Replacement of bladder tissues with functionally equivalent ones created in the laboratory could improve the outcome of reconstructive surgery. A review of the literature was conducted using PubMed to identify studies that provide evidence that tissue engineering techniques may be useful in the development of alternatives to current methods of bladder reconstruction. A number of animal studies and several clinical experiences show that it is possible to reconstruct the bladder using tissues and neo-organs produced in the laboratory. Materials that could be used to create functionally equivalent urologic tissues in the laboratory, especially non-autologous cells that have the potential to reject have many technical limitations. Current research suggests that the use of biomaterial-based, bladder-shaped scaffolds seeded with autologous urothelial and smooth muscle cells is currently the best option for bladder tissue engineering. Further research to develop novel biomaterials and cell sources, as well as information gained from developmental biology, signal transduction studies and studies of the wound healing response would be beneficial.
Collapse
Affiliation(s)
- Anthony Atala
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA.
| |
Collapse
|
34
|
Zhang ZY, Teoh SH, Teo EY, Khoon Chong MS, Shin CW, Tien FT, Choolani MA, Chan JKY. A comparison of bioreactors for culture of fetal mesenchymal stem cells for bone tissue engineering. Biomaterials 2010; 31:8684-95. [PMID: 20739062 DOI: 10.1016/j.biomaterials.2010.07.097] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2010] [Accepted: 07/28/2010] [Indexed: 01/12/2023]
Abstract
Bioreactors provide a dynamic culture system for efficient exchange of nutrients and mechanical stimulus necessary for the generation of effective tissue engineered bone grafts (TEBG). We have shown that biaxial rotating (BXR) bioreactor-matured human fetal mesenchymal stem cell (hfMSC) mediated-TEBG can heal a rat critical sized femoral defect. However, it is not known whether optimal bioreactors exist for bone TE (BTE) applications. We systematically compared this BXR bioreactor with three most commonly used systems: Spinner Flask (SF), Perfusion and Rotating Wall Vessel (RWV) bioreactors, for their application in BTE. The BXR bioreactor achieved higher levels of cellularity and confluence (1.4-2.5x, p < 0.05) in large 785 mm(3) macroporous scaffolds not achieved in the other bioreactors operating in optimal settings. BXR bioreactor-treated scaffolds experienced earlier and more robust osteogenic differentiation on von Kossa staining, ALP induction (1.2-1.6×, p < 0.01) and calcium deposition (1.3-2.3×, p < 0.01). We developed a Micro CT quantification method which demonstrated homogenous distribution of hfMSC in BXR bioreactor-treated grafts, but not with the other three. BXR bioreactor enabled superior cellular proliferation, spatial distribution and osteogenic induction of hfMSC over other commonly used bioreactors. In addition, we developed and validated a non-invasive quantitative micro CT-based technique for analyzing neo-tissue formation and its spatial distribution within scaffolds.
Collapse
Affiliation(s)
- Zhi-Yong Zhang
- Department of Mechanical Engineering, Faculty of Engineering, National University of Singapore, Centre for Biomedical Materials Applications and Technology, Singapore
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Mazzocca AD, McCarthy MBR, Chowaniec DM, Cote MP, Arciero RA, Drissi H. Rapid isolation of human stem cells (connective tissue progenitor cells) from the proximal humerus during arthroscopic rotator cuff surgery. Am J Sports Med 2010; 38:1438-47. [PMID: 20375368 DOI: 10.1177/0363546509360924] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Bone-to-tendon healing in the shoulder can be unpredictable. Biologic augmentation, through the implementation of adult mesenchymal stem cells, may improve this healing process. PURPOSE The purpose of this study was to (1) arthroscopically obtain bone marrow aspirates from the proximal humerus during rotator cuff repair, (2) purify and concentrate the connective tissue progenitor cells (CTPs) in the operating room efficiently, and (3)confirm these are stem cells through their ability to differentiate into bone cells. We hypothesize that CTPs can be quickly and efficiently isolated from bone marrow during arthroscopic surgery and that these cells are capable of osteogenesis. STUDY DESIGN Cohort study; Level of evidence, 3; and Descriptive laboratory study. METHODS Bone marrow aspirates were harvested through the anchor tunnel of the humeral head during arthroscopic rotator cuff repair in 23 patients. Twenty-three matched controls were selected from a clinical registry to evaluate for increased incidence of complication. Connective tissue progenitor cells were isolated using 2 accepted methods and compared with a novel, rapid method designed for use in the operating room. Osteogenic potential was assessed by cytochemical and molecular analysis. RESULTS Reverse transcription polymerase chain reaction analysis and cellular staining confirmed the osteogenic potential of these CTPs. There was no statistical significant difference in the Single Assessment Numeric Evaluation score (aspirate, 86.3 +/- 10.5; control, 83.6 +/- 15.1; P = .54), range of motion measures (postoperative external rotation: aspirate, 65.0 degrees +/- 20.4 degrees ; control, 62.5 degrees +/- 17.1 degrees ; P = .67; postoperative forward elevation: aspirate, 163.0 degrees +/- 30.6 degrees ; control, 145.7 degrees +/- 41.4 degrees ; P = .12), or postoperative strength measures between groups (median, 5; range, 4-5 in the aspirate group compared with median, 5; range, 4-5 in the control group; P > .05). CONCLUSION Connective tissue progenitor cells can be safely and efficiently aspirated from the proximal humerus using the anchor tunnel created during arthroscopic rotator cuff surgery. These cells may play an important role in cell-based therapies involving rotator cuff repair. CLINICAL RELEVANCE We have established a reliable, reproducible protocol for isolating CTPs in the operating room. These cells may have the potential to enhance the healing process after rotator cuff repair.
