1
|
Ou-Yang H, Yang SH, Chen W, Yang SH, Cidem A, Sung LY, Chen CM. Cruciform DNA Structures Act as Legible Templates for Accelerating Homologous Recombination in Transgenic Animals. Int J Mol Sci 2022; 23:3973. [PMID: 35409332 PMCID: PMC9000021 DOI: 10.3390/ijms23073973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 03/27/2022] [Accepted: 03/29/2022] [Indexed: 11/16/2022] Open
Abstract
Inverted repeat (IR) DNA sequences compose cruciform structures. Some genetic disorders are the result of genome inversion or translocation by cruciform DNA structures. The present study examined whether exogenous DNA integration into the chromosomes of transgenic animals was related to cruciform DNA structures. Large imperfect cruciform structures were frequently predicted around predestinated transgene integration sites in host genomes of microinjection-based transgenic (Tg) animals (αLA-LPH Tg goat, Akr1A1eGFP/eGFP Tg mouse, and NFκB-Luc Tg mouse) or CRISPR/Cas9 gene-editing (GE) animals (αLA-AP1 GE mouse). Transgene cassettes were imperfectly matched with their predestinated sequences. According to the analyzed data, we proposed a putative model in which the flexible cruciform DNA structures acted as a legible template for DNA integration into linear DNAs or double-strand break (DSB) alleles. To demonstrate this model, artificial inverted repeat knock-in (KI) reporter plasmids were created to analyze the KI rate using the CRISPR/Cas9 system in NIH3T3 cells. Notably, the KI rate of the 5′ homologous arm inverted repeat donor plasmid (5′IR) with the ROSA gRNA group (31.5%) was significantly higher than the knock-in reporter donor plasmid (KIR) with the ROSA gRNA group (21.3%, p < 0.05). However, the KI rate of the 3′ inverted terminal repeat/inverted repeat donor plasmid (3′ITRIR) group was not different from the KIR group (23.0% vs. 22.0%). These results demonstrated that the legibility of the sequence with the cruciform DNA existing in the transgene promoted homologous recombination (HR) with a higher KI rate. Our findings suggest that flexible cruciform DNAs folded by IR sequences improve the legibility and accelerate DNA 3′-overhang integration into the host genome via homologous recombination machinery.
Collapse
Affiliation(s)
- Huan Ou-Yang
- Program in Translational Medicine, Department of Life Sciences, National Chung Hsing University, Taichung 402, Taiwan; (H.O.-Y.); (S.-H.Y.); (A.C.)
- Institute of Biotechnology, College of Bioresources and Agriculture, National Taiwan University, Taipei 106, Taiwan
| | - Shiao-Hsuan Yang
- Program in Translational Medicine, Department of Life Sciences, National Chung Hsing University, Taichung 402, Taiwan; (H.O.-Y.); (S.-H.Y.); (A.C.)
- Reproductive Medicine Center, Department of Gynecology, Changhua Christian Hospital, Changhua 515, Taiwan
| | - Wei Chen
- Division of Pulmonary and Critical Care Medicine, Chia-Yi Christian Hospital, Chiayi 600, Taiwan;
| | - Shang-Hsun Yang
- Department of Physiology, National Cheng Kung University, Tainan 701, Taiwan;
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Abdulkadir Cidem
- Program in Translational Medicine, Department of Life Sciences, National Chung Hsing University, Taichung 402, Taiwan; (H.O.-Y.); (S.-H.Y.); (A.C.)
- Department of Molecular Biology and Genetics, Erzurum Technical University, Erzurum 25250, Turkey
| | - Li-Ying Sung
- Institute of Biotechnology, College of Bioresources and Agriculture, National Taiwan University, Taipei 106, Taiwan
| | - Chuan-Mu Chen
- Program in Translational Medicine, Department of Life Sciences, National Chung Hsing University, Taichung 402, Taiwan; (H.O.-Y.); (S.-H.Y.); (A.C.)
- The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung 402, Taiwan
- Rong-Hsing Translational Medicine Research Center, Taichung Veterans General Hospital, Taichung 407, Taiwan
| |
Collapse
|
2
|
Fleming AM, Zhu J, Jara-Espejo M, Burrows CJ. Cruciform DNA Sequences in Gene Promoters Can Impact Transcription upon Oxidative Modification of 2'-Deoxyguanosine. Biochemistry 2020; 59:2616-2626. [PMID: 32567845 DOI: 10.1021/acs.biochem.0c00387] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Sequences of DNA typically adopt B-form duplexes in genomes, although noncanonical structures such as G-quadruplexes, i-motifs, Z-DNA, and cruciform structures can occur. A challenge is to determine the functions of these various structures in cellular processes. We and others have hypothesized that G-rich G-quadruplex-forming sequences in human genome promoters serve to sense oxidative damage generated during oxidative stress impacting gene regulation. Herein, chemical tools and a cell-based assay were used to study the oxidation of guanine to 8-oxo-7,8-dihydroguanine (OG) in the context of a cruciform-forming sequence in a gene promoter to determine the impact on transcription. We found that OG in the nontemplate strand in the loop of a cruciform-forming sequence could induce gene expression; conversely when OG was in the same sequence on the template strand, gene expression was inhibited. A model for the transcriptional changes observed is proposed in which OG focuses the DNA repair process on the promoter to impact expression. Our cellular and biophysical studies and literature sources support the idea that removal of OG from duplex DNA by OGG1 yields an abasic site (AP) that triggers a structural shift to the cruciform fold. The AP-bearing cruciform structure is presented to APE1, which functions as a conduit between DNA repair and gene regulation. The significance is enhanced by a bioinformatic study of all human gene promoters and transcription termination sites for inverted repeats (IRs). Comparison of the two regions showed that promoters have stable and G-rich IRs at a low frequency and termination sites have many AT-rich IRs with low stability.
