1
|
Pavlikova Z, Zahradnicek O, Jelinek Michaelidesova A, Sramek J, Davidkova M, Hovorakova M. Effect of elevated temperature and hydrocortisone addition on the proliferation of fibroblasts. Histochem Cell Biol 2024; 162:231-244. [PMID: 38801536 PMCID: PMC11322275 DOI: 10.1007/s00418-024-02295-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/25/2024] [Indexed: 05/29/2024]
Abstract
Hyperthermia along with hydrocortisone (HC) are proven teratogens that can negatively influence embryo development during early pregnancy. Proliferation of cells is one of the main developmental processes during the early embryogenesis. This study was focused on testing the effect of elevated temperature and HC addition on proliferation of cells in in vitro cultures. The V79-4 cell line was treated with HC and cultured in vitro at 37 °C or 39 °C, respectively. To reveal the effect of both factors, the proliferation of cells cultured under different conditions was evaluated using various approaches (colony formation assay, generation of growth curves, computation of doubling times, and mitotic index estimation). Our results indicate that a short-term exposure to elevated temperature slightly stimulates and a long-term exposure suppresses cell proliferation. However, HC (0.1 mg/ml) acts as a stimulator of cell proliferation. Interestingly, the interaction of HC and long-term elevated temperature (39 °C) exposure results in at least partial compensation of the negative impact of elevated temperature by HC addition and in higher proliferation if compared with cells cultured at 39 °C without addition of HC.
Collapse
Affiliation(s)
- Zuzana Pavlikova
- Institute of Histology and Embryology, First Faculty of Medicine, Charles University, Prague, Czech Republic
- Department of Anthropology and Human Genetics, Faculty of Science, Charles University, Prague, Czech Republic
| | - Oldrich Zahradnicek
- Department of Radiation Dosimetry, Nuclear Physics Institute, Czech Academy of Sciences, Prague, Czech Republic
| | - Anna Jelinek Michaelidesova
- Department of Radiation Dosimetry, Nuclear Physics Institute, Czech Academy of Sciences, Prague, Czech Republic
| | - Jaromir Sramek
- Institute of Histology and Embryology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Marie Davidkova
- Department of Radiation Dosimetry, Nuclear Physics Institute, Czech Academy of Sciences, Prague, Czech Republic
| | - Maria Hovorakova
- Institute of Histology and Embryology, First Faculty of Medicine, Charles University, Prague, Czech Republic.
| |
Collapse
|
2
|
Sukocheva OA, Neganova ME, Aleksandrova Y, Burcher JT, Chugunova E, Fan R, Tse E, Sethi G, Bishayee A, Liu J. Signaling controversy and future therapeutical perspectives of targeting sphingolipid network in cancer immune editing and resistance to tumor necrosis factor-α immunotherapy. Cell Commun Signal 2024; 22:251. [PMID: 38698424 PMCID: PMC11064425 DOI: 10.1186/s12964-024-01626-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 04/21/2024] [Indexed: 05/05/2024] Open
Abstract
Anticancer immune surveillance and immunotherapies trigger activation of cytotoxic cytokine signaling, including tumor necrosis factor-α (TNF-α) and TNF-related apoptosis-inducing ligand (TRAIL) pathways. The pro-inflammatory cytokine TNF-α may be secreted by stromal cells, tumor-associated macrophages, and by cancer cells, indicating a prominent role in the tumor microenvironment (TME). However, tumors manage to adapt, escape immune surveillance, and ultimately develop resistance to the cytotoxic effects of TNF-α. The mechanisms by which cancer cells evade host immunity is a central topic of current cancer research. Resistance to TNF-α is mediated by diverse molecular mechanisms, such as mutation or downregulation of TNF/TRAIL receptors, as well as activation of anti-apoptotic enzymes and transcription factors. TNF-α signaling is also mediated by sphingosine kinases (SphK1 and SphK2), which are responsible for synthesis of the growth-stimulating phospholipid, sphingosine-1-phosphate (S1P). Multiple studies have demonstrated the crucial role of S1P and its transmembrane receptors (S1PR) in both the regulation of inflammatory responses and progression of cancer. Considering that the SphK/S1P/S1PR axis mediates cancer resistance, this sphingolipid signaling pathway is of mechanistic significance when considering immunotherapy-resistant malignancies. However, the exact mechanism by which sphingolipids contribute to the evasion of immune surveillance and abrogation of TNF-α-induced apoptosis remains largely unclear. This study reviews mechanisms of TNF-α-resistance in cancer cells, with emphasis on the pro-survival and immunomodulatory effects of sphingolipids. Inhibition of SphK/S1P-linked pro-survival branch may facilitate reactivation of the pro-apoptotic TNF superfamily effects, although the role of SphK/S1P inhibitors in the regulation of the TME and lymphocyte trafficking should be thoroughly assessed in future studies.
