1
|
Gheorghe SR, Crăciun AM, Ilyés T, Tisa IB, Sur L, Lupan I, Samasca G, Silaghi CN. Converging Mechanisms of Vascular and Cartilaginous Calcification. BIOLOGY 2024; 13:565. [PMID: 39194503 DOI: 10.3390/biology13080565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 07/19/2024] [Accepted: 07/24/2024] [Indexed: 08/29/2024]
Abstract
Physiological calcification occurs in bones and epiphyseal cartilage as they grow, whereas ectopic calcification occurs in blood vessels, cartilage, and soft tissues. Although it was formerly thought to be a passive and degenerative process associated with aging, ectopic calcification has been identified as an active cell-mediated process resembling osteogenesis, and an increasing number of studies have provided evidence for this paradigm shift. A significant association between vascular calcification and cardiovascular risk has been demonstrated by various studies, which have shown that arterial calcification has predictive value for future coronary events. With respect to cartilaginous calcification, calcium phosphate or hydroxyapatite crystals can form asymptomatic deposits in joints or periarticular tissues, contributing to the pathophysiology of osteoarthritis, rheumatoid arthritis, ankylosing spondylitis, tendinitis, and bursitis. The risk factors and sequence of events that initiate ectopic calcification, as well as the mechanisms that prevent the development of this pathology, are still topics of debate. Consequently, in this review, we focus on the nexus of the mechanisms underlying vascular and cartilaginous calcifications, trying to circumscribe the similarities and disparities between them to provide more clarity in this regard.
Collapse
Affiliation(s)
- Simona R Gheorghe
- Department of Medical Biochemistry, Iuliu Hatieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania
| | - Alexandra M Crăciun
- Department of Medical Biochemistry, Iuliu Hatieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania
| | - Tamás Ilyés
- Department of Medical Biochemistry, Iuliu Hatieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania
| | - Ioana Badiu Tisa
- Department of Pediatrics III, Iuliu Hatieganu University of Medicine and Pharmacy, 400217 Cluj-Napoca, Romania
| | - Lucia Sur
- Department of Pediatrics I, Iuliu Hatieganu University of Medicine and Pharmacy, 400370 Cluj-Napoca, Romania
| | - Iulia Lupan
- Department of Molecular Biology, Babes-Bolyai University, 400084 Cluj-Napoca, Romania
| | - Gabriel Samasca
- Department of Immunology, Iuliu Hatieganu University of Medicine and Pharmacy, 400162 Cluj-Napoca, Romania
| | - Ciprian N Silaghi
- Department of Medical Biochemistry, Iuliu Hatieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania
| |
Collapse
|
2
|
Abstract
During the process of endochondral bone formation, chondrocytes and osteoblasts mineralize their extracellular matrix (ECM) by promoting the synthesis of hydroxyapatite (HA) seed crystals in the sheltered interior of membrane-limited matrix vesicles (MVs). Several lipid and proteins present in the membrane of the MVs mediate the interactions of MVs with the ECM and regulate the initial mineral deposition and posterior propagation. Among the proteins of MV membranes, ion transporters control the availability of phosphate and calcium needed for initial HA deposition. Phosphatases (orphan phosphatase 1, ectonucleotide pyrophosphatase/phosphodiesterase 1 and tissue-nonspecific alkaline phosphatase) play a crucial role in controlling the inorganic pyrophosphate/inorganic phosphate ratio that allows MV-mediated initiation of mineralization. The lipidic microenvironment can help in the nucleation process of first crystals and also plays a crucial physiological role in the function of MV-associated enzymes and transporters (type III sodium-dependent phosphate transporters, annexins and Na+/K+ ATPase). The whole process is mediated and regulated by the action of several molecules and steps, which make the process complex and highly regulated. Liposomes and proteoliposomes, as models of biological membranes, facilitate the understanding of lipid-protein interactions with emphasis on the properties of physicochemical and biochemical processes. In this review, we discuss the use of proteoliposomes as multiple protein carrier systems intended to mimic the various functions of MVs during the initiation and propagation of mineral growth in the course of biomineralization. We focus on studies applying biophysical tools to characterize the biomimetic models in order to gain an understanding of the importance of lipid-protein and lipid-lipid interfaces throughout the process.