Collapse
Affiliation(s)
- Aaron M Fleming
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112-0850, United States
| | - Judy Zhu
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112-0850, United States
| | - Manuel Jara-Espejo
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112-0850, United States.,Department of Morphology, Piracicaba Dental School, University of Campinas-UNICAMP, Av. Limeira 901, Piracicaba, CEP 13414-018 Sao Paulo, Brazil
| | - Cynthia J Burrows
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112-0850, United States
| |
Collapse
|
3
|
Sluchanko NN, Bustos DM. Intrinsic disorder associated with 14-3-3 proteins and their partners. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2019; 166:19-61. [PMID: 31521232 DOI: 10.1016/bs.pmbts.2019.03.007] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Protein-protein interactions (PPIs) mediate a variety of cellular processes and form complex networks, where connectivity is achieved owing to the "hub" proteins whose interaction with multiple protein partners is facilitated by the intrinsically disordered protein regions (IDPRs) and posttranslational modifications (PTMs). Universal regulatory proteins of the eukaryotic 14-3-3 family nicely exemplify these concepts and are the focus of this chapter. The extremely wide interactome of 14-3-3 proteins is characterized by high levels of intrinsic disorder (ID) enabling protein phosphorylation and consequent specific binding to the well-structured 14-3-3 dimers, one of the first phosphoserine/phosphothreonine binding modules discovered. However, high ID enrichment also challenges structural studies, thereby limiting the progress in the development of small molecule modulators of the key 14-3-3 PPIs of increased medical importance. Besides the well-known structural flexibility of their variable C-terminal tails, recent studies revealed the strong and conserved ID propensity hidden in the N-terminal segment of 14-3-3 proteins (~40 residues), normally forming the α-helical dimerization region, that may have a potential role for the dimer/monomer dynamics and recently reported moonlighting chaperone-like activity of these proteins. We review the role of ID in the 14-3-3 structure, their interactome, and also in selected 14-3-3 complexes. In addition, we discuss approaches that, in the future, may help minimize the disproportion between the large amount of known 14-3-3 partners and the small number of 14-3-3 complexes characterized with atomic precision, to unleash the whole potential of 14-3-3 PPIs as drug targets.
Collapse
Affiliation(s)
- Nikolai N Sluchanko
- A.N. Bach Institute of Biochemistry, Federal Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russian Federation; Department of Biophysics, Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow, Russian Federation.
| | - Diego M Bustos
- Instituto de Histología y Embriología (IHEM) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), CC56, Universidad Nacional de Cuyo (UNCuyo), Mendoza, Argentina; Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo (UNCuyo), Mendoza, Argentina
| |
Collapse
|
4
|
Bartas M, Bažantová P, Brázda V, Liao JC, Červeň J, Pečinka P. Identification of Distinct Amino Acid Composition of Human Cruciform Binding Proteins. Mol Biol 2019. [DOI: 10.1134/s0026893319010023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
5
|
Bajpai U, Sharma R, Kausar T, Dattagupta S, Chattopadhayay T, Ralhan R. Clinical Significance of 14-3-3 Zeta in Human Esophageal Cancer. Int J Biol Markers 2018; 23:231-7. [DOI: 10.1177/172460080802300406] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We recently found 14-3-3 zeta to be overexpressed in esophageal squamous cell carcinomas (ESCCs) by differential display. In the present study we determined the clinical significance of 14-3-3 zeta in esophageal tumorigenesis. Immunohistochemical analysis was carried out in 61 ESCCs, 33 dysplasia samples, 14 hyperplasia samples and 7 matched histologically normal esophageal tissues and correlated with clinicopathological parameters. Cytoplasmic expression of 14-3-3 zeta protein was observed in 95% of ESCCs; 63% of tumors also showed nuclear localization. All hyperplastic and dysplastic tissues distant from ESCCs as well as dysplastic endoscopic biopsies showed cytoplasmic immunopositivity for 14-3-3 zeta, while nuclear localization was observed in 58% of dysplasia and 36% of hyperplasia samples. Matched distant histologically normal epithelia either showed basal cytoplasmic expression of 14-3-3 zeta or no detectable nuclear expression of the protein. Interestingly, immunopositivity observed in normal esophageal tissues and early hyperplasia was confined to cytoplasm only, though significant nuclear expression was detected in dysplasia and ESCC. Immunoblotting and RT-PCR analyses further confirmed 14-3-3 zeta expression in dysplasia and ESCC. To our knowledge, this is the first report demonstrating overexpression of 14-3-3 zeta in esophageal hyperplasia, dysplasia and squamous cell carcinoma, suggesting that alteration in its expression occurs in early stages and is associated with esophageal tumorigenesis.
Collapse
Affiliation(s)
- U. Bajpai
- Department of Biomedical Sciences, Acharaya Narendra Dev College, University of Delhi South Campus, Delhi
| | - R. Sharma
- School of Biotechnology, Guru Gobind Singh Indraprastha University, Kashmere Gate, Delhi
| | - T. Kausar
- Department of Biochemistry, All India Institute of Medical Sciences, Ansari Nagar, New Delhi - India
| | - S. Dattagupta
- Department of Pathology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi - India
| | - T.K. Chattopadhayay
- Department of Gastrointestinal Surgery, All India Institute of Medical Sciences, Ansari Nagar, New Delhi - India
| | - R. Ralhan
- Department of Biochemistry, All India Institute of Medical Sciences, Ansari Nagar, New Delhi - India
| |
Collapse
|
6
|
Harteis S, Schneider S. Making the bend: DNA tertiary structure and protein-DNA interactions. Int J Mol Sci 2014; 15:12335-63. [PMID: 25026169 PMCID: PMC4139847 DOI: 10.3390/ijms150712335] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Revised: 07/01/2014] [Accepted: 07/01/2014] [Indexed: 12/11/2022] Open
Abstract
DNA structure functions as an overlapping code to the DNA sequence. Rapid progress in understanding the role of DNA structure in gene regulation, DNA damage recognition and genome stability has been made. The three dimensional structure of both proteins and DNA plays a crucial role for their specific interaction, and proteins can recognise the chemical signature of DNA sequence ("base readout") as well as the intrinsic DNA structure ("shape recognition"). These recognition mechanisms do not exist in isolation but, depending on the individual interaction partners, are combined to various extents. Driving force for the interaction between protein and DNA remain the unique thermodynamics of each individual DNA-protein pair. In this review we focus on the structures and conformations adopted by DNA, both influenced by and influencing the specific interaction with the corresponding protein binding partner, as well as their underlying thermodynamics.