Collapse
Affiliation(s)
- Augustus D Mazzocca
- University of Connecticut, Department of Orthopaedic Surgery, Farmington, CT 06034, USA.
| | | | | | | | | | | |
Collapse
|
36
|
Lee KA, Shim W, Paik MJ, Lee SC, Shin JY, Ahn YH, Park K, Kim JH, Choi S, Lee G. Analysis of changes in the viability and gene expression profiles of human mesenchymal stromal cells over time. Cytotherapy 2010; 11:688-97. [PMID: 19878055 DOI: 10.3109/14653240902974032] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND AIMS Because of their ability to differentiate and widespread availability, human mesenchymal stromal cells (hMSC) are often used as a clinical therapeutic tool. However, the factors that determine the quality and viability of hMSC are not well understood. METHODS We evaluated the viability of hMSC over time using flow cytometry analysis (FACS) and transmission electron microscopy (TEM) to determine if morphologic changes occurred in hMSC. In addition, we conducted gene expression prof ling using an Affymetrix Human Genome U133 Plus 2.0 Array. RESULTS FACS analysis revealed that 83% and 76% of the cells were viable in sterilized phosphate-buffered saline (PBS) after 6 h and 12 h, respectively. TEM data revealed that the total number of cells with healthy chromatins or a few cytosolic vacuoles was significantly reduced over time. We then conducted gene expression profiling using a microarray, which revealed changes in the expression of 2949 functional genes. Specifically, among the total of 50,000 gene probes evaluated, the expression levels of apoptosis and stress-related genes were significantly increased over time. CONCLUSIONS The results of this study suggest that the viability of hMSC decreases after disassociation from the culture dish and time is an essential factor when considering hMSC as a potential source for stem cell-based direct transplantation.
Collapse
Affiliation(s)
- Kyoung A Lee
- Department of Molecular Science and Technology, Ajou University, Suwon, South Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
|
38
|
de Vries RBM, Oerlemans A, Trommelmans L, Dierickx K, Gordijn B. Ethical aspects of tissue engineering: a review. TISSUE ENGINEERING PART B-REVIEWS 2009; 14:367-75. [PMID: 18834330 DOI: 10.1089/ten.teb.2008.0199] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Tissue engineering (TE) is a promising new field of medical technology. However, like other new technologies, it is not free of ethical challenges. Identifying these ethical questions at an early stage is not only part of science's responsibility toward society, but also in the interest of the field itself. In this review, we map which ethical issues related to TE have already been documented in the scientific literature. The issues that turn out to dominate the debate are the use of human embryonic stem cells and therapeutic cloning. Nevertheless, a variety of other ethical aspects are mentioned, which relate to different phases in the development of the field. In addition, we discuss a number of ethical issues that have not yet been raised in the literature.