Collapse
|
3
|
An S, Ling J, Gao Y, Xiao Y. Effects of varied ionic calcium and phosphate on the proliferation, osteogenic differentiation and mineralization of human periodontal ligament cells in vitro. J Periodontal Res 2011; 47:374-82. [PMID: 22136426 DOI: 10.1111/j.1600-0765.2011.01443.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND AND OBJECTIVE A number of bone-filling materials containing calcium (Ca(2+) ) and phosphate (P) ions have been used in the repair of periodontal bone defects; however, the effects that local release of Ca(2+) and P ions has on biological reactions are not fully understood. In this study, we investigated the effects of various levels of Ca(2+) and P ions on the proliferation, osteogenic differentiation and mineralization of human periodontal ligament cells (hPDLCs). MATERIAL AND METHODS The hPDLCs were obtained using an explant culture method. Defined concentrations and ratios of ionic Ca(2+) to inorganic P were added to standard culture and osteogenic induction media. The ability of hPDLCs to proliferate in these growth media was assayed using the Cell Counting Kit-8. Cell apoptosis was evaluated by the fluorescein isothiocyanate-annexin V/propidium iodide double-staining method. Osteogenic differentiation and mineralization were investigated by morphological observations, alkaline phosphatase activity and Alizarin Red S/von Kossa staining. The mRNA expression of osteogenic related markers was analysed using RT-PCR. RESULTS Within the ranges of Ca(2+) and P ion concentrations tested, we observed that increased concentrations of Ca(2+) and P ions enhanced cell proliferation and formation of mineralized matrix nodules, whereas alkaline phosphatase activity was reduced. The RT-PCR results showed that elevated concentrations of Ca(2+) and P ions led to a general increase of Runx2 mRNA expression and decreased alkaline phosphatase mRNA expression, but gave no clear trend on osteocalcin mRNA levels. CONCLUSION The concentrations and ratios of Ca(2+) and P ions could significantly influence proliferation, differentiation and mineralization of hPDLCs. Within the range of concentrations tested, we found that the combination of 9.0 mm Ca(2+) ions and 4.5 mm P ions were the optimal concentrations for proliferation, differentiation and mineralization in hPDLCs.
Collapse
Affiliation(s)
- S An
- Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | | | | | | |
Collapse
|
4
|
He SJ, Hou JF, Dai YY, Zhou ZL, Deng YF. N-acetyl-cysteine protects chicken growth plate chondrocytes from T-2 toxin-induced oxidative stress. J Appl Toxicol 2011; 32:980-5. [PMID: 21796648 DOI: 10.1002/jat.1697] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2011] [Revised: 04/18/2011] [Accepted: 04/18/2011] [Indexed: 11/08/2022]
Abstract
T-2 toxin is now considered to be related to bone malformation such as incomplete ossification, absence of bones and fused bones. In this study, primary cultures of chicken tibial growth plate chondrocytes (GPCs) were treated with various concentrations of T-2 toxin (5, 50, and 500 n m) in the absence and presence of N-acetyl-cysteine (NAC) to investigate the effects of the antioxidant NAC on T-2 toxin-induced toxicity. Our results showed that T-2 toxin markedly decreased cell viability, alkaline phosphatase activity and glutathione content (P < 0.05). In addition, T-2 toxin significantly increased reactive oxygen species levels and malondialdehyde in a dose-dependent manner. However, the T-2 toxin-induced cytotoxicity was reversed, in part, by the antioxidant NAC (P < 0.05). These results suggest that T-2 toxin inhibits the proliferation and differentiation of GPCs in vitro by altering cellular homeostasis and NAC can protect GPCs against T-2 toxin cytotoxicity by reducing the T-2 toxin-induced oxidative stress.