Collapse
Affiliation(s)
- Sabrina Harteis
- Department of Chemistry, Technische Universität München, Lichtenbergstrasse 4, 85747 Garching, Germany.
| | - Sabine Schneider
- Department of Chemistry, Technische Universität München, Lichtenbergstrasse 4, 85747 Garching, Germany.
| |
Collapse
|
7
|
Antoniali G, Lirussi L, D'Ambrosio C, Dal Piaz F, Vascotto C, Casarano E, Marasco D, Scaloni A, Fogolari F, Tell G. SIRT1 gene expression upon genotoxic damage is regulated by APE1 through nCaRE-promoter elements. Mol Biol Cell 2013; 25:532-47. [PMID: 24356447 PMCID: PMC3923644 DOI: 10.1091/mbc.e13-05-0286] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
APE1 is recruited to the transcription initiation site of the SIRT1 promoter during early cell response to oxidative stress. This reveals the importance of BER enzyme involvement in controlling specific gene expression at the transcriptional level. Apurinic/apyrimidinic endonuclease 1 (APE1) is a multifunctional protein contributing to genome stability via repair of DNA lesions via the base excision repair pathway. It also plays a role in gene expression regulation and RNA metabolism. Another, poorly characterized function is its ability to bind to negative calcium responsive elements (nCaRE) of some gene promoters. The presence of many functional nCaRE sequences regulating gene transcription can be envisioned, given their conservation within ALU repeats. To look for functional nCaRE sequences within the human genome, we performed bioinformatic analyses and identified 57 genes potentially regulated by APE1. We focused on sirtuin-1 (SIRT1) deacetylase due to its involvement in cell stress, including senescence, apoptosis, and tumorigenesis, and its role in the deacetylation of APE1 after genotoxic stress. The human SIRT1 promoter presents two nCaRE elements stably bound by APE1 through its N-terminus. We demonstrate that APE1 is part of a multiprotein complex including hOGG1, Ku70, and RNA Pol II, which is recruited on SIRT1 promoter to regulate SIRT1 gene functions during early response to oxidative stress. These findings provide new insights into the role of nCaRE sequences in the transcriptional regulation of mammalian genes.
Collapse
Affiliation(s)
- Giulia Antoniali
- Department of Biomedical Sciences and Technologies, University of Udine, 33100 Udine, Italy Proteomics and Mass Spectrometry Laboratory, ISPAAM, National Research Council, 80147 Naples, Italy Department of Biomedical and Pharmaceutical Sciences, University of Salerno, 84084 Fisciano (Salerno), Italy Department of Pharmacy, University of Naples "Federico II," 80134 Naples, Italy Institute of Biostructures and Bioimaging, National Research Council, 80134 Naples, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Shen Z, Prasanth SG. Emerging players in the initiation of eukaryotic DNA replication. Cell Div 2012; 7:22. [PMID: 23075259 PMCID: PMC3520825 DOI: 10.1186/1747-1028-7-22] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Accepted: 10/12/2012] [Indexed: 12/23/2022] Open
Abstract
Faithful duplication of the genome in eukaryotes requires ordered assembly of a multi-protein complex called the pre-replicative complex (pre-RC) prior to S phase; transition to the pre-initiation complex (pre-IC) at the beginning of DNA replication; coordinated progression of the replisome during S phase; and well-controlled regulation of replication licensing to prevent re-replication. These events are achieved by the formation of distinct protein complexes that form in a cell cycle-dependent manner. Several components of the pre-RC and pre-IC are highly conserved across all examined eukaryotic species. Many of these proteins, in addition to their bona fide roles in DNA replication are also required for other cell cycle events including heterochromatin organization, chromosome segregation and centrosome biology. As the complexity of the genome increases dramatically from yeast to human, additional proteins have been identified in higher eukaryotes that dictate replication initiation, progression and licensing. In this review, we discuss the newly discovered components and their roles in cell cycle progression.
Collapse
Affiliation(s)
- Zhen Shen
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, 601 S, Goodwin Avenue, Urbana, IL 61801, USA.
| | | |
Collapse
|
9
|
Di Paola D, Zannis-Hadjopoulos M. Comparative analysis of pre-replication complex proteins in transformed and normal cells. J Cell Biochem 2012; 113:1333-47. [PMID: 22134836 DOI: 10.1002/jcb.24006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
This study examines the abundance of the major protein constituents of the pre-replication complex (pre-RC), both genome-wide and in association with specific replication origins, namely the lamin B2, c-myc, 20mer1, and 20mer2 origins. Several pre-RC protein components, namely ORC1-6, Cdc6, Cdt1, MCM4, MCM7, as well as additional replication proteins, such as Ku70/86, 14-3-3, Cdc45, and PCNA, were comparatively and quantitatively analyzed in both transformed and normal cells. The results show that these proteins are overexpressed and more abundantly bound to chromatin in the transformed compared to normal cells. Interestingly, the 20mer1, 20mer2, and c-myc origins exhibited a two- to threefold greater origin activity and a two- to threefold greater in vivo association of the pre-RC proteins with these origins in the transformed cells, whereas the origin associated with the housekeeping lamin B2 gene exhibited both similar levels of activity and in vivo association of these pre-RC proteins in both cell types. Overall, the results indicate that cellular transformation is associated with an overexpression and increased chromatin association of the pre-RC proteins. This study is significant, because it represents the most systematic comprehensive analysis done to date, using multiple replication proteins and different replication origins in both normal and transformed cell lines.
