1
|
Laitano O, Oki K, Charkoudian N. Factors Contributing to Heat Tolerance in Humans and Experimental Models. Physiology (Bethesda) 2025; 40:0. [PMID: 39189870 DOI: 10.1152/physiol.00028.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/25/2024] [Accepted: 08/20/2024] [Indexed: 08/28/2024] Open
Abstract
Understanding physiological mechanisms of tolerance to heat exposure, and potential ways to improve such tolerance, is increasingly important in the context of ongoing climate change. We discuss the concept of heat tolerance in humans and experimental models (primarily rodents), including intracellular mechanisms and improvements in tolerance with heat acclimation.
Collapse
Affiliation(s)
- Orlando Laitano
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida, United States
| | - Kentaro Oki
- Thermal and Mountain Medicine Division, United States Army Research Institute for Environmental Medicine (USARIEM), Natick, Massachusetts, United States
| | - Nisha Charkoudian
- Thermal and Mountain Medicine Division, United States Army Research Institute for Environmental Medicine (USARIEM), Natick, Massachusetts, United States
| |
Collapse
|
2
|
Takii R, Fujimoto M, Pandey A, Jaiswal K, Shearwin-Whyatt L, Grutzner F, Nakai A. HSF1 is required for cellular adaptation to daily temperature fluctuations. Sci Rep 2024; 14:21361. [PMID: 39266731 PMCID: PMC11393418 DOI: 10.1038/s41598-024-72415-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 09/06/2024] [Indexed: 09/14/2024] Open
Abstract
The heat shock response (HSR) is a universal mechanism of cellular adaptation to elevated temperatures and is regulated by heat shock transcription factor 1 (HSF1) or HSF3 in vertebrate endotherms, such as humans, mice, and chickens. We here showed that HSF1 and HSF3 from egg-laying mammals (monotremes), with a low homeothermic capacity, equally possess a potential to maximally induce the HSR, whereas either HSF1 or HSF3 from birds have this potential. Therefore, we focused on cellular adaptation to daily temperature fluctuations and found that HSF1 was required for the proliferation and survival of human cells under daily temperature fluctuations. The ectopic expression of vertebrate HSF1 proteins, but not HSF3 proteins, restored the resistance in HSF1-null cells, regardless of the induction of heat shock proteins. This function was associated with the up-regulation of specific HSF1-target genes. These results indicate the distinct role of HSF1 in adaptation to thermally fluctuating environments and suggest association of homeothermic capacity with functional diversification of vertebrate HSF genes.
Collapse
Affiliation(s)
- Ryosuke Takii
- Department of Biochemistry and Molecular Biology, Yamaguchi University School of Medicine, Minami-Kogushi 1-1-1, Ube, 755-8505, Japan
| | - Mitsuaki Fujimoto
- Department of Biochemistry and Molecular Biology, Yamaguchi University School of Medicine, Minami-Kogushi 1-1-1, Ube, 755-8505, Japan
| | - Akanksha Pandey
- Department of Biochemistry and Molecular Biology, Yamaguchi University School of Medicine, Minami-Kogushi 1-1-1, Ube, 755-8505, Japan
| | - Kritika Jaiswal
- Department of Biochemistry and Molecular Biology, Yamaguchi University School of Medicine, Minami-Kogushi 1-1-1, Ube, 755-8505, Japan
| | - Linda Shearwin-Whyatt
- School of Biological Sciences, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Frank Grutzner
- School of Biological Sciences, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Akira Nakai
- Department of Biochemistry and Molecular Biology, Yamaguchi University School of Medicine, Minami-Kogushi 1-1-1, Ube, 755-8505, Japan.
| |
Collapse
|
3
|
Sato Y, Tharasanit T, Thitaram C, Somgird C, Mahasawangkul S, Thongtip N, Chatdarong K, Tiptanavattana N, Taniguchi M, Otoi T, Techakumphu M. Heat Shock Related Protein Expression in Abdominal Testes of Asian Elephant ( Elephas maximus). Animals (Basel) 2024; 14:2211. [PMID: 39123737 PMCID: PMC11311082 DOI: 10.3390/ani14152211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/24/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024] Open
Abstract
The abdominal testes of Asian elephants show normal spermatogenesis. Heat shock in cryptorchid testes elevates heat shock factor (HSF) expression, leading to germ cell apoptosis, while increased heat shock proteins (HSPs) levels provide protection. To investigate how heat shock affects elephant spermatogenic cells, focusing on heat shock-related molecules and the cell death mechanism, immunohistochemistry and TUNEL staining were employed to assess the immunoexpression of several heat shock-related molecules and the status of apoptosis in elephant fibroblasts (EF) induced by heat shock stimulus. Additionally, the immunoexpression of heat shock-related molecules and cell proliferation status in the elephant spermatogenic cells. Our finding indicated that heat shock-induced HSF1 immunoexpression in EF leads to apoptosis mediated by T-cell death-associated gene 51 (TDAG51) while also upregulating HSP70 to protect damaged cells. In elephant spermatogenic cells, immunostaining revealed a predominance of proliferating cell nuclear antigen (PCNA)-positive cells with minimal TDAG51- and TUNEL-positive cells, suggesting active proliferation and apoptosis suppression during normal spermatogenesis in the abdominal testis. Interestingly, spermatogonia co-immunoexpressed HSF1 and HSP90, potentially reducing apoptosis through protective mechanisms different from those observed in other mammals. Spermatogenic cells did not show immunolocalisation of HSP70, and hence, it may not contribute to protecting the spermatogonia from heat shock because the transcriptional activity of HSF1 is suppressed by HSP90A binding. This study provides insight into the specific heat shock response and defence mechanisms in elephant spermatogenic cells and may contribute to our understanding of species-specific adaptation to environmental stresses of the testis.
Collapse
Affiliation(s)
- Yoko Sato
- Department of Biology, School of Biological Sciences, Tokai University, Sapporo 0058601, Japan
| | - Theerawat Tharasanit
- Department of Obstetrics, Gynaecology and Reproduction, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand; (T.T.); (K.C.); (M.T.)
- Veterinary Clinical Stem Cells and Bioengineering Research Unit, Chulalongkorn University, Bangkok 10330, Thailand
| | - Chatchote Thitaram
- Center of Elephant and Wildlife Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand; (C.T.); (C.S.)
| | - Chaleamchat Somgird
- Center of Elephant and Wildlife Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand; (C.T.); (C.S.)
| | | | - Nikorn Thongtip
- Faculty of Veterinary Medicine, Kasetsart University, Nakhon Pathom 73140, Thailand;
| | - Kaywalee Chatdarong
- Department of Obstetrics, Gynaecology and Reproduction, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand; (T.T.); (K.C.); (M.T.)
| | - Narong Tiptanavattana
- Faculty of Veterinary Science, Prince of Songkla University, Songkhla 90110, Thailand;
| | - Masayasu Taniguchi
- Department of Animal Reproduction, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi 7538515, Japan;
| | - Takeshige Otoi
- Bio-Innovation Research Center, Tokushima University, Tokushima 7793233, Japan;
| | - Mongkol Techakumphu
- Department of Obstetrics, Gynaecology and Reproduction, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand; (T.T.); (K.C.); (M.T.)
| |
Collapse
|
4
|
Singh MK, Shin Y, Ju S, Han S, Choe W, Yoon KS, Kim SS, Kang I. Heat Shock Response and Heat Shock Proteins: Current Understanding and Future Opportunities in Human Diseases. Int J Mol Sci 2024; 25:4209. [PMID: 38673794 PMCID: PMC11050489 DOI: 10.3390/ijms25084209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/03/2024] [Accepted: 04/05/2024] [Indexed: 04/28/2024] Open
Abstract
The heat shock response is an evolutionarily conserved mechanism that protects cells or organisms from the harmful effects of various stressors such as heat, chemicals toxins, UV radiation, and oxidizing agents. The heat shock response triggers the expression of a specific set of genes and proteins known as heat shock genes/proteins or molecular chaperones, including HSP100, HSP90, HSP70, HSP60, and small HSPs. Heat shock proteins (HSPs) play a crucial role in thermotolerance and aiding in protecting cells from harmful insults of stressors. HSPs are involved in essential cellular functions such as protein folding, eliminating misfolded proteins, apoptosis, and modulating cell signaling. The stress response to various environmental insults has been extensively studied in organisms from prokaryotes to higher organisms. The responses of organisms to various environmental stressors rely on the intensity and threshold of the stress stimuli, which vary among organisms and cellular contexts. Studies on heat shock proteins have primarily focused on HSP70, HSP90, HSP60, small HSPs, and ubiquitin, along with their applications in human biology. The current review highlighted a comprehensive mechanism of heat shock response and explores the function of heat shock proteins in stress management, as well as their potential as therapeutic agents and diagnostic markers for various diseases.
Collapse
Affiliation(s)
- Manish Kumar Singh
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (M.K.S.); (Y.S.); (S.J.); (S.H.); (W.C.); (K.-S.Y.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Yoonhwa Shin
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (M.K.S.); (Y.S.); (S.J.); (S.H.); (W.C.); (K.-S.Y.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Songhyun Ju
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (M.K.S.); (Y.S.); (S.J.); (S.H.); (W.C.); (K.-S.Y.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Sunhee Han
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (M.K.S.); (Y.S.); (S.J.); (S.H.); (W.C.); (K.-S.Y.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Wonchae Choe
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (M.K.S.); (Y.S.); (S.J.); (S.H.); (W.C.); (K.-S.Y.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Kyung-Sik Yoon
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (M.K.S.); (Y.S.); (S.J.); (S.H.); (W.C.); (K.-S.Y.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Sung Soo Kim
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (M.K.S.); (Y.S.); (S.J.); (S.H.); (W.C.); (K.-S.Y.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Insug Kang
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (M.K.S.); (Y.S.); (S.J.); (S.H.); (W.C.); (K.-S.Y.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
5
|
Viana P, Hamar P. Targeting the heat shock response induced by modulated electro-hyperthermia (mEHT) in cancer. Biochim Biophys Acta Rev Cancer 2024; 1879:189069. [PMID: 38176599 DOI: 10.1016/j.bbcan.2023.189069] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/20/2023] [Accepted: 12/28/2023] [Indexed: 01/06/2024]
Abstract
The Heat Shock Response (HSR) is a cellular stress reaction crucial for cell survival against stressors, including heat, in both healthy and cancer cells. Modulated electro-hyperthermia (mEHT) is an emerging non-invasive cancer therapy utilizing electromagnetic fields to selectively target cancer cells via temperature-dependent and independent mechanisms. However, mEHT triggers HSR in treated cells. Despite demonstrated efficacy in cancer treatment, understanding the underlying molecular mechanisms for improved therapeutic outcomes remains a focus. This review examines the HSR induced by mEHT in cancer cells, discussing potential strategies to modulate it for enhanced tumor-killing effects. Approaches such as HSF1 gene-knockdown and small molecule inhibitors like KRIBB11 are explored to downregulate the HSR and augment tumor destruction. We emphasize the impact of HSR inhibition on cancer cell viability, mEHT sensitivity, and potential synergistic effects, addressing challenges and future directions. This understanding offers opportunities for optimizing treatment strategies and advancing precision medicine in cancer therapy.
Collapse
Affiliation(s)
- Pedro Viana
- Institute of Translational Medicine, Semmelweis University, Tűzoltó utca 37-49, 1094 Budapest, Hungary.
| | - Péter Hamar
- Institute of Translational Medicine, Semmelweis University, Tűzoltó utca 37-49, 1094 Budapest, Hungary.
| |
Collapse
|
6
|
Ram BM, Dai C. Detection of the DNA binding of transcription factors in situ at the single-cell resolution in cultured cells by proximity ligation assay. STAR Protoc 2023; 4:102692. [PMID: 37917578 PMCID: PMC10651771 DOI: 10.1016/j.xpro.2023.102692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/25/2023] [Accepted: 10/12/2023] [Indexed: 11/04/2023] Open
Abstract
Transcription factors (TFs) play a pivotal role in gene expression, and their DNA binding is the prerequisite to instigating gene transcription. Here, we present a protocol that exploits the proximity ligation assay technique to measure the DNA-binding activities of TFs in situ at the single-cell resolution. We describe steps for immunostaining with specific antibodies against double-stranded DNA and the TFs of interest, probe incubation, proximity ligation, and signal amplification. We then detail procedures for imaging and image analysis. For complete details on the use and execution of this protocol, please refer to Dai et al. (2015)1 and Xu et al. (2023).2.