Collapse
Affiliation(s)
- Shao-jun He
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | | | | | | | | |
Collapse
|
5
|
Bolean M, Simão AMS, Favarin BZ, Millán JL, Ciancaglini P. Thermodynamic properties and characterization of proteoliposomes rich in microdomains carrying alkaline phosphatase. Biophys Chem 2011; 158:111-8. [PMID: 21676530 DOI: 10.1016/j.bpc.2011.05.019] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2011] [Revised: 05/18/2011] [Accepted: 05/21/2011] [Indexed: 10/18/2022]
Abstract
Tissue-nonspecific alkaline phosphatase (TNAP) is associated to the plasma membrane via a GPI-anchor and plays a key role in the biomineralization process. In plasma membranes, most GPI-anchored proteins are associated with "lipid rafts", ordered microdomains enriched in sphingolipids, glycosphingolipids and cholesterol. In order to better understand the role of lipids present in rafts and their interactions with GPI-anchored proteins, the insertion of TNAP into different lipid raft models was studied using dipalmitoylphosphatidylcholine (DPPC), cholesterol (Chol), sphingomyelin (SM) and ganglioside (GM1). Thus, the membrane models studied were binary systems (9:1 molar ratio) containing DPPC:Chol, DPPC:SM and DPPC:GM1, ternary systems (8:1:1 molar ratio) containing DPPC:Chol:SM, DPPC:Chol:GM1 and DPPC:SM:GM1 and finally, a quaternary system (7:1:1:1 molar ratio) containing DPPC:Chol:SM:GM1. Calorimetry analysis of the liposomes and proteoliposomes indicate that lateral phase segregation could be noted only in the presence of cholesterol, with the formation of cholesterol-rich microdomains centered above Tc=41.5°C. The presence of GM1 and SM into DPPC-liposomes influenced mainly ΔH and Δt(1/2) values. The gradual increase in the complexity of the systems decreased the activity of the enzyme incorporated. The presence of the enzyme also fluidifies the systems, as seen by the intense reduction in ∆H values, but do not alter Tc values significantly. Therefore, the study of different microdomains and its biophysical characterization may contribute to the knowledge of the interactions between the lipids present in MVs and its interactions with TNAP.
Collapse
Affiliation(s)
- M Bolean
- Depto. Química, Ciências e Letras de Ribeirão Preto da Universidade de São Paulo (FFCLRP-USP), SP, Brazil
| | | | | | | | | |
Collapse
|
6
|
Teixeira CC, Xiang J, Roy R, Kudrashov V, Binderman I, Mayer-Kuckuk P, Boskey AL. Changes in matrix protein gene expression associated with mineralization in the differentiating chick limb-bud micromass culture system. J Cell Biochem 2011; 112:607-13. [PMID: 21268082 DOI: 10.1002/jcb.22951] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Chick limb-bud mesenchymal stem cells plated in high density culture in the presence of 4 mM inorganic phosphate and vitamin C differentiate and form a mineralizable matrix, resembling that of the chick growth plate. To further elucidate the mechanism that allows these cultures to form physiologic hydroxyapatite deposits, and how the process can be manipulated to gain insight into mineralization mechanisms, we compared gene expression in mineralizing (with 4 mM inorganic phosphate) and non-mineralizing cultures (containing only 1 mM inorganic phosphate) at the start of mineralization (day 11) and after mineralization reached a plateau (day 17) using a chick specific microarray. Based on replicate microarray experiments and K-cluster analysis, several genes associated with the mineralization process were identified, and their expression patterns confirmed throughout the culture period by quantitative RT-PCR. The functions of bone morphogenetic protein 1, BMP1, dentin matrix protein 1, DMP1, the sodium phosphate co-transporter, NaPi IIb, matrix metalloprotease 13. MMP-13, and alkaline phosphatase, along with matrix protein genes (type X collagen, bone sialoprotein, and osteopontin) usually associated with initiation of mineralization are discussed.
Collapse
|
7
|
Sugita A, Kawai S, Hayashibara T, Amano A, Ooshima T, Michigami T, Yoshikawa H, Yoneda T. Cellular ATP synthesis mediated by type III sodium-dependent phosphate transporter Pit-1 is critical to chondrogenesis. J Biol Chem 2011; 286:3094-103. [PMID: 21075853 PMCID: PMC3024802 DOI: 10.1074/jbc.m110.148403] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2010] [Revised: 10/13/2010] [Indexed: 12/13/2022] Open
Abstract
Disturbed endochondral ossification in X-linked hypophosphatemia indicates an involvement of P(i) in chondrogenesis. We studied the role of the sodium-dependent P(i) cotransporters (NPT), which are a widely recognized regulator of cellular P(i) homeostasis, and the downstream events in chondrogenesis using Hyp mice, the murine homolog of human X-linked hypophosphatemia. Hyp mice showed reduced apoptosis and mineralization in hypertrophic cartilage. Hyp chondrocytes in culture displayed decreased apoptosis and mineralization compared with WT chondrocytes, whereas glycosaminoglycan synthesis, an early event in chondrogenesis, was not altered. Expression of the type III NPT Pit-1 and P(i) uptake were diminished, and intracellular ATP levels were also reduced in parallel with decreased caspase-9 and caspase-3 activity in Hyp chondrocytes. The competitive NPT inhibitor phosphonoformic acid and ATP synthesis inhibitor 3-bromopyruvate disturbed endochondral ossification with reduced apoptosis in vivo and suppressed apoptosis and mineralization in conjunction with reduced P(i) uptake and ATP synthesis in WT chondrocytes. Overexpression of Pit-1 in Hyp chondrocytes reversed P(i) uptake and ATP synthesis and restored apoptosis and mineralization. Our results suggest that cellular ATP synthesis consequent to P(i) uptake via Pit-1 plays an important role in chondrocyte apoptosis and mineralization, and that chondrogenesis is ATP-dependent.