Collapse
Affiliation(s)
- Olga A Sukocheva
- Department of Hepatology, Royal Adelaide Hospital, Adelaide, SA, 5000, Australia.
| | - Margarita E Neganova
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka, 142432, Russian Federation
- Arbuzov Institute of Organic and Physical Chemistry, Federal Research Center, Kazan Scientific Center, Russian Academy of Sciences, Kazan, 420088, Russian Federation
| | - Yulia Aleksandrova
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka, 142432, Russian Federation
- Arbuzov Institute of Organic and Physical Chemistry, Federal Research Center, Kazan Scientific Center, Russian Academy of Sciences, Kazan, 420088, Russian Federation
| | - Jack T Burcher
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL, 34211, USA
| | - Elena Chugunova
- Arbuzov Institute of Organic and Physical Chemistry, Federal Research Center, Kazan Scientific Center, Russian Academy of Sciences, Kazan, 420088, Russian Federation
| | - Ruitai Fan
- Department of Radiation Oncology, Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Edmund Tse
- Department of Hepatology, Royal Adelaide Hospital, Adelaide, SA, 5000, Australia
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
| | - Anupam Bishayee
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL, 34211, USA.
| | - Junqi Liu
- Department of Radiation Oncology, Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
3
|
Kazemi-Darabadi S, Asadpour R, Shahbazfar AA, Alizadeh S. Effects of L-carnitine and betamethasone on ischemia-reperfusion injuries and sperm parameters following testicular torsion in a rat model. VETERINARY RESEARCH FORUM : AN INTERNATIONAL QUARTERLY JOURNAL 2019; 10:125-132. [PMID: 31338145 PMCID: PMC6626646 DOI: 10.30466/vrf.2019.74767.2002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Accepted: 01/09/2018] [Indexed: 11/03/2022]
Abstract
Testicular torsion is a consequence of spermatic cord twisting which causes progressive damage to the structure of the testis and reduces sperm quality and usually results in infertility. In the present study, with the assumption of the protective effects of L-carnitine and betamethasone against ischemia-reperfusion (IR) injuries, their effects on twisted testicles were evaluated and compared. Twenty Wistar rats were randomly divided into four groups and used in this study. Except for the Sham (S) group, testicular IR was induced surgically in three other groups, including Control (C), Betamethasone (BM), and L-carnitine (LC) groups. Betamethasone and L-carnitine were injected before detorsion in the BM and LC groups, respectively. After twelve hours of reperfusion, the testicles were detached, and prepared for sperm parameters evaluation such as sperm count, motility, viability, morphology, and chromatin quality, and histopathologic evaluations, including mean seminiferous tubular diameter (MSTD), germinal epithelial cell thickness (GECT), and Johnsen's mean testicular biopsy scoring (MTBS). The MSTD, GECT, and healthy sperms in the C group were significantly lower than the other groups, while the BM and LC groups were significantly different from others in MTBS. The number of sperms and sperm motility in the BM group was significantly higher than the C group. Sperm viability in the BM and LC groups were significantly higher than the C group. The results of this study showed that both L-carnitine and betamethasone similarly can be effective in treating testicular IR injuries.