Collapse
Affiliation(s)
- Babul Moni Ram
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute-Frederick, Frederick, MD 21702, USA.
| | - Chengkai Dai
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute-Frederick, Frederick, MD 21702, USA.
| |
Collapse
|
7
|
Shandilya UK, Sharma A, Sodhi M, Mukesh M. Editing of HSF-1 and Na/K-ATPase α1 subunit by CRISPR/Cas9 reduces thermal tolerance of bovine skin fibroblasts to heat shock in vitro. Anim Biotechnol 2023; 34:3626-3636. [PMID: 36905150 DOI: 10.1080/10495398.2023.2187403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
A follow-up to our previous findings, the present study was planned to evaluate the role of Na/K-ATPase alpha1-subunit (ATP1A1) gene in heat shock tolerance. The primary fibroblast culture was established using ear pinna tissue samples of Sahiwal cattle (Bos indicus). The knockout cell lines of Na/K-ATP1A1 and HSF-1 (heat shock factor-1, as a positive control) genes were developed by CRISPR/Cas9 method and the gene-editing was confirmed by the genomic cleavage detection assay. The two knockout cell lines (ATP1A1 and HSF-1) and wild-type fibroblasts were exposed to heat shock at 42 °C in vitro and different cellular parameters viz., apoptosis, proliferation, mitochondrial membrane potential (ΔΨm), oxidative stress, along with expression pattern of heat-responsive genes were studied. The results showed that in vitro heat shock given to knockout fibroblast cells of both ATP1A1 and HSF-1 genes resulted in decreased cell viability, while increasing the apoptosis rate, membrane depolarization, and ROS levels. However, the overall impact was more in HSF-1 knockout cells as compared to ATP1A1 knockout cells. Taken together, these results indicated that the ATP1A1 gene plays a critical role as HSF-1 under heat stress and helps cells to cope with heat shock.
Collapse
Affiliation(s)
- Umesh K Shandilya
- Animal Biotechnology Division, ICAR-National Bureau of Animal Genetic Resources, Karnal, India
| | - Ankita Sharma
- Animal Biotechnology Division, ICAR-National Bureau of Animal Genetic Resources, Karnal, India
| | - Monika Sodhi
- Animal Biotechnology Division, ICAR-National Bureau of Animal Genetic Resources, Karnal, India
| | - Manishi Mukesh
- Animal Biotechnology Division, ICAR-National Bureau of Animal Genetic Resources, Karnal, India
| |
Collapse
|
8
|
Abstract
Heat stress is described as the cumulative detrimental effect caused by an imbalance between heat production within the body and heat dissipation. When cattle are exposed to heat stress with skin surface temperatures exceeding 35 °C, gene networks within and across cells respond to environmental heat loads with both intra and extracellular signals that coordinate cellular and whole-animal metabolism changes to store heat and rapidly increase evaporative heat loss. In this study, we examined evidence from genes known to be associated with heat tolerance (Hsp70, HSF1, HspB8, SOD1, PRLH, ATP1A1, MTOR, and EIF2AK4). This information could serve as valuable resource material for breeding programs aimed at increasing the thermotolerance of cattle.
Collapse
Affiliation(s)
- LuLan Zeng
- College of Life Sciences, Northwest A&F University, Yangling, China
| | - Kaixing Qu
- Yunnan Academy of Grassland and Animal Science, Kunming, China
| | - Jicai Zhang
- Yunnan Academy of Grassland and Animal Science, Kunming, China
| | - Bizhi Huang
- Yunnan Academy of Grassland and Animal Science, Kunming, China
| | - Chuzhao Lei
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| |
Collapse
|
9
|
Suzuki J. Endurance exercise under short-duration intermittent hypoxia promotes endurance performance via improving muscle metabolic properties in mice. Physiol Rep 2022; 10:e15534. [PMID: 36514879 PMCID: PMC9748492 DOI: 10.14814/phy2.15534] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 10/13/2022] [Accepted: 11/11/2022] [Indexed: 06/17/2023] Open
Abstract
This study was designed to (1) investigate the effects of acute exercise under intermittent hypoxia on muscle mRNA and protein levels, and (2) clarify the mechanisms by which exercise under intermittent hypoxia improves endurance capacity. Experiment-1: Male mice were subjected to either acute endurance exercise, exercise under hypoxia (14% O2 ), exercise under intermittent hypoxia (Int, three cycles of room air [10 min] and 14% O2 [15 min]). At 3 h after exercise under intermittent hypoxia, sirtuin-6 mRNA levels and nuclear prolyl hydroxylases-2 protein levels were significantly upregulated in white gastrocnemius muscle in the Int group. Experiment-2: Mice were assigned to sedentary control (Sed), normoxic exercise-trained (ET), hypoxic exercise-trained (HYP) or exercise-trained under intermittent hypoxia (INT) groups. Exercise capacity was significantly greater in the INT group than in the ET and HYP group. Activity levels of citrate synthase were significantly greater in the INT group than in the HYP group in soleus (SOL) and red gastrocnemius muscles. In SOL, nuclear N-terminal PGC1α levels were considerably increased by the INT training (95% confidence interval [CI]: 1.09-1.79). The INT significantly increased pyruvate dehydrogenase complex activity levels in left ventricle (LV). Monocarboxylate transporter-4 protein levels were significantly increased after the INT training in LV. Capillary-to-fiber ratio values were significantly increased in SOL and were substantially increased in LV (CI: 1.10-1.22) after the INT training. These results suggest that exercise training under intermittent hypoxia represents a beneficial strategy for increasing endurance performance via improving metabolic properties and capillary profiles in several hind-leg muscles and the heart.
Collapse
Affiliation(s)
- Junichi Suzuki
- Laboratory of Exercise Physiology, Health and Sports Sciences, Course of Sports Education, Department of EducationHokkaido University of EducationIwamizawaJapan
| |
Collapse
|
10
|
HSF1 Can Prevent Inflammation following Heat Shock by Inhibiting the Excessive Activation of the ATF3 and JUN& FOS Genes. Cells 2022; 11:cells11162510. [PMID: 36010586 PMCID: PMC9406379 DOI: 10.3390/cells11162510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/08/2022] [Accepted: 08/10/2022] [Indexed: 11/16/2022] Open
Abstract
Heat Shock Factor 1 (HSF1), a transcription factor frequently overexpressed in cancer, is activated by proteotoxic agents and participates in the regulation of cellular stress response. To investigate how HSF1 level affects the response to proteotoxic stress, we integrated data from functional genomics analyses performed in MCF7 breast adenocarcinoma cells. Although the general transcriptional response to heat shock was impaired due to HSF1 deficiency (mainly chaperone expression was inhibited), a set of genes was identified, including ATF3 and certain FOS and JUN family members, whose stress-induced activation was stronger and persisted longer than in cells with normal HSF1 levels. These genes were direct HSF1 targets, suggesting a dual (activatory/suppressory) role for HSF1. Moreover, we found that heat shock-induced inflammatory response could be stronger in HSF1-deficient cells. Analyses of The Cancer Genome Atlas data indicated that higher ATF3, FOS, and FOSB expression levels correlated with low HSF1 levels in estrogen receptor-positive breast cancer, reflecting higher heat shock-induced expression of these genes in HSF1-deficient MCF7 cells observed in vitro. However, differences between the analyzed cancer types were noted in the regulation of HSF1-dependent genes, indicating the presence of cell-type-specific mechanisms. Nevertheless, our data indicate the existence of the heat shock-induced network of transcription factors (associated with the activation of TNFα signaling) which includes HSF1. Independent of its chaperone-mediated cytoprotective function, HSF1 may be involved in the regulation of this network but prevents its overactivation in some cells during stress.
Collapse
|
11
|
Fennel ZJ, Amorim FT, Deyhle MR, Hafen PS, Mermier CM. The Heat Shock Connection: Skeletal Muscle Hypertrophy and Atrophy. Am J Physiol Regul Integr Comp Physiol 2022; 323:R133-R148. [PMID: 35536704 DOI: 10.1152/ajpregu.00048.2022] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Skeletal muscle is an integral tissue system that plays a crucial role in the physical function of all vertebrates and is a key target for maintaining or improving health and performance across the lifespan. Based largely on cellular and animal models, there is some evidence that various forms of heat stress with or without resistance exercise may enhance skeletal muscle growth or reduce its loss. It is not clear whether these stimuli are similarly effective in humans or meaningful in comparison to exercise alone across various heating methodologies. Furthermore, the magnitude by which heat stress may influence whole body thermoregulatory responses and the connection to skeletal muscle adaptation remains ambiguous. Finally, the underlying mechanisms, which may include interaction between relevant heat shock proteins and intracellular hypertrophy and atrophy related factors, remain unclear. In this narrative mini-review we examine the relevant literature regarding heat stress alone or in combination with resistance exercise emphasizing skeletal muscle hypertrophy and atrophy across cellular and animal models, as well as human investigations. Additionally, we present working mechanistic theories for heat shock protein mediated signaling effects regarding hypertrophy and atrophy related signaling processes. Importantly, continued research is necessary to determine the practical effects and mechanisms of heat stress with and without resistance exercise on skeletal muscle function via growth and maintenance.
Collapse
Affiliation(s)
| | | | | | - Paul Samuel Hafen
- Department of Health, Exercise, and Sport Sciences, University of New Mexico, Albuquerque, NM, United States.,Indiana University School of Medicine Department of Anatomy, Cell Biology, and Physiology; Indiana Center for Musculoskeletal Health, Indianapolis, IN, United States
| | | |
Collapse
|
12
|
Occhigrossi L, D’Eletto M, Barlev N, Rossin F. The Multifaceted Role of HSF1 in Pathophysiology: Focus on Its Interplay with TG2. Int J Mol Sci 2021; 22:ijms22126366. [PMID: 34198675 PMCID: PMC8232231 DOI: 10.3390/ijms22126366] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/03/2021] [Accepted: 06/11/2021] [Indexed: 11/19/2022] Open
Abstract
The cellular environment needs to be strongly regulated and the maintenance of protein homeostasis is crucial for cell function and survival. HSF1 is the main regulator of the heat shock response (HSR), the master pathway required to maintain proteostasis, as involved in the expression of the heat shock proteins (HSPs). HSF1 plays numerous physiological functions; however, the main role concerns the modulation of HSPs synthesis in response to stress. Alterations in HSF1 function impact protein homeostasis and are strongly linked to diseases, such as neurodegenerative disorders, metabolic diseases, and different types of cancers. In this context, type 2 Transglutaminase (TG2), a ubiquitous enzyme activated during stress condition has been shown to promote HSF1 activation. HSF1-TG2 axis regulates the HSR and its function is evolutionary conserved and implicated in pathological conditions. In this review, we discuss the role of HSF1 in the maintenance of proteostasis with regard to the HSF1-TG2 axis and we dissect the stress response pathways implicated in physiological and pathological conditions.
Collapse
Affiliation(s)
- Luca Occhigrossi
- Department of Biology, University of Rome ‘Tor Vergata’, 00133 Rome, Italy; (L.O.); (M.D.)
| | - Manuela D’Eletto
- Department of Biology, University of Rome ‘Tor Vergata’, 00133 Rome, Italy; (L.O.); (M.D.)
| | - Nickolai Barlev
- Institute of Cytology, 194064 Saint-Petersburg, Russia;
- Moscow Institute of Physics and Technology (MIPT), 141701 Dolgoprudny, Russia
| | - Federica Rossin
- Institute of Cytology, 194064 Saint-Petersburg, Russia;
- Correspondence:
| |
Collapse
|
13
|
Modulating the Heat Stress Response to Improve Hyperthermia-Based Anticancer Treatments. Cancers (Basel) 2021; 13:cancers13061243. [PMID: 33808973 PMCID: PMC8001574 DOI: 10.3390/cancers13061243] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/02/2021] [Accepted: 03/09/2021] [Indexed: 12/18/2022] Open
Abstract
Simple Summary Hyperthermia is a method to expose a tumor to elevated temperatures. Heating of the tumor promotes the effects of various treatment regimens that are based on chemo and radiotherapy. Several aspects, however, limit the efficacy of hyperthermia-based treatments. This review provides an overview of the effects and limitations of hyperthermia and discusses how current drawbacks of the therapy can potentially be counteracted by inhibiting the heat stress response—a mechanism that cells activate to defend themselves against hyperthermia. Abstract Cancer treatments based on mild hyperthermia (39–43 °C, HT) are applied to a widening range of cancer types, but several factors limit their efficacy and slow down more widespread adoption. These factors include difficulties in adequate heat delivery, a short therapeutic window and the acquisition of thermotolerance by cancer cells. Here, we explore the biological effects of HT, the cellular responses to these effects and their clinically-relevant consequences. We then identify the heat stress response—the cellular defense mechanism that detects and counteracts the effects of heat—as one of the major forces limiting the efficacy of HT-based therapies and propose targeting this mechanism as a potentially universal strategy for improving their efficacy.