Collapse
Affiliation(s)
- Domenic Di Paola
- Goodman Cancer Research Center, McGill University, Montreal, Quebec, Canada H3G 1Y6
| | | |
Collapse
|
10
|
Brázda V, Čechová J, Coufal J, Rumpel S, Jagelská EB. Superhelical DNA as a preferential binding target of 14-3-3γ protein. J Biomol Struct Dyn 2012; 30:371-8. [DOI: 10.1080/07391102.2012.682205] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Václav Brázda
- Institute of Biophysics, Academy of Sciences of the Czech Republic , v.v.i., Královopolská 135, Brno, 612 65, Czech Republic
| | - Jana Čechová
- Institute of Biophysics, Academy of Sciences of the Czech Republic , v.v.i., Královopolská 135, Brno, 612 65, Czech Republic
| | - Jan Coufal
- Institute of Biophysics, Academy of Sciences of the Czech Republic , v.v.i., Královopolská 135, Brno, 612 65, Czech Republic
| | - Sigrun Rumpel
- Campbell Family Cancer Research Institute, Ontario Cancer Institute, University Health Network , Toronto, Ontario, Canada, M5G 2C4
| | - Eva B. Jagelská
- Institute of Biophysics, Academy of Sciences of the Czech Republic , v.v.i., Královopolská 135, Brno, 612 65, Czech Republic
| |
Collapse
|
11
|
Andersen SD, Keijzers G, Rampakakis E, Engels K, Luhn P, El-Shemerly M, Nielsen FC, Du Y, May A, Bohr VA, Ferrari S, Zannis-Hadjopoulos M, Fu H, Rasmussen LJ. 14-3-3 checkpoint regulatory proteins interact specifically with DNA repair protein human exonuclease 1 (hEXO1) via a semi-conserved motif. DNA Repair (Amst) 2012; 11:267-77. [PMID: 22222486 DOI: 10.1016/j.dnarep.2011.11.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2011] [Revised: 11/06/2011] [Accepted: 11/30/2011] [Indexed: 12/14/2022]
Abstract
Human exonuclease 1 (hEXO1) acts directly in diverse DNA processing events, including replication, mismatch repair (MMR), and double strand break repair (DSBR), and it was also recently described to function as damage sensor and apoptosis inducer following DNA damage. In contrast, 14-3-3 proteins are regulatory phosphorserine/threonine binding proteins involved in the control of diverse cellular events, including cell cycle checkpoint and apoptosis signaling. hEXO1 is regulated by post-translation Ser/Thr phosphorylation in a yet not fully clarified manner, but evidently three phosphorylation sites are specifically induced by replication inhibition leading to protein ubiquitination and degradation. We demonstrate direct and robust interaction between hEXO1 and six of the seven 14-3-3 isoforms in vitro, suggestive of a novel protein interaction network between DNA repair and cell cycle control. Binding experiments reveal weak affinity of the more selective isoform 14-3-3σ but both 14-3-3 isoforms η and σ significantly stimulate hEXO1 activity, indicating that these regulatory proteins exert a common regulation mode on hEXO1. Results demonstrate that binding involves the phosphorable amino acid S746 in hEXO1 and most likely a second unidentified binding motif. 14-3-3 associations do not appear to directly influence hEXO1 in vitro nuclease activity or in vitro DNA replication initiation. Moreover, specific phosphorylation variants, including hEXO1 S746A, are efficiently imported to the nucleus; to associate with PCNA in distinct replication foci and respond to DNA double strand breaks (DSBs), indicating that 14-3-3 binding does not involve regulating the subcellular distribution of hEXO1. Altogether, these results suggest that association may be related to regulation of hEXO1 availability during the DNA damage response to plausibly prevent extensive DNA resection at the damage site, as supported by recent studies.
Collapse
|
12
|
Amosova O, Kumar V, Deutsch A, Fresco JR. Self-catalyzed site-specific depurination of G residues mediated by cruciform extrusion in closed circular DNA plasmids. J Biol Chem 2011; 286:36322-30. [PMID: 21868375 PMCID: PMC3196133 DOI: 10.1074/jbc.m111.272112] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Revised: 08/23/2011] [Indexed: 11/06/2022] Open
Abstract
A major variety of "spontaneous" genomic damage is endogenous generation of apurinic sites. Depurination rates vary widely across genomes, occurring with higher frequency at "depurination hot spots." Recently, we discovered a site-specific self-catalyzed depurinating activity in short (14-18 nucleotides) DNA stem-loop-forming sequences with a 5'-G(T/A)GG-3' loop and T·A or G·C as the first base pair at the base of the loop; the 5'-G residue of the loop self-depurinates at least 10(5)-fold faster than random "spontaneous" depurination at pH 5. Formation of the catalytic intermediate for self-depurination in double-stranded DNA requires a stem-loop to extrude as part of a cruciform. In this study, evidence is presented for self-catalyzed depurination mediated by cruciform formation in plasmid DNA in vitro. Cruciform extrusion was confirmed, and its extent was quantitated by digestion of the plasmid with single strand-specific mung bean endonuclease, followed by restriction digestion and sequencing of resulting mung bean-generated fragments. Appearance of the apurinic site in the self-depurinating stem-loop was confirmed by digestion of plasmid DNA with apurinic endonuclease IV, followed by primer extension and/or PCR amplification to detect the endonuclease-generated strand break and identify its location. Self-catalyzed depurination was contingent on the plasmid being supercoiled and was not observed in linearized plasmids, consistent with the presence of the extruded cruciform in the supercoiled plasmid and not in the linear one. These results indicate that self-catalyzed depurination is not unique to single-stranded DNA; rather, it can occur in stem-loop structures extruding from double-stranded DNA and therefore could, in principle, occur in vivo.