Collapse
Affiliation(s)
- Rob B M de Vries
- Section Ethics, Philosophy, and History of Medicine, Scientific Institute for Quality of Healthcare, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands.
| | | | | | | | | |
Collapse
|
39
|
Xu F, Gomillion C, Maxson S, Burg KJL. In vitrointeraction between mouse breast cancer cells and mouse mesenchymal stem cells during adipocyte differentiation. J Tissue Eng Regen Med 2009; 3:338-47. [DOI: 10.1002/term.158] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
40
|
A biaxial rotating bioreactor for the culture of fetal mesenchymal stem cells for bone tissue engineering. Biomaterials 2009; 30:2694-704. [DOI: 10.1016/j.biomaterials.2009.01.028] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2008] [Accepted: 01/13/2009] [Indexed: 12/18/2022]
|
41
|
Lee HJ, Lee YS, Kim HS, Kim YK, Kim JH, Jeon SH, Lee HW, Kim S, Miyoshi H, Chung HM, Kim DK. Retronectin enhances lentivirus-mediated gene delivery into hematopoietic progenitor cells. Biologicals 2009; 37:203-9. [PMID: 19264508 DOI: 10.1016/j.biologicals.2009.01.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2008] [Revised: 01/18/2009] [Accepted: 01/19/2009] [Indexed: 11/26/2022] Open
Abstract
Genetic modification of hematopoietic stem cells holds great promise in the treatment of hematopoietic disorders. However, clinical application of gene delivery has been limited, in part, by low gene transfer efficiency. To overcome this problem, we investigated the effect of retronectin (RN) on lentiviral-mediated gene delivery into hematopoietic progenitor cells (HPCs) derived from bone marrow both in vitro and in vivo. RN has been shown to enhance transduction by promoting colocalization of lentivirus and target cells. We found that RN enhanced lentiviral transfer of the VENUS transgene into cultured c-Kit(+) Lin(-) HPCs. As a complementary approach, in vivo gene delivery was performed by subjecting mice to intra-bone marrow injection of lentivirus or a mixture of RN and lentivirus. We found that co-injection with RN increased the number of VENUS-expressing c-Kit(+) Lin(-) HPCs in bone marrow by 2-fold. Further analysis of VENUS expression in colony-forming cells from the bone marrow of these animals revealed that RN increased gene delivery among these cells by 4-fold. In conclusion, RN is effective in enhancing lentivirus-mediated gene delivery into HPCs.
Collapse
Affiliation(s)
- Hyun-Joo Lee
- Graduate School of Life Science and Biotechnology, Pochon CHA University, CHA Stem Cell Institute, 605 Yeoksam 1-dong, Kangnam-gu, Seoul 135-081, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Abstract
The shortage of donors for organ transplantation has stimulated research on stem cells as a potential resource for cell-based therapy in all human tissues. Stem cells have been used for regenerative medicine applications in many organ systems, including the genitourinary system. The potential applications for stem cell therapy have, however, been restricted by the ethical issues associated with embryonic stem cell research. Instead, scientists have explored other cell sources, including progenitor and stem cells derived from adult tissues and stem cells derived from the amniotic fluid and placenta. In addition, novel techniques for generating stem cells in the laboratory are being developed. These techniques include somatic cell nuclear transfer, in which the nucleus of an adult somatic cell is placed into an oocyte, and reprogramming of adult cells to induce stem-cell-like behavior. Such techniques are now being used in tissue engineering applications, and some of the most successful experiments have been in the field of urology. Techniques to regenerate bladder tissue have reached the clinic, and exciting progress is being made in other areas, such as regeneration of the kidney and urethra. Cell therapy as a treatment for incontinence and infertility might soon become a reality. Physicians should be optimistic that regenerative medicine and tissue engineering will one day provide mainstream treatment options for urologic disorders.
Collapse
|
43
|
Abstract
The shortage of organ donors for regenerative medicine has stimulated research on stem cells as a potential resource for cell-based therapy. Stem cells have been used widely for regenerative medicine applications. The development of innovative methods to generate stem cells from different sources suggests that there may be new alternatives for cell-based therapies. Here, we provide an overview of human embryonic stem cells (hES) and the methods for obtaining these cells and other broadly multipotent or pluripotent cell types. These methods include somatic cell nuclear transfer, single cell embryo biopsy, arrested embryos, altered nuclear transfer, and reprogramming somatic cells. We also discuss the use of amniotic-fluid derived stem cells (AFS) for potential patient-specific therapies.