Collapse
Affiliation(s)
- Atsushi Sugita
- From the Departments of Biochemistry
- the Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | | | | | | | - Takashi Ooshima
- Pediatric Dentistry, Osaka University Graduate School of Dentistry, and
| | - Toshimi Michigami
- the Department of Bone and Mineral Research, Osaka Medical Center and Research Institute for Maternal and Child Health, Izumi, Osaka 594-1101, Japan and
| | - Hideki Yoshikawa
- the Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | | |
Collapse
|
8
|
Affiliation(s)
- Adele L Boskey
- Musculoskeletal Integrity Program, Hospital for Special Surgery, 535 East 70th Street, New York, New York 10021, USA.
| | | |
Collapse
|
9
|
Balcerzak M, Malinowska A, Thouverey C, Sekrecka A, Dadlez M, Buchet R, Pikula S. Proteome analysis of matrix vesicles isolated from femurs of chicken embryo. Proteomics 2008; 8:192-205. [PMID: 18095356 DOI: 10.1002/pmic.200700612] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Matrix vesicles (MVs) are extracellular organelles that initiate mineral formation, accumulating inorganic phosphate (P(i)) and calcium leading to the formation of hydroxyapatite (HA) crystals, the main mineral component of bones. MVs are produced during bone formation, as well as during the endochondral calcification of cartilage. MVs are released into the extracellular matrix from osseous cells such as osteoblasts and hypertrophic chondrocytes. In this report, using 1-D SDS-PAGE, in-gel tryptic digestion and an LC-MS-MS/MS protein identification protocol, we characterized the proteome of MVs isolated from chicken embryo (Gallus gallus) bones and cartilage. We identified 126 gene products, including proteins related to the extracellular matrix and ion transport, as well as enzymes, cytoskeletal, and regulatory proteins. Among the proteins recognized for the first time in MVs were aquaporin 1, annexin A1 (AnxA1), AnxA11, glycoprotein HT7, G(i) protein alpha2, and scavenger receptor type B. The pathways for targeting the identified proteins into MVs and their particular functions in the biomineralization process are discussed. Obtaining a knowledge of the functions and roles of these proteins during embryonic mineralization is a prerequisite for the overall understanding of the initial mineral formation mechanisms.
Collapse
Affiliation(s)
- Marcin Balcerzak
- Department of Biochemistry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur St., Warsaw, Poland
| | | | | | | | | | | | | |
Collapse
|
10
|
van Donkelaar CC, Janssen XJA, de Jong AM. Distinct developmental changes in the distribution of calcium, phosphorus and sulphur during fetal growth-plate development. J Anat 2007; 210:186-94. [PMID: 17261139 PMCID: PMC2100269 DOI: 10.1111/j.1469-7580.2006.00680.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Gradients in the concentrations of free phosphate (Pi) and calcium (Ca) exist in fully developed growth zones of long bones and ribs, with the highest concentrations closest to the site of mineralization. As high concentrations of Pi and Ca induce chondrocyte maturation and apoptosis, it has been hypothesized that Ca and Pi drive chondrocyte differentiation in growth plates. This study aimed to determine whether gradients in the important spectral elements phosphorus (P), Ca and sulphur (S) are already present in early stages of development, or whether they gradually develop with maturation of the growth zone. We quantified the concentration profiles of Ca, P, S, chloride and potassium at four different stages of early development of the distal growth plates of the porcine femurs, using particle-induced X-ray emission and forward- and backward-scattering spectrometry with a nuclear microprobe. A Ca concentration gradient towards the mineralized area and a stepwise increase in S was found to develop slowly with tissue maturation. The increase in S co-localizes with the onset of proliferation. A P gradient was not detected in the earliest developmental stages. High Ca levels, which may induce chondrocyte maturation, are present near the mineralization front. As total P concentrations do not correspond with former free Pi measurements, we hypothesize that the increase of free Pi towards the bone-forming site results from enzymatic cleavage of bound phosphate.