Collapse
Affiliation(s)
- Olga Amosova
- From the Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544
| | - Veena Kumar
- From the Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544
| | - Aaron Deutsch
- From the Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544
| | - Jacques R. Fresco
- From the Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544
| |
Collapse
|
13
|
Brázda V, Laister RC, Jagelská EB, Arrowsmith C. Cruciform structures are a common DNA feature important for regulating biological processes. BMC Mol Biol 2011; 12:33. [PMID: 21816114 PMCID: PMC3176155 DOI: 10.1186/1471-2199-12-33] [Citation(s) in RCA: 178] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2011] [Accepted: 08/05/2011] [Indexed: 04/10/2023] Open
Abstract
DNA cruciforms play an important role in the regulation of natural processes involving DNA. These structures are formed by inverted repeats, and their stability is enhanced by DNA supercoiling. Cruciform structures are fundamentally important for a wide range of biological processes, including replication, regulation of gene expression, nucleosome structure and recombination. They also have been implicated in the evolution and development of diseases including cancer, Werner's syndrome and others. Cruciform structures are targets for many architectural and regulatory proteins, such as histones H1 and H5, topoisomerase IIβ, HMG proteins, HU, p53, the proto-oncogene protein DEK and others. A number of DNA-binding proteins, such as the HMGB-box family members, Rad54, BRCA1 protein, as well as PARP-1 polymerase, possess weak sequence specific DNA binding yet bind preferentially to cruciform structures. Some of these proteins are, in fact, capable of inducing the formation of cruciform structures upon DNA binding. In this article, we review the protein families that are involved in interacting with and regulating cruciform structures, including (a) the junction-resolving enzymes, (b) DNA repair proteins and transcription factors, (c) proteins involved in replication and (d) chromatin-associated proteins. The prevalence of cruciform structures and their roles in protein interactions, epigenetic regulation and the maintenance of cell homeostasis are also discussed.
Collapse
Affiliation(s)
- Václav Brázda
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v,v,i,, Královopolská 135, Brno, 612 65, Czech Republic.
| | | | | | | |
Collapse
|
14
|
14-3-3 Proteins regulate exonuclease 1-dependent processing of stalled replication forks. PLoS Genet 2011; 7:e1001367. [PMID: 21533173 PMCID: PMC3077382 DOI: 10.1371/journal.pgen.1001367] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2010] [Accepted: 03/08/2011] [Indexed: 01/25/2023] Open
Abstract
Replication fork integrity, which is essential for the maintenance of genome stability, is monitored by checkpoint-mediated phosphorylation events. 14-3-3 proteins are able to bind phosphorylated proteins and were shown to play an undefined role under DNA replication stress. Exonuclease 1 (Exo1) processes stalled replication forks in checkpoint-defective yeast cells. We now identify 14-3-3 proteins as in vivo interaction partners of Exo1, both in yeast and mammalian cells. Yeast 14-3-3–deficient cells fail to induce Mec1–dependent Exo1 hyperphosphorylation and accumulate Exo1–dependent ssDNA gaps at stalled forks, as revealed by electron microscopy. This leads to persistent checkpoint activation and exacerbated recovery defects. Moreover, using DNA bi-dimensional electrophoresis, we show that 14-3-3 proteins promote fork progression under limiting nucleotide concentrations. We propose that 14-3-3 proteins assist in controlling the phosphorylation status of Exo1 and additional unknown targets, promoting fork progression, stability, and restart in response to DNA replication stress. Stalling and collapse of DNA replication forks is an important source of genome instability and has been implicated in early steps of carcinogenesis. The maintenance of stable intermediates upon stalled replication requires the coordinated action of a number of proteins and proper inhibitory control of dangerous enzymatic activities. In this study, we uncover an evolutionarily conserved mechanism through which 14-3-3 proteins modulate the checkpoint-mediated phosphorylation of, and in turn limit the activity of, an exonuclease (Exo1) previously implicated in pathological processing of stalled replication forks and other sensitive DNA intermediates. This represents an unprecedented link in the field of DNA repair and genome stability, providing a molecular rationale to the yet undefined role of 14-3-3 proteins in the maintenance of genome integrity after replication stress. In analogy to Exo1, our data suggest that additional factors at replication forks may be subjected to similar regulation, pointing to the 14-3-3 proteins as central components of the checkpoint triggered in response to replication stress.
Collapse
|
15
|
Progress in The Research of LASP-1. PROG BIOCHEM BIOPHYS 2011. [DOI: 10.3724/sp.j.1206.2010.00061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
16
|
Strawbridge EM, Benson G, Gelfand Y, Benham CJ. The distribution of inverted repeat sequences in the Saccharomyces cerevisiae genome. Curr Genet 2010; 56:321-40. [PMID: 20446088 PMCID: PMC2908449 DOI: 10.1007/s00294-010-0302-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2010] [Revised: 04/05/2010] [Accepted: 04/08/2010] [Indexed: 02/06/2023]
Abstract
Although a variety of possible functions have been proposed for inverted repeat sequences (IRs), it is not known which of them might occur in vivo. We investigate this question by assessing the distributions and properties of IRs in the Saccharomyces cerevisiae (SC) genome. Using the IRFinder algorithm we detect 100,514 IRs having copy length greater than 6 bp and spacer length less than 77 bp. To assess statistical significance we also determine the IR distributions in two types of randomization of the S. cerevisiae genome. We find that the S. cerevisiae genome is significantly enriched in IRs relative to random. The S. cerevisiae IRs are significantly longer and contain fewer imperfections than those from the randomized genomes, suggesting that processes to lengthen and/or correct errors in IRs may be operative in vivo. The S. cerevisiae IRs are highly clustered in intergenic regions, while their occurrence in coding sequences is consistent with random. Clustering is stronger in the 3' flanks of genes than in their 5' flanks. However, the S. cerevisiae genome is not enriched in those IRs that would extrude cruciforms, suggesting that this is not a common event. Various explanations for these results are considered.