Collapse
|
44
|
Fritz V, Noël D, Bouquet C, Opolon P, Voide R, Apparailly F, Louis-Plence P, Bouffi C, Drissi H, Xie C, Perricaudet M, Müller R, Schwarz E, Jorgensen C. Antitumoral activity and osteogenic potential of mesenchymal stem cells expressing the urokinase-type plasminogen antagonist amino-terminal fragment in a murine model of osteolytic tumor. Stem Cells 2008; 26:2981-90. [PMID: 18757301 DOI: 10.1634/stemcells.2008-0139] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Prostate cancer metastasis to bone results in mixed osteolytic and osteoblastic lesions associated with high morbidity, and there is mounting evidence that the urokinase-type plasminogen system is causatively involved in the progression of prostate cancer. Adult mesenchymal stem cells (MSCs) are promising tools for cell-mediated gene therapy with the advantage of osteogenic potential, a critical issue in the case of osteolytic metastases. In this study, we evaluated the therapeutic use of engineered murine MSCs for in vivo delivery of the urokinase-type plasminogen antagonist amino-terminal fragment (hATF) to impair osteolytic prostate cancer cell progression in bone and to repair bone lesions. Bioluminescence imaging revealed that both primary MSCs and the MSC line C3H10T1/2 (C3) expressing hATF (MSC-hATF) significantly inhibited intratibial PC-3 Luciferase (Luc) growth following coinjection in SCID mice. Furthermore, microcomputed tomography imaging of vascular network clearly demonstrated a significant decrease in tumor-associated angiogenesis and a protection from tumor-induced osteolysis in MSC-hATF-treated mice. Importantly, the osteogenic potential of MSC-hATF cells was unaffected, and an area of new bone formation was evidenced in 60% of animals. Together, these data support the concept of MSC-based therapy of tumor osteolysis disease, indicating that MSCs may combine properties of vehicle for angiostatic agent with osteogenic potential. Disclosure of potential conflicts of interest is found at the end of this article.
Collapse
Affiliation(s)
- Vanessa Fritz
- Institut National de la Santé et de la Recherche Médicale U844, Montpellier, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Chang AH, Stephan MT, Lisowski L, Sadelain M. Erythroid-specific human factor IX delivery from in vivo selected hematopoietic stem cells following nonmyeloablative conditioning in hemophilia B mice. Mol Ther 2008; 16:1745-52. [PMID: 18682698 DOI: 10.1038/mt.2008.161] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
We have developed a lentiviral vector system for human factor IX (hFIX) gene transfer in hematopoietic stem cells (HSCs) that provides erythroid cell-derived systemic protein delivery following nonmyeloablative conditioning and in vivo methylguanine methyltransferase (MGMT) drug selection. After bone marrow transplantation under moderate Busulfan conditioning, the initial hFIX expression in the chimeras was minimally detectable. However, the hFIX levels rose sharply following in vivo MGMT-drug selection and eventually reached a level that is considered curative in hemophilia B therapy (>500 ng/ml). The rise of hFIX levels was proportional to the increase in vector copy (VC) number in peripheral blood cells. High levels of hFIX expression were maintained in serially engrafted mice chimeras for 18 months. Importantly, high-level hFIX expression by erythroid cells did not result in anemia or adversely affect red blood cell counts. The prospect of combining reduced intensity conditioning, a presumably lowered risk of insertional mutagenesis due to low VC number requirement and erythroid-restricted transgene expression, as well as long-term protein expression at high level, strongly supports the potential applicability of adult stem cell-based gene therapy in nonlethal blood or metabolic disorders, as demonstrated here for hemophilia.
Collapse
Affiliation(s)
- Alex H Chang
- Center for Cell Engineering, Memorial Sloan-Kettering Cancer Center, New York, New York, USA.
| | | | | | | |
Collapse
|
46
|
Abstract
Stem cell research is now a very broad field encompassing cells derived from all stages of life from the embryonic stem cells of the early blastocyst through to the adult stem cells of many tissues of the body. Adult stem cells from a variety of tissues are proving to be pluripotent and can differentiate into cell types different from the tissues from which they derive. Pre-clinical animal models indicate that adult stem cells do not cause tumours, not even, teratomas when transplanted. These properties, combined with the possibility of autologous transplantation, indicate significant advantages over embryonic stem cells in many proposed clinical applications.