Collapse
|
14
|
Li T, Xiao G, Tan S, Shi X, Yin L, Tan C, Gu J, Liu Y, Deng H, Liu K, Liu M, Zhang H, Xiao X. HSF1 Attenuates LPS-Induced Acute Lung Injury in Mice by Suppressing Macrophage Infiltration. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:1936580. [PMID: 33381262 PMCID: PMC7762676 DOI: 10.1155/2020/1936580] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 06/21/2020] [Accepted: 12/01/2020] [Indexed: 12/14/2022]
Abstract
Heat shock factor 1 (HSF1) is a transcription factor involved in the heat shock response and other biological processes. We have unveiled here an important role of HSF1 in acute lung injury (ALI). HSF1 knockout mice were used as a model of lipopolysaccharide- (LPS-) induced ALI. Lung damage was aggravated, and macrophage infiltration increased significantly in the bronchoalveolar lavage fluid (BALF) and lung tissue of HSF-/- mice compared with the damage observed in HSF1+/+ mice. Upon LPS stimulation, HSF-/- mice showed higher levels of monocyte chemoattractant protein-1 (MCP-1) in the serum, BALF, and lung tissue and increased the expression of MCP-1 and chemokine (C-C motif) receptor 2 (CCR2) on the surface of macrophages compared with those in HSF1+/+. Electrophoretic mobility shift assays (EMSA) and dual luciferase reporter assays revealed that HSF1 could directly bind to heat shock elements (HSE) in the promoter regions of MCP-1 and its receptor CCR2, thereby inhibiting the expression of both genes. We concluded that HSF1 attenuated LPS-induced ALI in mice by directly suppressing the transcription of MCP-1/CCR2, which in turn reduced macrophage infiltration.
Collapse
Affiliation(s)
- Tao Li
- Key Laboratory of Sepsis Translational Medicine of Hunan, Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, Hunan 410008, China
- Department of Pathophysiology, Medical College of Jiaying University, Meizhou, Guangdong 514031, China
| | - Gui Xiao
- Key Laboratory of Sepsis Translational Medicine of Hunan, Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, Hunan 410008, China
- Department of Nursing, Hainan Medical University, Haikou, Hainan 571199, China
| | - Sipin Tan
- Key Laboratory of Sepsis Translational Medicine of Hunan, Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, Hunan 410008, China
| | - Xueyan Shi
- Key Laboratory of Sepsis Translational Medicine of Hunan, Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, Hunan 410008, China
| | - Leijing Yin
- Key Laboratory of Sepsis Translational Medicine of Hunan, Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, Hunan 410008, China
| | - Chuyi Tan
- Key Laboratory of Sepsis Translational Medicine of Hunan, Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, Hunan 410008, China
| | - Jia Gu
- Key Laboratory of Sepsis Translational Medicine of Hunan, Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, Hunan 410008, China
| | - Yanjuan Liu
- Key Laboratory of Sepsis Translational Medicine of Hunan, Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, Hunan 410008, China
| | - Huafei Deng
- Key Laboratory of Sepsis Translational Medicine of Hunan, Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, Hunan 410008, China
| | - Ke Liu
- Key Laboratory of Sepsis Translational Medicine of Hunan, Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, Hunan 410008, China
| | - Meidong Liu
- Key Laboratory of Sepsis Translational Medicine of Hunan, Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, Hunan 410008, China
| | - Huali Zhang
- Key Laboratory of Sepsis Translational Medicine of Hunan, Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, Hunan 410008, China
| | - Xianzhong Xiao
- Key Laboratory of Sepsis Translational Medicine of Hunan, Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, Hunan 410008, China
| |
Collapse
|
15
|
Amelioration of heat stress-induced damage to testes and sperm quality. Theriogenology 2020; 158:84-96. [PMID: 32947064 DOI: 10.1016/j.theriogenology.2020.08.034] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 08/26/2020] [Accepted: 08/28/2020] [Indexed: 12/19/2022]
Abstract
Heat stress (HS) occurs when temperatures exceed a physiological range, overwhelming compensatory mechanisms. Most mammalian testes are ∼4-5 °C cooler than core body temperature. Systemic HS or localized warming of the testes affects all types of testicular cells, although germ cells are more sensitive than either Sertoli or Leydig cells. Increased testicular temperature has deleterious effects on sperm motility, morphology and fertility, with effects related to extent and duration of the increase. The major consequence of HS on testis is destruction of germ cells by apoptosis, with pachytene spermatocytes, spermatids and epididymal sperm being the most susceptible. In addition to the involvement of various transcription factors, HS triggers production of reactive oxygen species (ROS), which cause apoptosis of germ cells and DNA damage. Effects of HS on testes can be placed in three categories: testicular cells, sperm quality, and ability of sperm to fertilize oocytes and support development. Various substances have been given to animals, or added to semen, in attempts to ameliorate heat stress-induced damage to testes and sperm. They have been divided into various groups according to their composition or activity, as follows: amino acids, antibiotics, antioxidant cocktails, enzyme inhibitors, hormones, minerals, naturally produced substances, phenolic compounds, traditional herbal medicines, and vitamins. Herein, we summarized those substances according to their actions to mitigate HS' three main mechanisms: oxidative stress, germ cell apoptosis, and sperm quality deterioration and testicular damage. The most promising approaches are to use substances that overcome these mechanisms, namely reducing testicular oxidative stress, reducing or preventing apoptosis and promoting recovery of testicular tissue and restoring sperm quality. Although some of these products have considerable promise, further studies are needed to clarify their ability to preserve or restore fertility following HS; these may include more advanced sperm analysis techniques, e.g. sperm epigenome or proteome, or direct assessment of fertilization and development, including in vitro fertilization or breeding data (either natural service or artificial insemination).
Collapse
|
16
|
Gao J, Liu J, Zhang L, Zhang Y, Guo Q, Li Y, Tong J, Wang H, Zhou J, Zhu F, Shi L, Zhao H. Heat shock transcription factor 1 regulates the fetal γ-globin expression in a stress-dependent and independent manner during erythroid differentiation. Exp Cell Res 2019; 387:111780. [PMID: 31874177 DOI: 10.1016/j.yexcr.2019.111780] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 12/11/2019] [Accepted: 12/13/2019] [Indexed: 01/09/2023]
Abstract
Heat shock transcription factor 1 (HSF1) is a highly versatile transcription factor that, in addition to protecting cells against proteotoxic stress, is also critical during diverse developmental processes. Although the functions of HSF1 have received considerable attention, its potential role in β-globin gene regulation during erythropoiesis has not been fully elucidated. Here, after comparing the transcriptomes of erythrocytes differentiated from cord blood or adult peripheral blood hematopoietic progenitor CD34+ cells in vitro, we constructed the molecular regulatory network associated with β-globin genes and identified novel and putative globin gene regulators by combining the weighted gene coexpression network analysis (WGCNA) and context likelihood of relatedness (CLR) algorithms. Further investigation revealed that one of the identified regulators, HSF1, acts as a key activator of the γ-globin gene in human primary erythroid cells in both erythroid developmental stages. While during stress, HSF1 is required for heat-induced globin gene activation, and HSF1 downregulation markedly decreases globin gene induction in K562 cells. Mechanistically, HSF1 occupies DNase I hypersensitive site 3 of the locus control region upstream of β-globin genes via its canonical binding motif. Hence, HSF1 executes stress-dependent and -independent roles in fetal γ-globin regulation during erythroid differentiation.
Collapse
Affiliation(s)
- Jie Gao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China; Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Jinhua Liu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China; Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Lingling Zhang
- Tianjin Key Laboratory of Food and Biotechnology, School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin, 300134, China
| | - Yingnan Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China; Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Qing Guo
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China; Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Yapu Li
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China; Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Jingyuan Tong
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China; Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Hongtao Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China; Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Jiaxi Zhou
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China; Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Fan Zhu
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, China
| | - Lihong Shi
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China; Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, China.
| | - Hui Zhao
- Tianjin Key Laboratory of Food and Biotechnology, School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin, 300134, China.
| |
Collapse
|
17
|
Saju JM, Hossain MS, Liew WC, Pradhan A, Thevasagayam NM, Tan LSE, Anand A, Olsson PE, Orbán L. Heat Shock Factor 5 Is Essential for Spermatogenesis in Zebrafish. Cell Rep 2019; 25:3252-3261.e4. [PMID: 30566854 DOI: 10.1016/j.celrep.2018.11.090] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 08/24/2018] [Accepted: 11/26/2018] [Indexed: 01/09/2023] Open
Abstract
Heat shock factors (Hsfs) are transcription factors that regulate responses to heat shock and other environmental stimuli. Four heat shock factors (Hsf1-4) have been characterized from vertebrates to date. In addition to stress response, they also play important roles in development and gametogenesis. Here, we study the fifth member of heat shock factor family, Hsf5, using zebrafish as a model organism. Mutant hsf5-/- males, generated by CRISPR/Cas9 technique, were infertile with drastically reduced sperm count, increased sperm head size, and abnormal tail architecture, whereas females remained fertile. We show that Hsf5 is required for progression through meiotic prophase 1 during spermatogenesis as suggested by the accumulation of cells in the leptotene and zygotene-pachytene stages and increased apoptosis in post-meiotic cells. hsf5-/- mutants show gonadal misregulation of a substantial number of genes with roles in cell cycle, apoptosis, protein modifications, and signal transduction, indicating an important role of Hsf5 in early stages of spermatogenesis.
Collapse
Affiliation(s)
- Jolly M Saju
- Reproductive Genomics Group, Temasek Life Sciences Laboratory, Singapore, Singapore
| | - Mohammad Sorowar Hossain
- Reproductive Genomics Group, Temasek Life Sciences Laboratory, Singapore, Singapore; Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Woei Chang Liew
- Reproductive Genomics Group, Temasek Life Sciences Laboratory, Singapore, Singapore
| | - Ajay Pradhan
- Biology, The Life Science Center, School of Science and Technology, Örebro University, Örebro, Sweden
| | | | - Lydia Shun En Tan
- Reproductive Genomics Group, Temasek Life Sciences Laboratory, Singapore, Singapore
| | - Amit Anand
- Bioimaging and Biocomputing, Temasek Life Sciences Laboratory, Singapore, Singapore.
| | - Per-Erik Olsson
- Biology, The Life Science Center, School of Science and Technology, Örebro University, Örebro, Sweden.
| | - László Orbán
- Reproductive Genomics Group, Temasek Life Sciences Laboratory, Singapore, Singapore; Frontline Fish Genomics Research Group, Department of Animal Sciences, Georgikon Faculty, University of Pannonia, Keszthely, Hungary; Centre for Comparative Genomics, Murdoch University, Murdoch, Australia.
| |
Collapse
|
18
|
Rizzoto G, Kastelic JP. A new paradigm regarding testicular thermoregulation in ruminants? Theriogenology 2019; 147:166-175. [PMID: 31785861 DOI: 10.1016/j.theriogenology.2019.11.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 11/16/2019] [Accepted: 11/17/2019] [Indexed: 02/05/2023]
Abstract
Increased testicular temperature reduces percentages of morphologically normal and motile sperm and fertility. Specific sperm defects appear at consistent intervals after testicular hyperthermia, with degree and duration of changes related to intensity and duration of the thermal insult. Regarding pathogenesis of testicular hyperthermia on sperm quality and fertility, there is a long-standing paradigm that: 1) testes operate near hypoxia; 2) blood flow to the testes does not increase in response to increased testicular temperature; and 3) an ensuing hypoxia is the underlying cause of heat-induced changes in sperm morphology and function. There are very limited experimental data to support this paradigm, but we have data that refute it. In 2 × 3 factorial studies, mice and rams were exposed to two testicular temperatures (normal and increased) and three concentrations of O2 in inspired air (hyperoxia, normoxia and hypoxia). As expected, increased testicular temperature had deleterious effects on sperm motility and morphology; however, hyperoxia did not prevent these changes nor did hypoxia replicate them. In two follow-up experiments, anesthetized rams were sequentially exposed to: 1) three O2 concentrations (100, 21 and 13% O2); or 2) three testicular temperatures (33, 37 and 40 °C). As O2, decreased, testis maintained O2 delivery and uptake by increasing testicular blood flow and O2 extraction, with no indication of anaerobic metabolism. Furthermore, as testicular temperature increased, testicular metabolic rate nearly doubled, but increased blood flow and O2 extraction prevented testicular hypoxia and anaerobic metabolism. In conclusion, our data, in combination with other reports, challenged the paradigm that testicular hyperthermia fails to increase testicular blood flow and the ensuing hypoxia disrupts spermatogenesis.