Collapse
Affiliation(s)
- C C van Donkelaar
- Department of Biomedical Engineering, Eindhoven University of Technology, The Netherlands.
| | | | | |
Collapse
|
11
|
Stewart AJ, Roberts SJ, Seawright E, Davey MG, Fleming RH, Farquharson C. The presence of PHOSPHO1 in matrix vesicles and its developmental expression prior to skeletal mineralization. Bone 2006; 39:1000-1007. [PMID: 16837257 DOI: 10.1016/j.bone.2006.05.014] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2006] [Revised: 04/12/2006] [Accepted: 05/15/2006] [Indexed: 10/24/2022]
Abstract
PHOSPHO1 is a phosphoethanolamine/phosphocholine phosphatase that has previously been implicated in generating inorganic phosphate (P(i)) for matrix mineralization. In this study, we have investigated PHOSPHO1 mRNA expression during embryonic development in the chick. Whole-mount in situ hybridization indicated that PHOSPHO1 expression occurred prior to E6.5 and was initially restricted to the bone collar within the mid-shaft of the diaphysis of long bones but by E11.5 expression was observed over the entire length of the diaphysis. Alcian blue/alizarin red staining revealed that PHOSPHO1 expression seen in the primary regions of ossification preceded the deposition of mineral, suggesting that it is involved in the initial events of mineral formation. We isolated MVs from growth plate chondrocytes and confirmed the presence of high levels of PHOSPHO1 by immunoblotting. Expression of PHOSPHO1, like TNAP activity, was found to be up-regulated in MVs isolated from chondrocytes induced to differentiate by the addition of ascorbic acid. This suggests that both enzymes may be regulated by similar mechanisms. These studies provide for the first time direct evidence that PHOSPHO1 is present in MVs, and its developmental expression pattern is consistent with a role in the early stages of matrix mineralization.
Collapse
Affiliation(s)
- Alan J Stewart
- Roslin Institute, Roslin, Midlothian, EH25 9PS, United Kingdom
| | - Scott J Roberts
- Roslin Institute, Roslin, Midlothian, EH25 9PS, United Kingdom
| | | | - Megan G Davey
- Roslin Institute, Roslin, Midlothian, EH25 9PS, United Kingdom
| | | | | |
Collapse
|
12
|
Wu S, Yoshiko Y, De Luca F. Stanniocalcin 1 acts as a paracrine regulator of growth plate chondrogenesis. J Biol Chem 2005; 281:5120-7. [PMID: 16377640 DOI: 10.1074/jbc.m506667200] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
During embryogenesis, the expression of mammalian stanniocalcin (STC1) in the appendicular skeleton suggests its involvement in the regulation of longitudinal bone growth. Such a role is further supported by the presence of dwarfism in mice overexpressing STC1. Yet, the STC 1 inhibitory effect on growth may be related to both postnatal metabolic abnormalities and prenatal defective bone formation. In our study, we used an organ culture system to evaluate the effects of STC on growth plate chondrogenesis, which is the primary determinant of longitudinal bone growth. Fetal rat metatarsal bones were cultured in the presence of recombinant human STC (rhSTC). After 3 days, rhSTC suppressed metatarsal growth, growth plate chondrocyte proliferation and hypertrophy/differentiation, and extracellular matrix synthesis. In addition, rhSTC increased the number of apoptotic chondrocytes in the growth plate. In cultured chondrocytes, rhSTC increased phosphate uptake, reduced chondrocyte proliferation and matrix synthesis, and induced apoptosis. All these effects were reversed by culturing chondrocytes with rhSTC and phosphonoformic acid, an inhibitor of phosphate transport. The rhSTC-mediated inhibition of metatarsal growth and growth plate chondrocyte proliferation and hypertrophy/differentiation was abolished by culturing metatarsals with rhSTC and phosphonoformic acid. Taken together, our findings indicate that STC1 inhibits longitudinal bone growth directly at the growth plate. Such growth inhibition, likely mediated by an increased chondrocyte phosphate uptake, results from suppressed chondrocyte proliferation, hypertrophy/differentiation, and matrix synthesis and by increased apoptosis. Last, the expression of both STC1 and its binding site in the growth plate would support an autocrine/paracrine role for this growth factor in the regulation of growth plate chondrogenesis.