Collapse
Affiliation(s)
| | - Gary Benson
- Laboratory for Biocomputing and Informatics, Boston University, Boston, MA USA
| | - Yevgeniy Gelfand
- Laboratory for Biocomputing and Informatics, Boston University, Boston, MA USA
| | - Craig J. Benham
- Department of Mathematics, University of California, Davis, CA 95616 USA
| |
Collapse
|
17
|
Yahyaoui W, Zannis-Hadjopoulos M. 14-3-3 proteins function in the initiation and elongation steps of DNA replication in Saccharomyces cerevisiae. J Cell Sci 2009; 122:4419-26. [DOI: 10.1242/jcs.044677] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
14-3-3s are highly conserved abundant eukaryotic proteins essential for viability, at least in lower eukaryotes. We previously showed that they associate with mammalian and yeast replication origins in a cell-cycle-dependent manner, and are involved in the initiation of DNA replication. Here, we present evidence that 14-3-3 proteins are novel regulators of the initiation and elongation steps of DNA replication in Saccharomyces cerevisiae. The results show that the Bmh2 protein, one of the two 14-3-3 homologues in S. cerevisiae, interacts with Mcm2 and Orc2 proteins, binds to ARS1 maximally at the G1 phase, is essential for plasmid stability, and is required for normal S-phase entry and progression. Furthermore, during G1 phase, the Bmh2 protein is required for the association of MCM proteins with chromatin and their maintenance at replication origins. The results reveal that 14-3-3 proteins function as essential factors for the assembly and maintenance of the pre-replication complex during G1 phase.
Collapse
Affiliation(s)
- Wafaa Yahyaoui
- Goodman Cancer Centre, 3655 Drummond Street, Montreal, Quebec H3G 1Y6, Canada
| | | |
Collapse
|
18
|
Rampakakis E, Arvanitis DN, Di Paola D, Zannis-Hadjopoulos M. Metazoan origins of DNA replication: regulation through dynamic chromatin structure. J Cell Biochem 2009; 106:512-20. [PMID: 19173303 DOI: 10.1002/jcb.22070] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
DNA replication in eukaryotes is initiated at multiple replication origins distributed over the entire genome, which are normally activated once per cell cycle. Due to the complexity of the metazoan genome, the study of metazoan replication origins and their activity profiles has been less advanced than in simpler genome systems. DNA replication in eukaryotes involves many protein-protein and protein-DNA interactions, occurring in multiple stages. As in prokaryotes, control over the timing and frequency of initiation is exerted at the initiation site. A prerequisite for understanding the regulatory mechanisms of eukaryotic DNA replication is the identification and characterization of the cis-acting sequences that serve as replication origins and the trans-acting factors (proteins) that interact with them. Furthermore, in order to understand how DNA replication may become deregulated in malignant cells, the distinguishing features between normal and malignant origins of DNA replication as well as the proteins that interact with them must be determined. Based on advances that were made using simple genome model systems, several proteins involved in DNA replication have been identified. This review summarizes the current findings about metazoan origins of DNA replication and their interacting proteins as well as the role of chromatin structure in their regulation. Furthermore, progress in origin identification and isolation procedures as well as potential mechanisms to inhibit their activation in cancer development and progression are discussed.
Collapse
Affiliation(s)
- E Rampakakis
- Department of Biochemistry, Goodman Cancer Centre, Montreal, Quebec, Canada
| | | | | | | |
Collapse
|
19
|
Zannis-Hadjopoulos M, Yahyaoui W, Callejo M. 14-3-3 Cruciform-binding proteins as regulators of eukaryotic DNA replication. Trends Biochem Sci 2008; 33:44-50. [DOI: 10.1016/j.tibs.2007.09.012] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2007] [Revised: 08/31/2007] [Accepted: 09/18/2007] [Indexed: 11/30/2022]
|
20
|
del Viso F, Casaretto JA, Quatrano RS. 14-3-3 Proteins are components of the transcription complex of the ATEM1 promoter in Arabidopsis. PLANTA 2007; 227:167-75. [PMID: 17701425 DOI: 10.1007/s00425-007-0604-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2007] [Accepted: 07/25/2007] [Indexed: 05/16/2023]
Abstract
The AtEm1 and AtEm6 gene products accumulate exclusively in embryos during Arabidopsis seed maturation. The transcription factor ABI3 and the phytohormone abscisic acid are required for normal expression of both genes. However, the expression of these genes occurs in extremely small embryos limiting the availability of tissue to directly study DNA-protein interactions. We generated callus lines derived from embryos to determine if the regulation of Em expression was similar to wild type embryos. Expression of AtEm1 and AtEm6 was strongly induced by abscisic acid in callus derived from wild type embryos, but not in embryo callus derived from ABI3 mutant embryos (abi3-6). Epitopes to 14-3-3 proteins were found in complexes with the AtEm1 promoter in mobility shift experiments using nuclear extracts derived from both wild type and abi3-6 calli. Using phosphorylated peptides that bind to 14-3-3 proteins, we show that 14-3-3 proteins are required for the maintenance of the transcriptional complex generated in nuclear extracts. Chromatin immunoprecipitation experiments using a 14-3-3 antibody display the expected 241-bp band from the AtEm1 promoter. Hence, 14-3-3 proteins are physically present in the AtEm1 transcriptional complex in vivo and are required for the maintenance of the transcriptional complex in vitro.