Collapse
Affiliation(s)
- G Rizzoto
- Faculty of Veterinary Medicine, Department of Production Animal Health, University of Calgary, 3280 Hospital Drive, Calgary, AB, Canada, T2N 4Z6
| | - J P Kastelic
- Faculty of Veterinary Medicine, Department of Production Animal Health, University of Calgary, 3280 Hospital Drive, Calgary, AB, Canada, T2N 4Z6.
| |
Collapse
|
19
|
Toma-Jonik A, Vydra N, Janus P, Widłak W. Interplay between HSF1 and p53 signaling pathways in cancer initiation and progression: non-oncogene and oncogene addiction. Cell Oncol (Dordr) 2019; 42:579-589. [DOI: 10.1007/s13402-019-00452-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/13/2019] [Indexed: 02/07/2023] Open
|
20
|
Jaiswal L, De S, Singh RK, Baithalu RK. Molecular characterization and protein structure prediction of heat shock transcriptional factors in goat (Capra hircus) and sheep (Ovis aries). Anim Biotechnol 2019; 31:432-439. [PMID: 31164037 DOI: 10.1080/10495398.2019.1615497] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Latika Jaiswal
- Animal Genomics Lab, Animal Biotechnology Centre, National Dairy Research Institute, Karnal, India
| | - Sachinandan De
- Animal Genomics Lab, Animal Biotechnology Centre, National Dairy Research Institute, Karnal, India
| | - Ravi Kant Singh
- Amity Institute of Biotechnology, Amity University, Raipur, India
| | - Rubina Kumari Baithalu
- Animal Genomics Lab, Animal Biotechnology Centre, National Dairy Research Institute, Karnal, India
| |
Collapse
|
21
|
Chisnell P, Parenteau TR, Tank E, Ashrafi K, Kenyon C. The mTOR Target S6 Kinase Arrests Development in Caenorhabditis elegans When the Heat-Shock Transcription Factor Is Impaired. Genetics 2018; 210:999-1009. [PMID: 30228197 PMCID: PMC6218238 DOI: 10.1534/genetics.118.301533] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 09/07/2018] [Indexed: 01/04/2023] Open
Abstract
The widely conserved heat-shock response, regulated by heat-shock transcription factors, is not only essential for cellular stress resistance and adult longevity, but also for proper development. However, the genetic mechanisms by which heat-shock transcription factors regulate development are not well understood. In Caenorhabditis elegans, we conducted an unbiased genetic screen to identify mutations that could ameliorate the developmental-arrest phenotype of a heat-shock factor mutant. Here, we show that loss of the conserved translational activator rsks-1/S6 kinase, a downstream effector of mechanistic Target of Rapamycin (mTOR) kinase, can rescue the developmental-arrest phenotype of hsf-1 partial loss-of-function mutants. Unexpectedly, we show that the rescue is not likely caused by reduced translation, nor by activation of any of a variety of stress-protective genes and pathways. Our findings identify an as-yet unexplained regulatory relationship between the heat-shock transcription factor and the mTOR pathway during C. elegans development.
Collapse
Affiliation(s)
- Peter Chisnell
- Department of Biochemistry and Biophysics, University of California, San Francisco, California 94158
- Department of Physiology, University of California, San Francisco, California 94158
| | - T Richard Parenteau
- Department of Biochemistry and Biophysics, University of California, San Francisco, California 94158
| | - Elizabeth Tank
- Department of Neurology, University of Michigan, Ann Arbor, Michigan 48109
| | - Kaveh Ashrafi
- Department of Physiology, University of California, San Francisco, California 94158
| | - Cynthia Kenyon
- Department of Biochemistry and Biophysics, University of California, San Francisco, California 94158
| |
Collapse
|
22
|
Kim SJ, Lee SC, Kang HG, Gim J, Lee KH, Lee SH, Chun KH. Heat Shock Factor 1 Predicts Poor Prognosis of Gastric Cancer. Yonsei Med J 2018; 59:1041-1048. [PMID: 30328318 PMCID: PMC6192884 DOI: 10.3349/ymj.2018.59.9.1041] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 08/25/2018] [Accepted: 08/31/2018] [Indexed: 12/11/2022] Open
Abstract
PURPOSE Heat shock factor 1 (HSF1) is a key regulator of the heat shock response and plays an important role in various cancers. However, the role of HSF1 in gastric cancer is still unknown. The present study evaluated the function of HSF1 and related mechanisms in gastric cancer. MATERIALS AND METHODS The expression levels of HSF1 in normal and gastric cancer tissues were compared using cDNA microarray data from the NCBI Gene Expression Omnibus (GEO) dataset. The proliferation of gastric cancer cells was analyzed using the WST assay. Transwell migration and invasion assays were used to evaluate the migration and invasion abilities of gastric cancer cells. Protein levels of HSF1 were analyzed using immunohistochemical staining of tissue microarrays from patients with gastric cancer. RESULTS HSF1 expression was significantly higher in gastric cancer tissue than in normal tissue. Knockdown of HSF1 reduced the proliferation, migration, and invasion of gastric cancer cells, while HSF1 overexpression promoted proliferation, migration, and invasion of gastric cancer cells. Furthermore, HSF1 promoted the proliferation of gastric cancer cells in vivo. In Kaplan-Meier analysis, high levels of HSF1 were associated with poor prognosis for patients with gastric cancer (p=0.028). CONCLUSION HSF1 may be closely associated with the proliferation and motility of gastric cancer cells and poor prognosis of patients with gastric cancer. Accordingly, HSF1 could serve as a prognostic marker for gastric cancer.
Collapse
Affiliation(s)
- Seok Jun Kim
- Department of Biomedical Science, College of Natural Science, Chosun University, Gwangju, Korea.
| | - Seok Cheol Lee
- Department of Biomedical Science, College of Natural Science, Chosun University, Gwangju, Korea
| | - Hyun Gu Kang
- Department of Biomedical Science, College of Natural Science, Chosun University, Gwangju, Korea
| | - Jungsoo Gim
- Department of Biomedical Science, College of Natural Science, Chosun University, Gwangju, Korea
| | - Kyung Hwa Lee
- Department of Pathology, Chonnam National University Medical School, Gwangju, Korea
| | - Seung Hyun Lee
- Department of Biochemistry & Molecular Biology, Yonsei University College of Medicine, Seoul, Korea
| | - Kyung Hee Chun
- Department of Biochemistry & Molecular Biology, Yonsei University College of Medicine, Seoul, Korea
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
23
|
Sengar GS, Kant R, Deb R, Verma P. Small interfering RNA based knock down of acute heat shock and or GGA inducible bovine heat shock protein 70 may interfere invitro expression pattern of TLR2/4 and NOD1/2. J Therm Biol 2018; 77:75-85. [DOI: 10.1016/j.jtherbio.2018.08.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 05/16/2018] [Accepted: 08/18/2018] [Indexed: 01/08/2023]
|
24
|
Edea Z, Dadi H, Dessie T, Uzzaman MR, Rothschild MF, Kim ES, Sonstegard TS, Kim KS. Genome-wide scan reveals divergent selection among taurine and zebu cattle populations from different regions. Anim Genet 2018; 49:550-563. [PMID: 30246258 DOI: 10.1111/age.12724] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/06/2018] [Indexed: 01/02/2023]
Abstract
In this study, to identify genomic signatures of divergent selection, we genotyped 10 cattle breeds/populations (n = 275), representing eight Ethiopian cattle populations (n = 229) and two zebu populations (n = 46) adapted to tropical and sub-tropical environments, using the high-density single-nucleotide polymorphisms (SNPs) derived mainly from Bos indicus breeds, and using five reference taurine breeds (n = 212). Population genetic differentiation (FST ) values across sliding windows were estimated between zebu and reference combined taurine breeds. The most differentiated regions (FST ≥ 0.53), representing the top 1% smoothed FST values, were considered to represent regions under diversifying selection. In total, 285 and 317 genes were identified in the comparisons of Ethiopian cattle with taurine and Asian zebu with taurine respectively. Some of these genes are involved in stress responses/thermo-tolerance and DNA damage repair (HSPA4, HSF1, CMPK1 and EIF2AK4), pigmentation (ERBB3 and MYO1A), reproduction/fertility (UBE2D3, ID3 and PSPC1), immune response (PIK3CD and AKIRIN2) and body stature and size (MBP2, LYN and NPM1). Additionally, the candidate genes were associated with functional terms (e.g. cellular response to stress, DNA repair, inflammatory response) important for physiological adaptation to environmental stresses. The results of our study may shed light on the influence of artificial and natural selection in shaping the genomic diversity of modern cattle breeds and also may serve as a basis for further genetic investigation of traits of tropical adaptation in cattle.
Collapse
Affiliation(s)
- Z Edea
- Department of Animal Science, Chungbuk National University, Cheongju, 28644, Korea
| | - H Dadi
- Department of Biotechnology, Addis Ababa Science and Technology University, P.O. Box 16417, Addis Ababa, Ethiopia
| | - T Dessie
- International Livestock Research Institute (ILRI), P.O. Box 5689, Addis Ababa, Ethiopia
| | - M R Uzzaman
- Department of Animal Science, Chungbuk National University, Cheongju, 28644, Korea.,Animal Genomics & Bioinformatics Division, National Institute of Animal Science, RDA, Wanju, 55365, S. Korea
| | - M F Rothschild
- Department of Animal Science, Iowa State University, Ames, IA, 50011, USA
| | - E-S Kim
- Recombinetics, Inc., Saint Paul, MN, 55104, USA
| | | | - K-S Kim
- Department of Animal Science, Chungbuk National University, Cheongju, 28644, Korea
| |
Collapse
|
25
|
Modulation of Heat Shock Factor 1 Activity through Silencing of Ser303/Ser307 Phosphorylation Supports a Metabolic Program Leading to Age-Related Obesity and Insulin Resistance. Mol Cell Biol 2018; 38:MCB.00095-18. [PMID: 29941492 DOI: 10.1128/mcb.00095-18] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 06/19/2018] [Indexed: 12/15/2022] Open
Abstract
Activation of the adaptive response to cellular stress orchestrated by heat shock factor 1 (HSF1), which is an evolutionarily conserved transcriptional regulator of chaperone response and cellular bioenergetics in diverse model systems, is a central feature of organismal defense from environmental and cellular stress. HSF1 activity, induced by proteostatic, metabolic, and growth factor signals, is regulated by posttranscriptional modifications, yet the mechanisms that regulate HSF1 and particularly the functional significance of these modifications in modulating its biological activity in vivo remain unknown. HSF1 phosphorylation at both Ser303 (S303) and Ser307 (S307) has been shown to repress HSF1 transcriptional activity under normal physiological growth conditions. To determine the biological relevance of these HSF1 phosphorylation events, we generated a knock-in mouse model in which S303 and S307 were replaced with alanine (HSF1303A/307A). Our results confirmed that loss of phosphorylation in HSF1303A/307A cells and tissues increases protein stability but also markedly sensitizes HSF1 activation under normal and heat- or nutrient-induced stress conditions. Interestingly, the enhanced HSF1 activation in HSF1303A/307A mice activates a supportive metabolic program that aggravates the development of age-dependent obesity, fatty liver diseases, and insulin resistance. Thus, these findings highlight the importance of a posttranslational mechanism (through phosphorylation at S303 and S307 sites) of regulation of the HSF1-mediated transcriptional program that moderates the severity of nutrient-induced metabolic diseases.
Collapse
|
26
|
Dai C. The heat-shock, or HSF1-mediated proteotoxic stress, response in cancer: from proteomic stability to oncogenesis. Philos Trans R Soc Lond B Biol Sci 2018; 373:rstb.2016.0525. [PMID: 29203710 DOI: 10.1098/rstb.2016.0525] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/01/2017] [Indexed: 12/17/2022] Open
Abstract
The heat-shock, or HSF1-mediated proteotoxic stress, response (HSR/HPSR) is characterized by induction of heat-shock proteins (HSPs). As molecular chaperones, HSPs facilitate the folding, assembly, transportation and degradation of other proteins. In mammals, heat shock factor 1 (HSF1) is the master regulator of this ancient transcriptional programme. Upon proteotoxic insults, the HSR/HPSR is essential to proteome homeostasis, or proteostasis, thereby resisting stress and antagonizing protein misfolding diseases and ageing. Contrasting with these benefits, an unexpected pro-oncogenic role of the HSR/HPSR is unfolding. Whereas HSF1 remains latent in primary cells without stress, it becomes constitutively activated within malignant cells, rendering them addicted to HSF1 for their growth and survival. Highlighting the HSR/HPSR as an integral component of the oncogenic network, several key pathways governing HSF1 activation by environmental stressors are causally implicated in malignancy. Importantly, HSF1 impacts the cancer proteome systemically. By suppressing tumour-suppressive amyloidogenesis, HSF1 preserves cancer proteostasis to support the malignant state, both providing insight into how HSF1 enables tumorigenesis and suggesting disruption of cancer proteostasis as a therapeutic strategy. This review provides an overview of the role of HSF1 in oncogenesis, mechanisms underlying its constitutive activation within cancer cells and its pro-oncogenic action, as well as potential HSF1-targeting strategies.This article is part of the theme issue 'Heat shock proteins as modulators and therapeutic targets of chronic disease: an integrated perspective'.