Collapse
Affiliation(s)
- Shufang Wu
- Section of Endocrinology and Diabetes, St. Christopher's Hospital for Children, Department of Pediatrics, Drexel University College of Medicine, Philadelphia, Pennsylvania 19134, USA
| | | | | |
Collapse
|
13
|
Abstract
Vascular calcification is prevalent in aging as well as a number of pathological conditions, and it is now recognized as a strong predictor of cardiovascular events in the general population as well as diabetic and end-stage renal disease patients. Vascular calcification is a highly regulated process involving inductive and inhibitory mechanisms. This article focuses on two molecules, phosphate and osteopontin, that have been implicated in the induction or inhibition of vascular calcification, respectively. Elevated phosphate is of interest because hyperphosphatemia is recognized as a major nonconventional risk factor for cardiovascular disease mortality in end-stage renal disease patients. Studies to date suggest that elevated phosphate stimulates smooth muscle cell phenotypic transition and mineralization via the activity of a sodium-dependent phosphate cotransporter. Osteopontin, however, appears to block vascular calcification most likely by preventing calcium phosphate crystal growth and inducing cellular mineral resorption.
Collapse
Affiliation(s)
- Cecilia M Giachelli
- Bioengineering Department, University of Washington, Seattle, Wash 98195, USA.
| | | | | | | | | |
Collapse
|
14
|
Magne D, Julien M, Vinatier C, Merhi-Soussi F, Weiss P, Guicheux J. Cartilage formation in growth plate and arteries: from physiology to pathology. Bioessays 2005; 27:708-16. [PMID: 15954094 DOI: 10.1002/bies.20254] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Vascular calcifications are the consequence of several pathological conditions such as atherosclerosis, diabetes, hypercholesterolemia and chronic renal insufficiency. They are associated with risks of amputation, ischemic heart disease, stroke and increased mortality. A growing body of evidence indicates that vascular smooth muscle cells (VSMCs) undergo chondrogenic commitment eventually leading to vascular calcification, by mechanisms similar to those governing ossification in the cartilage growth plate. Our knowledge of the formation of cartilage growth plate can therefore help us to understand why and how arteries calcify and, consequently, develop new therapeutic strategies. Reciprocally, thorough consideration of the events leading to ectopic chondrocyte differentiation appears crucial to further increase our understanding of growth plate formation. In this context, we will review the effects of known or suspected factors that promote chondrogenic differentiation in growth plate and arteries.
Collapse
Affiliation(s)
- D Magne
- INSERM EM 99-03, Research Center on Osteoarticular and Dental Tissue Engineering, Nantes, France
| | | | | | | | | | | |
Collapse
|
15
|
Cecil DL, Rose DM, Terkeltaub R, Liu-Bryan R. Role of interleukin-8 in PiT-1 expression and CXCR1-mediated inorganic phosphate uptake in chondrocytes. ACTA ACUST UNITED AC 2005; 52:144-54. [PMID: 15641067 DOI: 10.1002/art.20748] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVE The proinflammatory chemokine interleukin-8 (IL-8) induces chondrocyte hypertrophy. Moreover, chondrocyte hypertrophy develops in situ in osteoarthritic (OA) articular cartilage and promotes dysregulated matrix repair and calcification. Growth plate chondrocyte hypertrophy is associated with expression of the type III sodium-dependent inorganic phosphate (Pi) cotransporter phosphate transporter/retrovirus receptor 1 (PiT-1). This study was undertaken to test the hypothesis that IL-8 promotes chondrocyte hypertrophy by modulating chondrocyte PiT-1 expression and sodium-dependent Pi uptake, and to assess differential roles in this activity. METHODS The selective IL-8 receptor CXCR1 and the promiscuous chemokine receptor CXCR2 were used. Human knee OA cartilage, cultured normal bovine knee chondrocytes, and immortalized human articular chondrocytic CH-8 cells were transfected with CXCR1/CXCR2 chimeric receptors in which the 40-amino acid C-terminal cytosolic tail domains were swapped and site mutants of a CXCR1-specific region were generated. RESULTS Up-regulated PiT-1 expression was detected in OA cartilage. IL-8, but not IL-1 or the CXCR2 ligand growth-related oncogene alpha, induced PiT-1 expression and increased sodium-dependent Pi uptake by >40% in chondrocytes. The sodium/phosphate cotransport inhibitor phosphonoformic acid blocked IL-8-induced chondrocyte hypertrophic differentiation. Signaling mediated by kinase Pyk-2 was essential for IL-8 induction of PitT-1 expression and Pi uptake. Signaling through the TSYT(346-349) region of the CXCR1 cytosolic tail, a region divergent from the CXCR2 cytosolic tail, was essential for IL-8 to induce Pi uptake. CONCLUSION Our results link low-grade IL-8-mediated cartilaginous inflammation in OA to altered chondrocyte differentiation and disease progression through PiT-1 expression and sodium-dependent Pi uptake mediated by CXCR1 signaling.