Collapse
Affiliation(s)
- A Mackay-Sim
- National Centre for Adult Stem Cell Research, Eskitis Institute for Cell and Molecular Therapies, Griffith University, Brisbane, QLD, Australia.
| | | |
Collapse
|
47
|
Nuttelman CR, Kloxin AM, Anseth KS. Temporal changes in peg hydrogel structure influence human mesenchymal stem cell proliferation and matrix mineralization. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2007; 585:135-49. [PMID: 17120782 DOI: 10.1007/978-0-387-34133-0_10] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Charles R Nuttelman
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado, USA
| | | | | |
Collapse
|
48
|
Hall B, Dembinski J, Sasser AK, Studeny M, Andreeff M, Marini F. Mesenchymal stem cells in cancer: tumor-associated fibroblasts and cell-based delivery vehicles. Int J Hematol 2007; 86:8-16. [PMID: 17675260 DOI: 10.1532/ijh97.06230] [Citation(s) in RCA: 141] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Recent evidence suggests that mesenchymal stem cells (MSC) selectively home to tumors, where they contribute to the formation of tumor-associated stroma. This effect can be opposed by genetically modifying MSC to produce high levels of anti-cancer agents that blunt tumor growth kinetics and inhibit the growth of tumors in situ. In this review article, we describe the biological properties of MSC within the tumor microenvironment and discuss the potential use of MSC and other bone marrow-derived cell populations as delivery vehicles for antitumor proteins.
Collapse
Affiliation(s)
- Brett Hall
- Department of Pediatrics, The Ohio State University and Center for Childhood Cancer, Columbus Children's Research Institute, Columbus, OH, USA
| | | | | | | | | | | |
Collapse
|
49
|
Chang AH, Sadelain M. The Genetic Engineering of Hematopoietic Stem Cells: the Rise of Lentiviral Vectors, the Conundrum of the LTR, and the Promise of Lineage-restricted Vectors. Mol Ther 2007; 15:445-56. [PMID: 17228317 DOI: 10.1038/sj.mt.6300060] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Recent studies on the integration patterns of different categories of retroviral vectors, the genotoxicity of long-terminal repeats (LTRs) and other genetic elements, the rise of lentiviral technology and the emergence of regulated vector systems providing tissue-restricted transgene expression and RNA interference, are profoundly changing the landscape of stem cell-based therapies. New developments in vector design and an increasing understanding of the mechanisms underlying insertional oncogenesis are ushering in a new phase in hematopoietic stem cell (HSC) engineering, thus bringing the hitherto exclusive reliance on LTR-driven, gamma-retroviral vectors to an end. Based on their ability to transduce non-dividing cells and their genomic stability, lentiviral vectors offer new prospects for the manipulation of HSCs. Tissue-specific vectors, as exemplified by globin vectors, not only provide therapeutic efficacy, but may also enhance safety, insofar that they restrict transgene expression in stem cells, progenitor cells and blood cells in all but the transcriptionally targeted lineage. This review provides a survey of these advances as well as several remaining challenges, focusing in particular on the importance of achieving adequate levels of protein expression from a limited number of vector copies per cell-ideally one to two.
Collapse
Affiliation(s)
- Alex H Chang
- Laboratory of Gene Transfer and Gene Expression, Memorial Sloan-Kettering Cancer Center, New York, New York, USA
| | | |
Collapse
|
50
|
Hall B, Andreeff M, Marini F. The participation of mesenchymal stem cells in tumor stroma formation and their application as targeted-gene delivery vehicles. Handb Exp Pharmacol 2007:263-83. [PMID: 17554513 DOI: 10.1007/978-3-540-68976-8_12] [Citation(s) in RCA: 141] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Recent evidence suggests that mesenchymal stem cells (MSC) selectively proliferate to tumors and contribute to the formation of tumor-associated stroma. The biological rationale for tumor recruitment of MSC remains unclear but may represent an effort of the host to blunt tumor cell growth and improve survival. There is mounting experimental evidence that normal stromal cells can revert malignant cell behavior, and separate studies have demonstrated that stromal cells can enhance tumor progression after acquisition of tumor-like genetic lesions. Together, these observations support the rationale for modifying normal MSC to deliver therapeutic proteins directly into the tumor microenvironment. Modified MSC can produce high concentrations of antitumor proteins directly within the Tumor mass, which have been shown to blunt tumor growth kinetics in experimental animal model systems. In this chapter we will address the biological properties of MSC within the tumor microenvironment and discuss the potential use of MSC and other bone marrow-derived cell populations as delivery vehicles for antitumor proteins.
Collapse
Affiliation(s)
- B Hall
- Center for Childhood Cancer, Columbus Children's Research Institute, 700 Children's Drive, Columbus, OH 43205, USA
| | | | | |
Collapse
|