Collapse
Affiliation(s)
- Chengkai Dai
- Mouse Cancer Genetics Program, Center for Cancer Research NCI-Frederick, Building 560, Room 32-31b, 1050 Boyles Street, Frederick, MD 21702, USA
| |
Collapse
|
27
|
Abstract
Heat shock transcription factors (Hsfs) regulate transcription of heat shock proteins as well as other genes whose promoters contain heat shock elements (HSEs). There are at least five Hsfs in mammalian cells, Hsf1, Hsf2, Hsf3, Hsf4, and Hsfy (Wu, Annu Rev Cell Dev Biol 11:441-469, 1995; Morimoto, Genes Dev 12:3788-3796, 1998; Tessari et al., Mol Hum Repord 4:253-258, 2004; Fujimoto et al., Mol Biol Cell 21:106-116, 2010; Nakai et al., Mol Cell Biol 17:469-481, 1997; Sarge et al., Genes Dev 5:1902-1911, 1991). To understand the physiological roles of Hsf1, Hsf2, and Hsf4 in vivo, we generated knockout mouse lines for these factors (Zhang et al., J Cell Biochem 86:376-393, 2002; Wang et al., Genesis 36:48-61, 2003; Min et al., Genesis 40:205-217, 2004). Numbers of other laboratories have also generated Hsf1 (Xiao et al., EMBO J 18:5943-5952, 1999; Sugahara et al., Hear Res 182:88-96, 2003), Hsf2 (McMillan et al., Mol Cell Biol 22:8005-8014, 2002; Kallio et al., EMBO J 21:2591-2601, 2002), and Hsf4 (Fujimoto et al., EMBO J 23:4297-4306, 2004) knockout mouse models. In this chapter, we describe the design of the targeting vectors, the plasmids used, and the successful generation of mice lacking the individual genes. We also briefly describe what we have learned about the physiological functions of these genes in vivo.
Collapse
Affiliation(s)
- Xiongjie Jin
- Molecular Chaperone Biology, Medical College of Georgia, Augusta University, Georgia Cancer Center, 1410 Laney Walker Blvd., CN3141, Augusta, GA, 30912, USA
| | - Binnur Eroglu
- Molecular Chaperone Biology, Medical College of Georgia, Augusta University, Georgia Cancer Center, 1410 Laney Walker Blvd., CN3141, Augusta, GA, 30912, USA
| | - Demetrius Moskophidis
- Molecular Chaperone Biology, Medical College of Georgia, Augusta University, Georgia Cancer Center, 1410 Laney Walker Blvd., CN3141, Augusta, GA, 30912, USA
| | - Nahid F Mivechi
- Molecular Chaperone Biology, Medical College of Georgia, Augusta University, Georgia Cancer Center, 1410 Laney Walker Blvd., CN3141, Augusta, GA, 30912, USA.
| |
Collapse
|
28
|
Mori Y, Terauchi R, Shirai T, Tsuchida S, Mizoshiri N, Arai Y, Kishida T, Fujiwara H, Mazda O, Kubo T. Suppression of heat shock protein 70 by siRNA enhances the antitumor effects of cisplatin in cultured human osteosarcoma cells. Cell Stress Chaperones 2017; 22:699-706. [PMID: 28466152 PMCID: PMC5573688 DOI: 10.1007/s12192-017-0793-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 03/25/2017] [Accepted: 03/28/2017] [Indexed: 12/30/2022] Open
Abstract
Although advances in chemotherapy have improved the prognosis for osteosarcoma, some patients do not respond sufficiently to treatment. Heat shock protein 70 (Hsp70) is expressed at high levels in cancer cells and attenuates the therapeutic efficacy of anticancer agents, resulting in a poorer prognosis. This study investigated whether small interfering RNA (siRNA)-mediated inhibition of Hsp70 expression in an osteosarcoma cell line would enhance sensitivity to cisplatin. The expression of Hsp70 with cisplatin treatment was observed by using Western blotting and real-time reverse transcription polymerase chain reaction (RT-PCR). Changes in the IC50 of cisplatin when Hsp70 was inhibited by siRNA were evaluated. Cisplatin's effectiveness in inducing apoptosis was assessed by assay of terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL), caspase-3 activity, and mitochondrial membrane potential. Up-regulation of Hsp70 expression was dependent on the concentration of cisplatin. Inhibition of Hsp70 expression significantly reduced the IC50 of cisplatin. When cisplatin was added to osteosarcoma cells with Hsp70 expression inhibited, a significant increase in apoptosis was demonstrated in TUNEL, caspase-3, and mitochondrial membrane potential assays. Inhibition of Hsp70 expression induced apoptosis in cultured osteosarcoma cells, indicating that Hsp70 inhibition enhanced sensitivity to cisplatin. Inhibition of Hsp70 expression may provide a new adjuvant therapy for osteosarcoma.
Collapse
Affiliation(s)
- Yuki Mori
- Department of Orthopaedics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Ryu Terauchi
- Department of Orthopaedics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Toshiharu Shirai
- Department of Orthopaedics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan.
| | - Shinji Tsuchida
- Department of Orthopaedics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Naoki Mizoshiri
- Department of Orthopaedics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Yuji Arai
- Department of Sports and Para-Sports Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Tsunao Kishida
- Department of Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Hiroyoshi Fujiwara
- Department of Orthopaedics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Osam Mazda
- Department of Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Toshikazu Kubo
- Department of Orthopaedics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan
| |
Collapse
|
29
|
Qiao A, Jin X, Pang J, Moskophidis D, Mivechi NF. The transcriptional regulator of the chaperone response HSF1 controls hepatic bioenergetics and protein homeostasis. J Cell Biol 2017; 216:723-741. [PMID: 28183717 PMCID: PMC5350514 DOI: 10.1083/jcb.201607091] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 11/20/2016] [Accepted: 12/30/2016] [Indexed: 02/06/2023] Open
Abstract
How cells sense energetic demands and regulate their bioenergetic networks to balance anabolism and catabolism is unclear. Qiao et al show that HSF1, a regulator of the chaperone response, has a central role in systemic energy sensing and is required for metabolic adaptation to nutrient availability. Metabolic energy reprogramming facilitates adaptations to a variety of stress conditions and cellular dysfunction, but how the energetic demands are monitored and met in response to physiological stimuli remains elusive. Our data support a model demonstrating that heat shock factor 1 (HSF1), a master transcriptional regulator of the chaperone response, has been coopted from its role as a critical protein quality-control regulator to having a central role in systemic energy sensing and for metabolic adaptation to nutrient availability. We found that in the absence of HSF1, levels of NAD+ and ATP are not efficiently sustained in hepatic cells, largely because of transcriptional repression of nicotinamide phosphoribosyltransferase in the NAD+ salvage pathway. Mechanistically, the defect in NAD+ and ATP synthesis linked to a loss of NAD+-dependent deacetylase activity, increased protein acetylation, and impaired mitochondrial integrity. Remarkably, the drop in ATP level caused by HSF1 loss invoked an adaptive response featuring the inhibition of energetically demanding processes, including gluconeogenesis, translation, and lipid synthesis. Our work identifies HSF1 as a central regulator of cellular bioenergetics and protein homeostasis that benefits malignant cell progression and exacerbates development of metabolic diseases.
Collapse
Affiliation(s)
- Aijun Qiao
- Molecular Chaperone Biology, Medical College of Georgia, Augusta University, Augusta, GA 30912.,Georgia Cancer Center, Augusta University, Augusta, GA 30912
| | - Xiongjie Jin
- Molecular Chaperone Biology, Medical College of Georgia, Augusta University, Augusta, GA 30912.,Georgia Cancer Center, Augusta University, Augusta, GA 30912
| | - Junfeng Pang
- Molecular Chaperone Biology, Medical College of Georgia, Augusta University, Augusta, GA 30912.,Georgia Cancer Center, Augusta University, Augusta, GA 30912
| | - Demetrius Moskophidis
- Molecular Chaperone Biology, Medical College of Georgia, Augusta University, Augusta, GA 30912 .,Georgia Cancer Center, Augusta University, Augusta, GA 30912.,Department of Medicine, Augusta University, Augusta, GA 30912
| | - Nahid F Mivechi
- Molecular Chaperone Biology, Medical College of Georgia, Augusta University, Augusta, GA 30912 .,Georgia Cancer Center, Augusta University, Augusta, GA 30912.,Department of Radiology, Augusta University, Augusta, GA 30912
| |
Collapse
|
30
|
Goenka A, Sengupta S, Pandey R, Parihar R, Mohanta GC, Mukerji M, Ganesh S. Human satellite-III non-coding RNAs modulate heat-shock-induced transcriptional repression. J Cell Sci 2016; 129:3541-3552. [PMID: 27528402 DOI: 10.1242/jcs.189803] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 08/10/2016] [Indexed: 12/31/2022] Open
Abstract
The heat shock response is a conserved defense mechanism that protects cells from physiological stress, including thermal stress. Besides the activation of heat-shock-protein genes, the heat shock response is also known to bring about global suppression of transcription; however, the mechanism by which this occurs is poorly understood. One of the intriguing aspects of the heat shock response in human cells is the transcription of satellite-III (Sat3) long non-coding RNAs and their association with nuclear stress bodies (nSBs) of unknown function. Besides association with the Sat3 transcript, the nSBs are also known to recruit the transcription factors HSF1 and CREBBP, and several RNA-binding proteins, including the splicing factor SRSF1. We demonstrate here that the recruitment of CREBBP and SRSF1 to nSBs is Sat3-dependent, and that loss of Sat3 transcripts relieves the heat-shock-induced transcriptional repression of a few target genes. Conversely, forced expression of Sat3 transcripts results in the formation of nSBs and transcriptional repression even without a heat shock. Our results thus provide a novel insight into the regulatory role for the Sat3 transcripts in heat-shock-dependent transcriptional repression.
Collapse
Affiliation(s)
- Anshika Goenka
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India
| | - Sonali Sengupta
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India
| | - Rajesh Pandey
- CSIR Ayurgenomics Unit - TRISUTRA, CSIR - Institute of Genomics and Integrative Biology (IGIB), Mathura Road, New Delhi 110025, India
| | - Rashmi Parihar
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India
| | - Girish Chandra Mohanta
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India
| | - Mitali Mukerji
- CSIR Ayurgenomics Unit - TRISUTRA, CSIR - Institute of Genomics and Integrative Biology (IGIB), Mathura Road, New Delhi 110025, India
| | - Subramaniam Ganesh
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India
| |
Collapse
|
31
|
Solís EJ, Pandey JP, Zheng X, Jin DX, Gupta PB, Airoldi EM, Pincus D, Denic V. Defining the Essential Function of Yeast Hsf1 Reveals a Compact Transcriptional Program for Maintaining Eukaryotic Proteostasis. Mol Cell 2016; 63:60-71. [PMID: 27320198 PMCID: PMC4938784 DOI: 10.1016/j.molcel.2016.05.014] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 03/22/2016] [Accepted: 05/11/2016] [Indexed: 11/18/2022]
Abstract
Despite its eponymous association with the heat shock response, yeast heat shock factor 1 (Hsf1) is essential even at low temperatures. Here we show that engineered nuclear export of Hsf1 results in cytotoxicity associated with massive protein aggregation. Genome-wide analysis revealed that Hsf1 nuclear export immediately decreased basal transcription and mRNA expression of 18 genes, which predominately encode chaperones. Strikingly, rescuing basal expression of Hsp70 and Hsp90 chaperones enabled robust cell growth in the complete absence of Hsf1. With the exception of chaperone gene induction, the vast majority of the heat shock response was Hsf1 independent. By comparative analysis of mammalian cell lines, we found that only heat shock-induced but not basal expression of chaperones is dependent on the mammalian Hsf1 homolog (HSF1). Our work reveals that yeast chaperone gene expression is an essential housekeeping mechanism and provides a roadmap for defining the function of HSF1 as a driver of oncogenesis.
Collapse
Affiliation(s)
- Eric J Solís
- Department of Molecular and Cellular Biology, Northwest Labs, Harvard University, Cambridge, MA 02138, USA; Systems Biology PhD Program, Harvard University, Cambridge, MA 02138, USA
| | - Jai P Pandey
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Xu Zheng
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Dexter X Jin
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Piyush B Gupta
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Koch Institute for Integrative Cancer Research at MIT, Cambridge, MA 02142, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| | - Edoardo M Airoldi
- Department of Statistics, Harvard University, Cambridge, MA 02138, USA
| | - David Pincus
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA.
| | - Vladimir Denic
- Department of Molecular and Cellular Biology, Northwest Labs, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
32
|
Zuo D, Subjeck J, Wang XY. Unfolding the Role of Large Heat Shock Proteins: New Insights and Therapeutic Implications. Front Immunol 2016; 7:75. [PMID: 26973652 PMCID: PMC4771732 DOI: 10.3389/fimmu.2016.00075] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 02/15/2016] [Indexed: 11/13/2022] Open
Abstract
Heat shock proteins (HSPs) of eukaryotes are evolutionarily conserved molecules present in all the major intracellular organelles. They mainly function as molecular chaperones and participate in maintenance of protein homeostasis in physiological state and under stressful conditions. Despite their relative abundance, the large HSPs, i.e., Hsp110 and glucose-regulated protein 170 (Grp170), have received less attention compared to other conventional HSPs. These proteins are distantly related to the Hsp70 and belong to Hsp70 superfamily. Increased sizes of Hsp110 and Grp170, due to the presence of a loop structure, result in their exceptional capability in binding to polypeptide substrates or non-protein ligands, such as pathogen-associated molecules. These interactions that occur in the extracellular environment during tissue injury or microbial infection may lead to amplification of an immune response engaging both innate and adaptive immune components. Here, we review the current advances in understanding these large HSPs as molecular chaperones in proteostasis control and immune modulation as well as their therapeutic implications in treatment of cancer and neurodegeneration. Given their unique immunoregulatory activities, we also discuss the emerging evidence of their potential involvement in inflammatory and immune-related diseases.