Collapse
Affiliation(s)
- Denise L Cecil
- Veterans Affairs Medical Center, University of California-San Diego, 3350 La Jolla Village Drive, San Diego, CA 92161, USA.
| | | | | | | |
Collapse
|
16
|
Abstract
The spatial and temporal coordination of the many events required for osteogenic cells to create a mineralized matrix are only partially understood. The complexity of this process, and the nature of the final product, demand that these cells have mechanisms to carefully monitor events in the extracellular environment and have the ability to respond through cellular and molecular changes. The generation of inorganic phosphate during the process of differentiation may be one such signal. In addition to the requirement of inorganic phosphate as a component of hydroxyapatite mineral, Ca(10)(PO(4))(6)(OH)(2), a number of studies have also suggested it is required in the events preceding mineralization. However, contrasting results, physiological relevance, and the lack of a clear mechanism(s) have created some debate as to the significance of elevated phosphate in the differentiation process. More recently, a number of studies have begun to shed light on possible cellular and molecular consequences of elevated intracellular inorganic phosphate. These results suggest a model in which the generation of inorganic phosphate during osteoblast differentiation may in and of itself represent a signal capable of facilitating the temporal coordination of expression and regulation of multiple factors necessary for mineralization. The regulation of protein function and gene expression by elevated inorganic phosphate during osteoblast differentiation may represent a mechanism by which mineralizing cells monitor and respond to the changing extracellular environment.
Collapse
Affiliation(s)
- George R Beck
- National Cancer Institute at Frederick, Center for Cancer Research, Basic Research Laboratory, Frederick, Maryland 21702, USA.
| |
Collapse
|
17
|
Magne D, Bluteau G, Faucheux C, Palmer G, Vignes-Colombeix C, Pilet P, Rouillon T, Caverzasio J, Weiss P, Daculsi G, Guicheux J. Phosphate is a specific signal for ATDC5 chondrocyte maturation and apoptosis-associated mineralization: possible implication of apoptosis in the regulation of endochondral ossification. J Bone Miner Res 2003; 18:1430-42. [PMID: 12929932 PMCID: PMC2071932 DOI: 10.1359/jbmr.2003.18.8.1430] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
UNLABELLED Involvement of Pi and Ca in chondrocyte maturation was studied because their levels increase in cartilage growth plate. In vitro results showed that Pi increases type X collagen expression, and together with Ca, induces apoptosis-associated mineralization, which is similar to that analyzed in vivo, thus suggesting a role for both ions and apoptosis during endochondral ossification. INTRODUCTION During endochondral ossification, regulation of chondrocyte maturation governs the growth of the cartilage plate. The role of inorganic phosphate (Pi), whose levels strongly increase in the hypertrophic zone of the growth plate both in intra- and extracellular compartments, on chondrocyte maturation and mineralization of the extracellular matrix has not yet been deciphered. MATERIALS AND METHODS The murine chondrogenic cell line ATDC5 was used. Various Pi and calcium concentrations were obtained by adding NaH2PO4/Na2HPO4 and CaCl2, respectively. Mineralization was investigated by measuring calcium content in cell layer by atomic absorption spectroscopy and by analyzing crystals with transmission electron microscopy and Fourier transform infrared microspectroscopy. Cell differentiation was investigated at the mRNA level (reverse transcriptase-polymerase chain reaction [RT-PCR] analysis). Cell viability was assessed by methyl tetrazolium salt (MTS) assay and staining with cell tracker green (CTG) and ethidium homodimer-(EthD-1). Apoptosis was evidenced by DNA fragmentation and caspase activation observed in confocal microscopy, as well as Bcl-2/Bax mRNA ratio (RT-PCR analysis). RESULTS We showed that Pi increases expression of the hypertrophic marker, type X collagen. When calcium concentration is slightly increased (like in cartilage growth plate), Pi also induces matrix mineralization that seems identical to that observed in murine growth plate cartilage and stimulates apoptosis of differentiated ATDC5 cells, with a decrease in Bcl-2/Bax mRNA ratio, DNA fragmentation, characteristic morphological features, and caspase-3 activation. In addition, the use of a competitive inhibitor of phosphate transport showed that these effects are likely dependent on Pi entry into cells through phosphate transporters. Finally, inhibition of apoptosis with ZVAD-fmk reduces pi-induced mineralization. CONCLUSIONS These findings suggest that Pi regulates chondrocyte maturation and apoptosis-associated mineralization, highlighting a possible role for Pi in the control of skeletal development.