Collapse
|
21
|
Deletion of the cruciform binding domain in CBP/14-3-3 displays reduced origin binding and initiation of DNA replication in budding yeast. BMC Mol Biol 2007; 8:27. [PMID: 17430600 PMCID: PMC1865385 DOI: 10.1186/1471-2199-8-27] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2006] [Accepted: 04/12/2007] [Indexed: 11/17/2022] Open
Abstract
Background Initiation of eukaryotic DNA replication involves many protein-protein and protein-DNA interactions. We have previously shown that 14-3-3 proteins bind cruciform DNA and associate with mammalian and yeast replication origins in a cell cycle dependent manner. Results By expressing the human 14-3-3ε, as the sole member of 14-3-3 proteins family in Saccharomyces cerevisiae, we show that 14-3-3ε complements the S. cerevisiae Bmh1/Bmh2 double knockout, conserves its cruciform binding activity, and associates in vivo with the yeast replication origins ARS307. Deletion of the α5-helix, the potential cruciform binding domain of 14-3-3, decreased the cruciform binding activity of the protein as well as its association with the yeast replication origins ARS307 and ARS1. Furthermore, the mutant cells had a reduced ability to stably maintain plasmids bearing one or multiple origins. Conclusion 14-3-3, a cruciform DNA binding protein, associates with yeast origins of replication and functions as an initiator of DNA replication, presumably through binding to cruciform DNA forming at yeast replicators.
Collapse
|
22
|
Grunewald TGP, Kammerer U, Winkler C, Schindler D, Sickmann A, Honig A, Butt E. Overexpression of LASP-1 mediates migration and proliferation of human ovarian cancer cells and influences zyxin localisation. Br J Cancer 2007; 96:296-305. [PMID: 17211471 PMCID: PMC2359999 DOI: 10.1038/sj.bjc.6603545] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
LIM and SH3 protein 1 (LASP-1), initially identified from human breast cancer, is a specific focal adhesion protein involved in cell proliferation and migration. In the present work, we analysed the effect of LASP-1 on biology and function of human ovarian cancer cell line SKOV-3 using small interfering RNA technique (siRNA). Transfection with LASP-1-specific siRNA resulted in a reduced protein level of LASP-1 in SKOV-3 cells. The siRNA-treated cells were arrested in G(2)/M phase of the cell cycle and proliferation of the tumour cells was suppressed by 60-90% corresponding to around 70% of the cells being transfected successfully as seen by immunofluorescence. Moreover, transfected tumour cells showed a 40% reduced migration. LASP-1 silencing is accompanied by a reduced binding of the LASP-1-binding partner zyxin to focal contacts without changes in actin stress fibre and microtubule organisation or focal adhesion morphology as observed by immunofluorescence. In contrast, silencing of zyxin is not influencing cell migration and had neither influence on LASP-1 expression nor actin cytoskeleton and focal contact morphology suggesting that LASP-1 is necessary and sufficient for recruiting zyxin to focal contacts. The data provide evidence for an essential role of LASP-1 in tumour cell growth and migration, possibly through influencing zyxin localization.
Collapse
Affiliation(s)
- T G P Grunewald
- Institute of Clinical Biochemistry and Pathobiochemistry, University of Wurzburg, Grombuehlstr. 12, D-97080 Wurzburg, Germany
| | - U Kammerer
- Department of Obstetrics and Gynecology, University of Wurzburg, Josef-Schneider-Str. 4, D-97080 Wurzburg, Germany
| | - C Winkler
- Protein Mass Spectrometry and Functional Proteomics Group, Rudolf-Virchow-Center for Experimental Biomedicine, Versbacher Straße 9, 97078 Wurzburg, Germany
| | - D Schindler
- Department of Human Genetics, University of Wurzburg, Biozentrum am Hubland, D-97074 Wurzburg, Germany
| | - A Sickmann
- Protein Mass Spectrometry and Functional Proteomics Group, Rudolf-Virchow-Center for Experimental Biomedicine, Versbacher Straße 9, 97078 Wurzburg, Germany
| | - A Honig
- Department of Obstetrics and Gynecology, University of Wurzburg, Josef-Schneider-Str. 4, D-97080 Wurzburg, Germany
| | - E Butt
- Institute of Clinical Biochemistry and Pathobiochemistry, University of Wurzburg, Grombuehlstr. 12, D-97080 Wurzburg, Germany
- E-mail:
| |
Collapse
|
23
|
Qi W, Liu X, Qiao D, Martinez JD. Isoform-specific expression of 14-3-3 proteins in human lung cancer tissues. Int J Cancer 2005; 113:359-63. [PMID: 15455356 DOI: 10.1002/ijc.20492] [Citation(s) in RCA: 147] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
14-3-3 Proteins play important roles in a wide range of vital regulatory processes, including signal transduction, apoptosis, cell cycle progression and DNA replication. In mammalian cells, 7 14-3-3 isoforms (beta, gamma, epsilon, eta, sigma, theta and zeta) have been identified and each of these seems to have distinct tissue localizations and isoform-specific functions. Previous studies have shown that 14-3-3 protein levels are higher in human lung cancers as compared to normal tissues. It is unclear, however, which of the 14-3-3 isoform(s) are overexpressed in these cancers. In our study, the levels of all seven 14-3-3 isoforms were examined by RT-PCR and Western blotting. We show that the message for only two isoforms, 14-3-3epsilon and zeta, could be detected in normal tissues. In lung cancer biopsies, however, four isoforms, 14-3-3beta, gamma, sigma, and theta;, in addition to 14-3-3epsilon and zeta, were present in abundance. The expression frequency of 14-3-3beta, gamma, sigma and theta; isoforms was 11, 10, 13 and 8 of the 14 biopsies examined, respectively. The data from immunohistochemical staining and Western blotting were consistent with the RT-PCR results. Given the prevalence of elevated 14-3-3 expression in human lung cancers we propose that these proteins may be involved in lung cancer tumorigenesis and that specific 14-3-3 proteins may be useful as markers for lung cancer diagnosis and targets for therapy.