Collapse
Affiliation(s)
- Daming Zuo
- Department of Immunology, Southern Medical University, Guangzhou, China; State Key Laboratory of Organ Failure Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - John Subjeck
- Department of Cellular Stress Biology, Roswell Park Cancer Institute , Buffalo, NY , USA
| | - Xiang-Yang Wang
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA, USA; VCU Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA; VCU Institute of Molecular Medicine, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
33
|
Ohno Y, Egawa T, Yokoyama S, Nakai A, Sugiura T, Ohira Y, Yoshioka T, Goto K. Deficiency of heat shock transcription factor 1 suppresses heat stress-associated increase in slow soleus muscle mass of mice. Acta Physiol (Oxf) 2015; 215:191-203. [PMID: 26347147 DOI: 10.1111/apha.12600] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 07/20/2015] [Accepted: 09/03/2015] [Indexed: 01/30/2023]
Abstract
AIM Effects of heat shock transcription factor 1 (HSF1) deficiency on heat stress-associated increase in slow soleus muscle mass of mice were investigated. METHODS Both HSF1-null and wild-type mice were randomly assigned to control and heat-stressed groups. Mice in heat-stressed group were exposed to heat stress (41 °C for 60 min) in an incubator without anaesthesia. RESULTS Significant increase in wet and dry weights, and protein content of soleus muscle in wild-type mice was observed seven days after the application of the heat stress. However, heat stress had no impact on soleus muscle mass in HSF1-null mice. Neither type of mice exhibited much effect of heat stress on HSF mRNA expression (HSF1, HSF2 and HSF4). On the other hand, heat stress upregulated heat shock proteins (HSPs) at the mRNA (HSP72) and protein (HSP72 and HSP110) levels in wild-type mice, but not in HSF1-null mice. The population of Pax7-positive nuclei relative to total myonuclei of soleus muscle in wild-type mice was significantly increased by heat stress, but not in HSF1-null mice. Furthermore, the absence of HSF1 gene suppressed heat stress-associated phosphorylation of Akt and p70 S6 kinase (p-p70S6K) in soleus muscle. CONCLUSION Heat stress-associated increase in skeletal muscle mass may be induced by HSF1 and/or HSF1-mediated stress response that activates muscle satellite cells and Akt/p70S6K signalling pathway.
Collapse
Affiliation(s)
- Y. Ohno
- Laboratory of Physiology; School of Health Sciences; Toyohashi SOZO University; Toyohashi Japan
| | - T. Egawa
- Department of Physiology; Graduate School of Health Sciences; Toyohashi SOZO University; Toyohashi Japan
- Research Fellow of the Japan Society for the Promotion of Science; Tokyo Japan
| | - S. Yokoyama
- Laboratory of Physiology; School of Health Sciences; Toyohashi SOZO University; Toyohashi Japan
| | - A. Nakai
- Department of Molecular Biology; Graduate School of Medicine; Yamaguchi University; Ube Japan
| | - T. Sugiura
- Faculty of Education; Yamaguchi University; Yamaguchi Japan
| | - Y. Ohira
- Graduate School of Health and Sports Science; Doshisha University; Kyotanabe Japan
| | | | - K. Goto
- Laboratory of Physiology; School of Health Sciences; Toyohashi SOZO University; Toyohashi Japan
- Department of Physiology; Graduate School of Health Sciences; Toyohashi SOZO University; Toyohashi Japan
| |
Collapse
|
34
|
McKinney GJ, Seeb LW, Larson WA, Gomez‐Uchida D, Limborg MT, Brieuc MSO, Everett MV, Naish KA, Waples RK, Seeb JE. An integrated linkage map reveals candidate genes underlying adaptive variation in Chinook salmon (
Oncorhynchus tshawytscha
). Mol Ecol Resour 2015; 16:769-83. [DOI: 10.1111/1755-0998.12479] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 10/08/2015] [Accepted: 10/14/2015] [Indexed: 12/31/2022]
Affiliation(s)
- G. J. McKinney
- School of Aquatic and Fishery Sciences University of Washington Seattle WA 98195‐5020 USA
| | - L. W. Seeb
- School of Aquatic and Fishery Sciences University of Washington Seattle WA 98195‐5020 USA
| | - W. A. Larson
- School of Aquatic and Fishery Sciences University of Washington Seattle WA 98195‐5020 USA
| | - D. Gomez‐Uchida
- School of Aquatic and Fishery Sciences University of Washington Seattle WA 98195‐5020 USA
| | - M. T. Limborg
- School of Aquatic and Fishery Sciences University of Washington Seattle WA 98195‐5020 USA
| | - M. S. O. Brieuc
- School of Aquatic and Fishery Sciences University of Washington Seattle WA 98195‐5020 USA
| | - M. V. Everett
- School of Aquatic and Fishery Sciences University of Washington Seattle WA 98195‐5020 USA
| | - K. A. Naish
- School of Aquatic and Fishery Sciences University of Washington Seattle WA 98195‐5020 USA
| | - R. K. Waples
- School of Aquatic and Fishery Sciences University of Washington Seattle WA 98195‐5020 USA
| | - J. E. Seeb
- School of Aquatic and Fishery Sciences University of Washington Seattle WA 98195‐5020 USA
| |
Collapse
|
35
|
HSF1: Guardian of Proteostasis in Cancer. Trends Cell Biol 2015; 26:17-28. [PMID: 26597576 DOI: 10.1016/j.tcb.2015.10.011] [Citation(s) in RCA: 155] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 10/21/2015] [Accepted: 10/22/2015] [Indexed: 12/12/2022]
Abstract
Proteomic instability is causally related to human diseases. In guarding proteome stability, the heat shock factor 1 (HSF1)-mediated proteotoxic stress response plays a pivotal role. Contrasting with its beneficial role of enhancing cell survival, recent findings have revealed a compelling pro-oncogenic role for HSF1. However, the mechanisms underlying the persistent activation and function of HSF1 within malignancy remain poorly understood. Emerging evidence reveals that oncogenic signaling mobilizes HSF1 and that cancer cells rely on HSF1 to avert proteomic instability and repress tumor-suppressive amyloidogenesis. In aggregate, these new developments suggest that cancer cells endure chronic proteotoxic stress and that proteomic instability is intrinsically associated with the malignant state, a characteristic that could be exploited to combat cancer.
Collapse
|
36
|
Direct link between metabolic regulation and the heat-shock response through the transcriptional regulator PGC-1α. Proc Natl Acad Sci U S A 2015; 112:E5669-78. [PMID: 26438876 DOI: 10.1073/pnas.1516219112] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
In recent years an extensive effort has been made to elucidate the molecular pathways involved in metabolic signaling in health and disease. Here we show, surprisingly, that metabolic regulation and the heat-shock/stress response are directly linked. Peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α), a critical transcriptional coactivator of metabolic genes, acts as a direct transcriptional repressor of heat-shock factor 1 (HSF1), a key regulator of the heat-shock/stress response. Our findings reveal that heat-shock protein (HSP) gene expression is suppressed during fasting in mouse liver and in primary hepatocytes dependent on PGC-1α. HSF1 and PGC-1α associate physically and are colocalized on several HSP promoters. These observations are extended to several cancer cell lines in which PGC-1α is shown to repress the ability of HSF1 to activate gene-expression programs necessary for cancer survival. Our study reveals a surprising direct link between two major cellular transcriptional networks, highlighting a previously unrecognized facet of the activity of the central metabolic regulator PGC-1α beyond its well-established ability to boost metabolic genes via its interactions with nuclear hormone receptors and nuclear respiratory factors. Our data point to PGC-1α as a critical repressor of HSF1-mediated transcriptional programs, a finding with possible implications both for our understanding of the full scope of metabolically regulated target genes in vivo and, conceivably, for therapeutics.
Collapse
|
37
|
Egawa T, Goto A, Ohno Y, Yokoyama S, Ikuta A, Suzuki M, Sugiura T, Ohira Y, Yoshioka T, Hayashi T, Goto K. Involvement of AMPK in regulating slow-twitch muscle atrophy during hindlimb unloading in mice. Am J Physiol Endocrinol Metab 2015; 309:E651-62. [PMID: 26244519 DOI: 10.1152/ajpendo.00165.2015] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 08/03/2015] [Indexed: 01/08/2023]
Abstract
AMPK is considered to have a role in regulating skeletal muscle mass. However, there are no studies investigating the function of AMPK in modulating skeletal muscle mass during atrophic conditions. In the present study, we investigated the difference in unloading-associated muscle atrophy and molecular functions in response to 2-wk hindlimb suspension between transgenic mice overexpressing the dominant-negative mutant of AMPK (AMPK-DN) and their wild-type (WT) littermates. Male WT (n = 24) and AMPK-DN (n = 24) mice were randomly divided into two groups: an untreated preexperimental control group (n = 12 in each group) and an unloading (n = 12 in each group) group. The relative soleus muscle weight and fiber cross-sectional area to body weight were decreased by ∼30% in WT mice by hindlimb unloading and by ∼20% in AMPK-DN mice. There were no changes in puromycin-labeled protein or Akt/70-kDa ribosomal S6 kinase signaling, the indicators of protein synthesis. The expressions of ubiquitinated proteins and muscle RING finger 1 mRNA and protein, markers of the ubiquitin-proteasome system, were increased by hindlimb unloading in WT mice but not in AMPK-DN mice. The expressions of molecules related to the protein degradation system, phosphorylated forkhead box class O3a, inhibitor of κBα, microRNA (miR)-1, and miR-23a, were decreased only in WT mice in response to hindlimb unloading, and 72-kDa heat shock protein expression was higher in AMPK-DN mice than in WT mice. These results imply that AMPK partially regulates unloading-induced atrophy of slow-twitch muscle possibly through modulation of the protein degradation system, especially the ubiquitin-proteasome system.
Collapse
Affiliation(s)
- Tatsuro Egawa
- Department of Physiology, Graduate School of Health Sciences, Toyohashi SOZO University, Toyohashi, Aichi, Japan
| | - Ayumi Goto
- Department of Physiology, Graduate School of Health Sciences, Toyohashi SOZO University, Toyohashi, Aichi, Japan; Laboratory of Sports and Exercise Medicine, Graduate School of Human and Environmental Studies, Kyoto University, Kyoto, Japan
| | - Yoshitaka Ohno
- Laboratory of Physiology, School of Health Sciences, Toyohashi SOZO University, Toyohashi, Aichi, Japan
| | - Shingo Yokoyama
- Laboratory of Physiology, School of Health Sciences, Toyohashi SOZO University, Toyohashi, Aichi, Japan
| | - Akihiro Ikuta
- Department of Physiology, Graduate School of Health Sciences, Toyohashi SOZO University, Toyohashi, Aichi, Japan
| | - Miho Suzuki
- Department of Physiology, Graduate School of Health Sciences, Toyohashi SOZO University, Toyohashi, Aichi, Japan
| | - Takao Sugiura
- Department of Exercise and Sports Physiology, Faculty of Education, Yamaguchi University, Yamaguchi, Japan
| | - Yoshinobu Ohira
- Graduate School of Health and Sports Science, Doshisha University, Kyotanabe, Kyoto, Japan; and
| | | | - Tatsuya Hayashi
- Laboratory of Sports and Exercise Medicine, Graduate School of Human and Environmental Studies, Kyoto University, Kyoto, Japan
| | - Katsumasa Goto
- Department of Physiology, Graduate School of Health Sciences, Toyohashi SOZO University, Toyohashi, Aichi, Japan;
| |
Collapse
|
38
|
Gómez AV, Córdova G, Munita R, Parada GE, Barrios ÁP, Cancino GI, Álvarez AR, Andrés ME. Characterizing HSF1 Binding and Post-Translational Modifications of hsp70 Promoter in Cultured Cortical Neurons: Implications in the Heat-Shock Response. PLoS One 2015; 10:e0129329. [PMID: 26053851 PMCID: PMC4459960 DOI: 10.1371/journal.pone.0129329] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 05/08/2015] [Indexed: 11/21/2022] Open
Abstract
Causes of lower induction of Hsp70 in neurons during heat shock are still a matter of debate. To further inquire into the mechanisms regulating Hsp70 expression in neurons, we studied the activity of Heat Shock Factor 1 (HSF1) and histone posttranslational modifications (PTMs) at the hsp70 promoter in rat cortical neurons. Heat shock induced a transient and efficient translocation of HSF1 to neuronal nuclei. However, no binding of HSF1 at the hsp70 promoter was detected while it bound to the hsp25 promoter in cortical neurons during heat shock. Histone PTMs analysis showed that the hsp70 promoter harbors lower levels of histone H3 and H4 acetylation in cortical neurons compared to PC12 cells under basal conditions. Transcriptomic profiling data analysis showed a predominant usage of cryptic transcriptional start sites at hsp70 gene in the rat cerebral cortex, compared with the whole brain. These data support a weaker activation of hsp70 canonical promoter. Heat shock increased H3Ac at the hsp70 promoter in PC12 cells, which correlated with increased Hsp70 expression while no modifications occurred at the hsp70 promoter in cortical neurons. Increased histone H3 acetylation by Trichostatin A led to hsp70 mRNA and protein induction in cortical neurons. In conclusion, we found that two independent mechanisms maintain a lower induction of Hsp70 in cortical neurons. First, HSF1 fails to bind specifically to the hsp70 promoter in cortical neurons during heat shock and, second, the hsp70 promoter is less accessible in neurons compared to non-neuronal cells due to histone deacetylases repression.