Collapse
Affiliation(s)
- David Magne
- Matériaux d'intérêt biologique
INSERM : EPI9903Université de NantesFaculté de chirurgie dentaire
1 place Alexis Ricordeau BP84215
44042 Nantes,FR
| | - Gilles Bluteau
- Matériaux d'intérêt biologique
INSERM : EPI9903Université de NantesFaculté de chirurgie dentaire
1 place Alexis Ricordeau BP84215
44042 Nantes,FR
| | - Corinne Faucheux
- Matériaux d'intérêt biologique
INSERM : EPI9903Université de NantesFaculté de chirurgie dentaire
1 place Alexis Ricordeau BP84215
44042 Nantes,FR
| | - Gaby Palmer
- Division of Rheumatology
University HospitalGeneva,CH
| | - Caroline Vignes-Colombeix
- IFR thérapeutique de Nantes
INSERM : IFR26 CHU NantesUniversité de NantesFaculte de Medecine BORDEAUX
1, Rue Gaston Veil
44035 NANTES CEDEX 1,FR
| | - Paul Pilet
- Centre de microscopie électronique
Nantes,FR
| | - Thierry Rouillon
- Matériaux d'intérêt biologique
INSERM : EPI9903Université de NantesFaculté de chirurgie dentaire
1 place Alexis Ricordeau BP84215
44042 Nantes,FR
| | | | - Pierre Weiss
- Matériaux d'intérêt biologique
INSERM : EPI9903Université de NantesFaculté de chirurgie dentaire
1 place Alexis Ricordeau BP84215
44042 Nantes,FR
| | - Guy Daculsi
- Matériaux d'intérêt biologique
INSERM : EPI9903Université de NantesFaculté de chirurgie dentaire
1 place Alexis Ricordeau BP84215
44042 Nantes,FR
| | - Jérôme Guicheux
- Matériaux d'intérêt biologique
INSERM : EPI9903Université de NantesFaculté de chirurgie dentaire
1 place Alexis Ricordeau BP84215
44042 Nantes,FR
- * Correspondence should be adressed to: Jérôme Guicheux .
| |
Collapse
|
18
|
Wu LNY, Sauer GR, Genge BR, Valhmu WB, Wuthier RE. Effects of analogues of inorganic phosphate and sodium ion on mineralization of matrix vesicles isolated from growth plate cartilage of normal rapidly growing chickens. J Inorg Biochem 2003; 94:221-35. [PMID: 12628702 DOI: 10.1016/s0162-0134(03)00003-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The mechanism of matrix vesicle (MV) mineralization was studied using MVs isolated from normal growth plate tissue, as well as several putative intermediates in the MV mineralization pathway--amorphous calcium phosphate (ACP), calcium phosphate phosphatidylserine complex (CPLX) and hydroxyapatite (HAP). Radionuclide uptake and increase in turbidity were used to monitor mineral formation during incubation in synthetic cartilage lymph (SCL). Inhibitors of phosphate (Pi) metabolism, as well as replacing Na(+) with various cations, were used to study MV Pi transport, which had been thought to be Na(+)-dependent. MVs induced rapid mineralization approximately 3 h after addition to SCL; CPLX and HAP caused almost immediate induction; ACP required approximately 1 h. Phosphonoformate (PFA), a Pi analog, potently delayed the onset and reduced the rate of mineral formation of MV and the intermediates with IC(50)'s of 3-6 microM and approximately 10 microM, respectively. PFA:Pi molar ratios required to reduce the rate of rapid mineralization by 50% were approximately 1:30 for ACP, approximately 1:20 for HAP, approximately 1:3.3 for CPLX, and approximately 1:2.0 for MVs. MV mineralization was not found to be strictly Na(+)-dependent: substitution of Li(+) or K(+) for Na(+) had minimal effect; while N-methyl D-glucamine (NMG(+)) was totally inhibitory, choline(+) was clearly stimulatory. Na(+) substitutions had minimal effect on HAP- and CPLX-seeded mineral formation. However with ACP, NMG(+) totally blocked and choline(+) stimulated, just as they did MV mineralization. Thus, kinetic analyses indicate that ACP is a key intermediate, nevertheless, formation of CPLX appears to be the rate-limiting factor in MV mineralization.
Collapse
Affiliation(s)
- Licia N Y Wu
- Department of Chemistry and Biochemistry, University of South Carolina, 329 Graduate Science Research Center, 631 Sumter, Columbia, SC 29208, USA
| | | | | | | | | |
Collapse
|