Collapse
Affiliation(s)
- Wenqing Qi
- Arizona Cancer Center, Department of Cell Biology and Anatomy, The University of Arizona, Tucson, AZ 85724, USA
| | | | | | | |
Collapse
|
24
|
Chu K, Teele N, Dewey MW, Albright N, Dewey WC. Computerized video time lapse study of cell cycle delay and arrest, mitotic catastrophe, apoptosis and clonogenic survival in irradiated 14-3-3sigma and CDKN1A (p21) knockout cell lines. Radiat Res 2004; 162:270-86. [PMID: 15332997 DOI: 10.1667/rr3221] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Computerized video time lapse (CVTL) microscopy was used to observe cellular events induced by ionizing radiation (10-12 Gy) in nonclonogenic cells of the wild-type HCT116 colorectal carcinoma cell line and its three isogenic derivative lines in which p21 (CDKN1A), 14-3-3sigma or both checkpoint genes (double-knockout) had been knocked out. Cells that fused after mitosis or failed to complete mitosis were classified together as cells that underwent mitotic catastrophe. Seventeen percent of the wild-type cells and 34-47% of the knockout cells underwent mitotic catastrophe to enter generation 1 with a 4N content of DNA, i.e., the same DNA content as irradiated cells arrested in G(2) at the end of generation 0. Radiation caused a transient division delay in generation 0 before the cells divided or underwent mitotic catastrophe. Compared with the division delay for wild-type cells that express CDKN1A and 14-3-3sigma, knocking out CDKN1A reduced the delay the most for cells irradiated in G(1) (from approximately 15 h to approximately 3- 5 h), while knocking out 14-3-3sigma reduced the delay the most for cells irradiated in late S and G(2) (from approximately 18 h to approximately 3-4 h). However, 27% of wild-type cells and 17% of 14-3-3sigma(-/-) cells were arrested at 96 h in generation 0 compared with less than 1% for CDKN1A(-/-) and double-knockout cells. Thus expression of CDKN1A is necessary for the prolonged delay or arrest in generation 0. Furthermore, CDKN1A plays a crucial role in generation 1, greatly inhibiting progression into subsequent generations of both diploid cells and polyploid cells produced by mitotic catastrophe. Thus, in CDKN1A-deficient cell lines, a series of mitotic catastrophe events occurred to produce highly polyploid progeny during generations 3 and 4. Most importantly, the polyploid progeny produced by mitotic catastrophe events did not die sooner than the progeny of dividing cells. Death was identified as loss of cell movement, i.e. metabolic activity. Thus mitotic catastrophe itself is not a direct mode of death. Instead, apoptosis during interphase of both uninucleated and polyploid cells was the primary mode of death observed in the four cell types. Knocking out either CDKN1A or 14-3-3sigma increased the amount of cell death at 96 h, from 52% to approximately 70%, with an even greater increase to 90% when both genes were knocked out. Thus, in addition to effects of CDKN1A and 14-3-3sigma expression on transient cell cycle delay, CDKN1A has both an anti-proliferative and anti-apoptosis function, while 14-3-3sigma has only an anti-apoptosis function. Finally, the large alterations in the amounts of cell death did not correlate overall with the small alterations in clonogenic survival (dose-modifying ratios of 1.05-1.13); however, knocking out CDKN1A resulted in a decrease in arrested cells and an increase in survival, while knocking out 14-3-3sigma resulted in an increase in apoptosis and a decrease in survival.
Collapse
Affiliation(s)
- Kenneth Chu
- Radiation Oncology Research Laboratory, University of California San Francisco, San Francisco, California 94103, USA
| | | | | | | | | |
Collapse
|
25
|
Alvarez D, Callejo M, Shoucri R, Boyer L, Price GB, Zannis-Hadjopoulos M. Analysis of the cruciform binding activity of recombinant 14-3-3zeta-MBP fusion protein, its heterodimerization profile with endogenous 14-3-3 isoforms, and effect on mammalian DNA replication in vitro. Biochemistry 2003; 42:7205-15. [PMID: 12795617 DOI: 10.1021/bi027343p] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The human cruciform binding protein (CBP), a member of the 14-3-3 protein family, has been recently identified as an origin of DNA replication binding protein and involved in DNA replication. Here, pure recombinant 14-3-3zeta tagged with maltose binding protein (r14-3-3zeta-MBP) at its N-terminus was tested for binding to cruciform DNA either in the absence or presence of F(TH), a CBP-enriched fraction, by electromobility shift assay (EMSA), followed by Western blot analysis of the electroeluted CBP-cruciform DNA complex. The r14-3-3zeta-MBP was found to have cruciform binding activity only after preincubation with F(TH). Anti-MBP antibody immunoprecipitation of F(TH) preincubated with r14-3-3zeta-MBP, followed by Western blot analysis with antibodies specific to the beta, gamma, epsilon, zeta, and sigma 14-3-3 isoforms showed that r14-3-3zeta-MBP heterodimerized with the endogenous beta, epsilon, and zeta isoforms present in the F(TH) but not with the gamma or sigma isoforms. Immunoprecipitation of endogenous 14-3-3zeta from nuclear extracts (NE) of HeLa cells that were either serum-starved (s-s) or blocked at the G(1)/S or G(2)/M phases of the cell cycle revealed that at G(1)/S and G(2)/M, the zeta isoform heterodimerized only with the beta and epsilon isoforms, while in s-s extracts, the 14-3-3zeta/epsilon heterodimer was never detected, and the 14-3-3zeta/beta heterodimer was seldom detected. Furthermore, addition of r14-3-3zeta-MBP to HeLa cell extracts used in a mammalian in vitro replication system increased the replication level of p186, a plasmid bearing the minimal 186-bp origin of the monkey origin of DNA replication ors8, by approximately 3.5-fold. The data suggest that specific dimeric combinations of the 14-3-3 isoforms have CBP activity and that upregulation of this activity leads to an increase in DNA replication.
Collapse
Affiliation(s)
- David Alvarez
- McGill University Department of Biochemistry and McGill Cancer Center Montreal, Canada H3G 1Y6
| | | | | | | | | | | |
Collapse
|