Collapse
Affiliation(s)
- Andrea V. Gómez
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Av. Libertador Bernardo O’Higgins 340, Santiago, Chile
- * E-mail: (AVG); (MEA)
| | - Gonzalo Córdova
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Av. Libertador Bernardo O’Higgins 340, Santiago, Chile
| | - Roberto Munita
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Av. Libertador Bernardo O’Higgins 340, Santiago, Chile
| | - Guillermo E. Parada
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Av. Libertador Bernardo O’Higgins 340, Santiago, Chile
| | - Álvaro P. Barrios
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Av. Libertador Bernardo O’Higgins 340, Santiago, Chile
| | - Gonzalo I. Cancino
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Av. Libertador Bernardo O’Higgins 340, Santiago, Chile
| | - Alejandra R. Álvarez
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Av. Libertador Bernardo O’Higgins 340, Santiago, Chile
| | - María E. Andrés
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Av. Libertador Bernardo O’Higgins 340, Santiago, Chile
- * E-mail: (AVG); (MEA)
| |
Collapse
|
39
|
Lal SV, Brahma B, Gohain M, Mohanta D, De BC, Chopra M, Dass G, Vats A, Upadhyay RC, Datta TK, De S. Splice variants and seasonal expression of buffalo HSF genes. Cell Stress Chaperones 2015; 20:545-54. [PMID: 25655489 PMCID: PMC4406941 DOI: 10.1007/s12192-014-0563-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Revised: 12/11/2014] [Accepted: 12/12/2014] [Indexed: 01/09/2023] Open
Abstract
In eukaryotes, the heat shock factors (HSFs) are recognized as the master regulator of the heat shock response. In this respect, the genes encoding the heat shock factors seem to be important for adaptation to thermal stress in organisms. Despite this, only few mammalian HSFs has been characterized. In this study, four major heat shock factor genes viz. HSF-1, 2, 4, and 5 were studied. The main objective of the present study was to characterize the cDNA encoding using conserved gene specific primers and to investigate the expression status of these buffalo HSF genes. Our RT-PCR analysis uncovered two distinct variants of buffalo HSF-1 and HSF-2 gene transcripts. In addition, we identified a variant of the HSF5 transcript in buffalo lacking a DNA-binding domain. In silico analysis of deduced amino acid sequences for buffalo HSF genes showed domain architecture similar to other mammalian species. Changes in the gene expression profile were noted by quantitative real-time PCR (qRT-PCR) analysis. We detected the transcript of buffalo HSF genes in different tissues. We also evaluated the seasonal changes in the expression of HSF genes. Interestingly, the transcript level of HSF-1 gene was found upregulated in months of high and low ambient temperatures. In contrast, the expression of the HSF-4 and 5 genes was found to be downregulated in months of high ambient temperature. This suggests that the intricate balance of different HSFs is adjusted to minimize the effect of seasonal changes in environmental conditions. These findings advance our understanding of the complex, context-dependent regulation of HSF gene expression under normal and stressful conditions.
Collapse
Affiliation(s)
- Shardul Vikram Lal
- />Animal Genomics Lab, Animal Biotechnology Centre, National Dairy Research Institute, Karnal, 132001 Haryana India
| | - Biswajit Brahma
- />Animal Genomics Lab, Animal Biotechnology Centre, National Dairy Research Institute, Karnal, 132001 Haryana India
| | - Moloya Gohain
- />Animal Genomics Lab, Animal Biotechnology Centre, National Dairy Research Institute, Karnal, 132001 Haryana India
| | - Debashish Mohanta
- />Animal Genomics Lab, Animal Biotechnology Centre, National Dairy Research Institute, Karnal, 132001 Haryana India
| | - Bidan Chandra De
- />Animal Genomics Lab, Animal Biotechnology Centre, National Dairy Research Institute, Karnal, 132001 Haryana India
| | - Meenu Chopra
- />Animal Genomics Lab, Animal Biotechnology Centre, National Dairy Research Institute, Karnal, 132001 Haryana India
| | - Gulshan Dass
- />Animal Genomics Lab, Animal Biotechnology Centre, National Dairy Research Institute, Karnal, 132001 Haryana India
| | - Ashutosh Vats
- />Animal Genomics Lab, Animal Biotechnology Centre, National Dairy Research Institute, Karnal, 132001 Haryana India
| | | | - T. K. Datta
- />Animal Genomics Lab, Animal Biotechnology Centre, National Dairy Research Institute, Karnal, 132001 Haryana India
| | - Sachinandan De
- />Animal Genomics Lab, Animal Biotechnology Centre, National Dairy Research Institute, Karnal, 132001 Haryana India
| |
Collapse
|
40
|
The systemic amyloid precursor transthyretin (TTR) behaves as a neuronal stress protein regulated by HSF1 in SH-SY5Y human neuroblastoma cells and APP23 Alzheimer's disease model mice. J Neurosci 2014; 34:7253-65. [PMID: 24849358 DOI: 10.1523/jneurosci.4936-13.2014] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Increased neuronal synthesis of transthyretin (TTR) may favorably impact on Alzheimer's disease (AD) because TTR has been shown to inhibit Aβ aggregation and detoxify cell-damaging conformers. The mechanism whereby hippocampal and cortical neurons from AD patients and APP23 AD model mice produce more TTR is unknown. We now show that TTR expression in SH-SY5Y human neuroblastoma cells, primary hippocampal neurons and the hippocampus of APP23 mice, is significantly enhanced by heat shock factor 1 (HSF1). Chromatin immunoprecipitation (ChIP) assays demonstrated occupation of TTR promoter heat shock elements by HSF1 in APP23 hippocampi, primary murine hippocampal neurons, and SH-SY5Y cells, but not in mouse liver, cultured human hepatoma (HepG2) cells, or AC16 cultured human cardiomyocytes. Treating SH-SY5Y human neuroblastoma cells with heat shock or the HSF1 stimulator celastrol increased TTR transcription in parallel with that of HSP40, HSP70, and HSP90. With both treatments, ChIP showed increased occupancy of heat shock elements in the TTR promoter by HSF1. In vivo celastrol increased the HSF1 ChIP signal in hippocampus but not in liver. Transfection of a human HSF1 construct into SH-SY5Y cells increased TTR transcription and protein production, which could be blocked by shHSF1 antisense. The effect is neuron specific. In cultured HepG2 cells, HSF1 was either suppressive or had no effect on TTR expression confirming the differential effects of HSF1 on TTR transcription in different cell types.
Collapse
|
41
|
O'Reilly LP, Benson JA, Cummings EE, Perlmutter DH, Silverman GA, Pak SC. Worming our way to novel drug discovery with the Caenorhabditis elegans proteostasis network, stress response and insulin-signaling pathways. Expert Opin Drug Discov 2014; 9:1021-32. [PMID: 24998976 DOI: 10.1517/17460441.2014.930125] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
INTRODUCTION Many human diseases result from a failure of a single protein to achieve the correct folding and tertiary conformation. These so-called 'conformational diseases' involve diverse proteins and distinctive cellular pathologies. They all engage the proteostasis network (PN), to varying degrees in an attempt to mange cellular stress and restore protein homeostasis. The insulin/insulin-like growth factor signaling (IIS) pathway is a master regulator of cellular stress response, which is implicated in regulating components of the PN. AREAS COVERED This review focuses on novel approaches to target conformational diseases. The authors discuss the evidence supporting the involvement of the IIS pathway in modulating the PN and regulating proteostasis in Caenorhabditis elegans. Furthermore, they review previous PN and IIS drug screens and explore the possibility of using C. elegans for whole organism-based drug discovery for modulators of IIS-proteostasis pathways. EXPERT OPINION An alternative approach to develop individualized therapy for each conformational disease is to modulate the global PN. The involvement of the IIS pathway in regulating longevity and response to a variety of stresses is well documented. Increasing data now provide evidence for the close association between the IIS and the PN pathways. The authors believe that high-throughput screening campaigns, which target the C. elegans IIS pathway, may identify drugs that are efficacious in treating numerous conformational diseases.
Collapse
Affiliation(s)
- Linda P O'Reilly
- University of Pittsburgh School of Medicine, Children's Hospital of Pittsburgh of UPMC and Magee-Womens Hospital Research Institute, Department of Pediatrics , 4401 Penn Avenue, Rangos Room 7131, Pittsburgh, PA 15224 , USA +1 412 692 9457 ; +1 412 641 1844 ;
| | | | | | | | | | | |
Collapse
|
42
|
Eroglu B, Min JN, Zhang Y, Szurek E, Moskophidis D, Eroglu A, Mivechi NF. An essential role for heat shock transcription factor binding protein 1 (HSBP1) during early embryonic development. Dev Biol 2013; 386:448-60. [PMID: 24380799 DOI: 10.1016/j.ydbio.2013.12.038] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2012] [Revised: 12/23/2013] [Accepted: 12/24/2013] [Indexed: 10/25/2022]
Abstract
Heat shock factor binding protein 1 (HSBP1) is a 76 amino acid polypeptide that contains two arrays of hydrophobic heptad repeats and was originally identified through its interaction with the oligomerization domain of heat shock factor 1 (Hsf1), suppressing Hsf1's transcriptional activity following stress. To examine the function of HSBP1 in vivo, we generated mice with targeted disruption of the hsbp1 gene and examined zebrafish embryos treated with HSBP1-specific morpholino oligonucleotides. Our results show that hsbp1 is critical for preimplantation embryonic development. Embryonic stem (ES) cells deficient in hsbp1 survive and proliferate normally into the neural lineage in vitro; however, lack of hsbp1 in embryoid bodies (EBs) leads to disorganization of the germ layers and a reduction in the endoderm-specific markers (such as α-fetoprotein). We further show that hsbp1-deficient mouse EBs and knockdown of HSBP1 in zebrafish leads to an increase in the expression of the neural crest inducers Snail2, Tfap2α and Foxd3, suggesting a potential role for HSBP1 in the Wnt pathway. The hsbp1-deficient ES cells, EBs and zebrafish embryos with reduced HSBP1 levels exhibit elevated levels of Hsf1 activity and expression of heat shock proteins (Hsps). We conclude that HSBP1 plays an essential role during early mouse and zebrafish embryonic development.
Collapse
Affiliation(s)
- Binnur Eroglu
- Charlie Norwood VA Medical Center, One Freedom Way, Augusta, GA 30904, United States; Chaperone Biology, Georgia Regents University (GRU) Cancer Center, Medical College of Georgia (MCG), 1120 15th St., Augusta, GA 30912, United States
| | - Jin-Na Min
- Chaperone Biology, Georgia Regents University (GRU) Cancer Center, Medical College of Georgia (MCG), 1120 15th St., Augusta, GA 30912, United States.
| | - Yan Zhang
- Chaperone Biology, Georgia Regents University (GRU) Cancer Center, Medical College of Georgia (MCG), 1120 15th St., Augusta, GA 30912, United States.
| | - Edyta Szurek
- Institute of Molecular Medicine and Genetics, GRU, MCG, GA, United States
| | - Demetrius Moskophidis
- Chaperone Biology, Georgia Regents University (GRU) Cancer Center, Medical College of Georgia (MCG), 1120 15th St., Augusta, GA 30912, United States
| | - Ali Eroglu
- Institute of Molecular Medicine and Genetics, GRU, MCG, GA, United States.
| | - Nahid F Mivechi
- Charlie Norwood VA Medical Center, One Freedom Way, Augusta, GA 30904, United States; Chaperone Biology, Georgia Regents University (GRU) Cancer Center, Medical College of Georgia (MCG), 1120 15th St., Augusta, GA 30912, United States.
| |
Collapse
|
43
|
Heat shock transcription factor 1-deficiency attenuates overloading-associated hypertrophy of mouse soleus muscle. PLoS One 2013; 8:e77788. [PMID: 24167582 PMCID: PMC3805596 DOI: 10.1371/journal.pone.0077788] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Accepted: 09/11/2013] [Indexed: 02/08/2023] Open
Abstract
Hypertrophic stimuli, such as mechanical stress and overloading, induce stress response, which is mediated by heat shock transcription factor 1 (HSF1), and up-regulate heat shock proteins (HSPs) in mammalian skeletal muscles. Therefore, HSF1-associated stress response may play a key role in loading-associated skeletal muscle hypertrophy. The purpose of this study was to investigate the effects of HSF1-deficiency on skeletal muscle hypertrophy caused by overloading. Functional overloading on the left soleus was performed by cutting the distal tendons of gastrocnemius and plantaris muscles for 4 weeks. The right muscle served as the control. Soleus muscles from both hindlimbs were dissected 2 and 4 weeks after the operation. Hypertrophy of soleus muscle in HSF1-null mice was partially inhibited, compared with that in wild-type (C57BL/6J) mice. Absence of HSF1 partially attenuated the increase of muscle wet weight and fiber cross-sectional area of overloaded soleus muscle. Population of Pax7-positive muscle satellite cells in HSF1-null mice was significantly less than that in wild-type mice following 2 weeks of overloading (p<0.05). Significant up-regulations of interleukin (IL)-1β and tumor necrosis factor mRNAs were observed in HSF1-null, but not in wild-type, mice following 2 weeks of overloading. Overloading-related increases of IL-6 and AFT3 mRNA expressions seen after 2 weeks of overloading tended to decrease after 4 weeks in both types of mice. In HSF1-null mice, however, the significant overloading-related increase in the expression of IL-6, not ATF3, mRNA was noted even at 4th week. Inhibition of muscle hypertrophy might be attributed to the greater and prolonged enhancement of IL-6 expression. HSF1 and/or HSF1-mediated stress response may, in part, play a key role in loading-induced skeletal muscle hypertrophy.
Collapse
|
44
|
Nishizawa S, Koya T, Ohno Y, Goto A, Ikuita A, Suzuki M, Ohira T, Egawa T, Nakai A, Sugiura T, Ohira Y, Yoshioka T, Beppu M, Goto K. Regeneration of injured skeletal muscle in heat shock transcription factor 1-null mice. Physiol Rep 2013; 1:e00071. [PMID: 24303143 PMCID: PMC3835021 DOI: 10.1002/phy2.71] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Revised: 07/27/2013] [Accepted: 07/29/2013] [Indexed: 02/03/2023] Open
Abstract
The purpose of this study was to investigate a role of heat shock transcription factor 1 (HSF1)-mediated stress response during regeneration of injured soleus muscle by using HSF1-null mice. Cardiotoxin (CTX) was injected into the left muscle of male HSF1-null and wild-type mice under anesthesia with intraperitoneal injection of pentobarbital sodium. Injection of physiological saline was also performed into the right muscle. Soleus muscles were dissected bilaterally 2 and 4 weeks after the injection. The relative weight and fiber cross-sectional area in CTX-injected muscles of HSF1-null, not of wild-type, mice were less than controls with injection of physiological saline 4 weeks after the injury, indicating a slower regeneration. Injury-related increase of Pax7-positive muscle satellite cells in HSF1-null mice was inhibited versus wild-type mice. HSF1-deficiency generally caused decreases in the basal expression levels of heat shock proteins (HSPs). But the mRNA expression levels of HSP25 and HSP90α in HSF1-null mice were enhanced in response to CTX-injection, compared with wild-type mice. Significant up-regulations of proinflammatory cytokines, such as interleukin (IL) -6, IL-1β, and tumor necrosis factor mRNAs, with greater magnitude than in wild-type mice were observed in HSF1-deficient mouse muscle. HSF1 and/or HSF1-mediated stress response may play a key role in the regenerating process of injured skeletal muscle. HSF1 deficiency may depress the regenerating process of injured skeletal muscle via the partial depression of increase in Pax7-positive satellite cells. HSF1-deficiency-associated partial depression of skeletal muscle regeneration might also be attributed to up-regulation of proinflammatory cytokines.
Collapse
Affiliation(s)
- Sono Nishizawa
- Department of Orthopaedic Surgery, St. Marianna University School of Medicine Kawasaki, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Hensen SMM, Heldens L, van Genesen ST, Pruijn GJM, Lubsen NH. A delayed antioxidant response in heat-stressed cells expressing a non-DNA binding HSF1 mutant. Cell Stress Chaperones 2013; 18:455-73. [PMID: 23321918 PMCID: PMC3682012 DOI: 10.1007/s12192-012-0400-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Revised: 12/20/2012] [Accepted: 12/21/2012] [Indexed: 12/30/2022] Open
Abstract
To assess the consequences of inactivation of heat shock factor 1 (HSF1) during aging, we analyzed the effect of HSF1 K80Q, a mutant unable to bind DNA, and of dnHSF1, a mutant lacking the activation domain, on the transcriptome of cells 6 and 24 h after heat shock. The primary response to heat shock (6 h recovery), of which 30 % was HSF1-dependent, had decayed 24 h after heat shock in control cells but was extended in HSF1 K80Q and dnHSF1 cells. Comparison with literature data showed that even the HSF1 dependent primary stress response is largely cell specific. HSF1 K80Q, but not HSF1 siRNA-treated, cells showed a delayed stress response: an increase in transcript levels of HSF1 target genes 24 h after heat stress. Knockdown of NRF2, but not of ATF4, c-Fos or FosB, inhibited this delayed stress response. EEF1D_L siRNA inhibited both the delayed and the extended primary stress responses, but had off target effects. In control cells an antioxidant response (ARE binding, HMOX1 mRNA levels) was detected 6 h after heat shock; in HSF1 K80Q cells this response was delayed to 24 h and the ARE complex had a different mobility. Inactivation of HSF1 thus affects the timing and nature of the antioxidant response and NRF2 can activate at least some HSF1 target genes in the absence of HSF1 activity.
Collapse
Affiliation(s)
- Sanne M. M. Hensen
- 271 Department of Biomolecular Chemistry, Radboud University Nijmegen, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Lonneke Heldens
- 271 Department of Biomolecular Chemistry, Radboud University Nijmegen, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Siebe T. van Genesen
- 271 Department of Biomolecular Chemistry, Radboud University Nijmegen, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Ger J. M. Pruijn
- 271 Department of Biomolecular Chemistry, Radboud University Nijmegen, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Nicolette H. Lubsen
- 271 Department of Biomolecular Chemistry, Radboud University Nijmegen, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands
| |
Collapse
|
46
|
Tabuchi Y, Kondo T. Targeting heat shock transcription factor 1 for novel hyperthermia therapy (review). Int J Mol Med 2013; 32:3-8. [PMID: 23636216 DOI: 10.3892/ijmm.2013.1367] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 03/14/2013] [Indexed: 11/06/2022] Open
Abstract
Hyperthermia (HT) has shown promising antitumor effects against various types of malignant tumors, and its pleiotropic effects support its combined use with radiotherapy and/or chemotherapy. However, HT is rendered less effective by the acquisition of thermoresistance in tumors, which arises through the elevation of heat shock proteins (HSPs) or other tumor responses. In mammals, the induction of HSPs is principally regulated at the transcriptional level by the activation of heat shock transcription factor 1 (HSF1). This transactivator has been shown to be abundantly expressed in a wide variety of tumors in humans. In addition, HSF1 participates in the initiation, proliferation and maintenance of tumors. Of note, HSF1 silencing has been shown to prevent the progression of tumors and to enhance their sensitivity to HT. Here, we review the physiological and pathological roles of HSF1 in cancer cells, and discuss its potential as a therapeutic target for HT therapy.
Collapse
Affiliation(s)
- Yoshiaki Tabuchi
- Division of Molecular Genetics Research, Life Science Research Center, University of Toyama, Toyama 930-0194, Japan.
| | | |
Collapse
|
47
|
Hamid MI, Zeng F, Cheng J, Jiang D, Fu Y. Disruption of heat shock factor 1 reduces the formation of conidia and thermotolerance in the mycoparasitic fungus Coniothyrium minitans. Fungal Genet Biol 2013; 53:42-9. [PMID: 23357354 DOI: 10.1016/j.fgb.2012.12.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Revised: 12/12/2012] [Accepted: 12/13/2012] [Indexed: 12/14/2022]
Abstract
Coniothyrium minitans is a bio-control agent of Sclerotinia spp., and has the ability to produce abundant conidia to infect the host fungi. Mediation of heat shock factors (HSFs) is required to adapt to the acute temperatures, and to regulate the expression of heat shock proteins (HSPs) to function as molecular chaperones to assist in development, protein folding and stability. A heat shock factor 1 (HSF1) gene was identified from a T-DNA insertion mutant that lost the ability to form conidia in liquid culture as well as on solid media. Null mutants lacking CmHSF1 were constructed by gene disruption strategy. Mutants lacking CmHSF1 had reduced in conidial production and displayed decreased tolerance to heat and other abiotic stresses as compared to the wild type parent. Over-expression strains could recover faster from heat and abiotic stresses such as, ethanol, oxidative or osmotic stresses with or without heat shock. In over-expression strains, conidial germination was increased, and parasitic ability on sclerotia of Sclerotinia sclerotiorum was enhanced by 0.42-5.92% compared to the wild type strain. Increased expression levels in wild strain ZS-1 were observed when the fungus was grown at 37°C or 45°C with other abiotic stresses. CmHSF1 plays an important role in conidial production, conidial germination, and tolerance against heat and other abiotic stresses.
Collapse
Affiliation(s)
- M Imran Hamid
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, Hubei Province, PR China
| | | | | | | | | |
Collapse
|
48
|
Heimberger T, Andrulis M, Riedel S, Stühmer T, Schraud H, Beilhack A, Bumm T, Bogen B, Einsele H, Bargou RC, Chatterjee M. The heat shock transcription factor 1 as a potential new therapeutic target in multiple myeloma. Br J Haematol 2012; 160:465-76. [PMID: 23252346 DOI: 10.1111/bjh.12164] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Accepted: 09/27/2012] [Indexed: 01/03/2023]
Abstract
The heat shock transcription factor 1 (HSF1) has recently been reported to promote malignant transformation and growth. Here we provide experimental evidence for a role of HSF1 in the pathogenesis of multiple myeloma (MM). Immunohistochemical analyses revealed that HSF1 was overexpressed in half of the investigated MM samples, including virtually all cases with extramedullary manifestations or anaplastic morphology. HSF1 function was inhibited either by siRNA-mediated knockdown or pharmacologically through treatment with triptolide. Both approaches caused depletion of HSF1, lowered the constitutively high expression of a multitude of protective HSPs (such as HSP90, HSP70, HSP40 and HSP27), induced apoptosis in human MM cells in vitro, and strongly reduced MM tumour growth in vivo. Furthermore, we observed that treatment-induced upregulation of HSPs after proteasome or HSP90 inhibition was critically dependent on HSF1. Importantly, the apoptotic effects of the HSP90 inhibitor NVP-AUY922 or the proteasome inhibitor bortezomib were strongly enhanced in combination with triptolide, suggesting a salvage role of HSF1-dependent HSP induction in response to drug treatment. Collectively, our data indicate that inhibition of HSF1 affects multiple protective HSPs and might therefore represent a therapeutic strategy - in particular in combination with proteasome or HSP90 inhibitors.
Collapse
Affiliation(s)
- Tanja Heimberger
- Department of Internal Medicine II, Comprehensive Cancer Centre Mainfranken, University Hospital of Würzburg, Würzburg, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Mimoto T, Morimoto N, Miyazaki K, Kurata T, Sato K, Ikeda Y, Abe K. Expression of heat shock transcription factor 1 and its downstream target protein T-cell death associated gene 51 in the spinal cord of a mouse model of amyotrophic lateral sclerosis. Brain Res 2012; 1488:123-31. [DOI: 10.1016/j.brainres.2012.10.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Revised: 09/15/2012] [Accepted: 10/04/2012] [Indexed: 11/29/2022]
|
50
|
Dai B, Gong A, Jing Z, Aldape KD, Kang SH, Sawaya R, Huang S. Forkhead box M1 is regulated by heat shock factor 1 and promotes glioma cells survival under heat shock stress. J Biol Chem 2012. [PMID: 23192351 DOI: 10.1074/jbc.m112.379362] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The forkhead box M1 (FoxM1) is a key transcription factor regulating multiple aspects of cell biology. Prior studies have shown that FoxM1 is overexpressed in a variety of human tumors, including brain tumor, and plays a critical role in cancer development and progression. In this study we found that FoxM1 was up-regulated by heat shock factor 1 (HSF1) under heat shock stress condition in multiple cell lines. Knockdown of HSF1 with HSF1 siRNA or inhibition of HSF1 with a HSF1 inhibitor abrogated heat shock-induced expression of FoxM1. Genetic deletion of HSF1 in mouse embryo fibroblast cells also abolished heat shock stress-induced FoxM1 expression. Moreover, we showed that HSF1 directly bound to FoxM1 promoter and increased FoxM1 promoter activity. Furthermore, we demonstrated that FoxM1 was required for the G(2)-M phase progression through regulating Cdc2, Cdc20, and Cdc25B under a mild heat shock stress but enhanced cell survival under lethal heat shock stress condition. Finally, in human glioblastoma specimens, FoxM1 overexpression correlated with elevated HSF1 expression. Our results indicate that FoxM1 is regulated by HSF1 and is critical for HSF1-mediated heat shock response. We demonstrated a novel mechanism of stress resistance controlled by HSF1 and a new HSF-FoxM1 connection that mediates cellular thermotolerance.
Collapse
Affiliation(s)
- Bingbing Dai
- Department of Neurosurgery, The University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA
| | | | | | | | | | | | | |
Collapse
|