Collapse
Affiliation(s)
- Siamak Kazemi-Darabadi
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Reza Asadpour
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Amir Ali Shahbazfar
- Department of Pathobiology, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Sajjad Alizadeh
- Graduate Student, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| |
Collapse
|
4
|
Youssef SES, El-Khateeb EA, Aly DG, Moussa MH. Striae distensae: Immunohistochemical assessment of hormone receptors in multigravida and nulligravida. J Cosmet Dermatol 2017; 16:279-286. [PMID: 28374517 DOI: 10.1111/jocd.12337] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/01/2017] [Indexed: 01/11/2023]
Abstract
BACKGROUND Striae distensae (SD), a type of dermal scarring, are psychologically disappointing. To date, information and scientific research behind the role of hormonal factors in the development of SD are still unclear. It is vital to understand striae to offer patients the best therapeutic options. OBJECTIVES To investigate early alterations regarding the expression of estrogen, androgen, and glucocorticoid receptors (estrogen receptor (ER), androgen receptor (AR), glucocorticoid receptor (GR) in skin samples of multigravida (MG) and nulligravida (NG) cases and to compare them with normal controls. METHODS This study included 30 subjects (10 MG and 10 NG cases with early SD and 10 healthy controls). Biopsies from SD lesions, perilesional normal skin of cases and normal skin of controls were examined immunohistochemically for ER, AR, and GR expression using immune peroxidase technique. RESULTS Comparing MG and NG with controls, ER expression appeared reduced in MG and NG (P-value<.001), AR was elevated in MG (P-value<.05) with no considerable difference in NG (P-value>.05), while GR was elevated in both MG and NG (P-value<.05). On comparing perilesional skin with SD lesions in each of MG and NG groups, SD lesions revealed reduced ER expression in both groups (P-value<.05), whereas in MG group: AR expression was elevated with no difference detected regarding GR (P-value˃.05); meanwhile in NG, elevated expression in both AR and GR expression was noted (P-Value<.001) CONCLUSIONS: Striae distansae lesions demonstrated a significant increase in the expression of AR and GR and a declined expression of ER indicating their involvement in the development of early SD.
Collapse
Affiliation(s)
- Sahar El Sayed Youssef
- Department of Dermatology, Venereology and Andrology, Ain Shams University, Cairo, Egypt
| | | | - Dalia Gamal Aly
- Department of Dermatology and Venereology, National Research Centre, Giza, Egypt
| | | |
Collapse
|
5
|
Kiessling S, Beaulieu-Laroche L, Blum ID, Landgraf D, Welsh DK, Storch KF, Labrecque N, Cermakian N. Enhancing circadian clock function in cancer cells inhibits tumor growth. BMC Biol 2017; 15:13. [PMID: 28196531 PMCID: PMC5310078 DOI: 10.1186/s12915-017-0349-7] [Citation(s) in RCA: 128] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 01/13/2017] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Circadian clocks control cell cycle factors, and circadian disruption promotes cancer. To address whether enhancing circadian rhythmicity in tumor cells affects cell cycle progression and reduces proliferation, we compared growth and cell cycle events of B16 melanoma cells and tumors with either a functional or dysfunctional clock. RESULTS We found that clock genes were suppressed in B16 cells and tumors, but treatments inducing circadian rhythmicity, such as dexamethasone, forskolin and heat shock, triggered rhythmic clock and cell cycle gene expression, which resulted in fewer cells in S phase and more in G1 phase. Accordingly, B16 proliferation in vitro and tumor growth in vivo was slowed down. Similar effects were observed in human colon carcinoma HCT-116 cells. Notably, the effects of dexamethasone were not due to an increase in apoptosis nor to an enhancement of immune cell recruitment to the tumor. Knocking down the essential clock gene Bmal1 in B16 tumors prevented the effects of dexamethasone on tumor growth and cell cycle events. CONCLUSIONS Here we demonstrated that the effects of dexamethasone on cell cycle and tumor growth are mediated by the tumor-intrinsic circadian clock. Thus, our work reveals that enhancing circadian clock function might represent a novel strategy to control cancer progression.
Collapse
Affiliation(s)
- Silke Kiessling
- Douglas Mental Health University Institute, Montreal, QC, H4H 1R3, Canada
- Department of Psychiatry, McGill University, Montreal, QC, H3A 1A1, Canada
- Present address: ZIEL Institute for Food and Health, Technical University of Munich, Freising, Germany
| | | | - Ian D Blum
- Douglas Mental Health University Institute, Montreal, QC, H4H 1R3, Canada
| | - Dominic Landgraf
- Center for Circadian Biology and Department of Psychiatry, University of California, San Diego, CA, 92037, USA
- Veterans Affairs San Diego Healthcare System, San Diego, CA, 92161, USA
| | - David K Welsh
- Center for Circadian Biology and Department of Psychiatry, University of California, San Diego, CA, 92037, USA
- Veterans Affairs San Diego Healthcare System, San Diego, CA, 92161, USA
| | - Kai-Florian Storch
- Douglas Mental Health University Institute, Montreal, QC, H4H 1R3, Canada
- Department of Psychiatry, McGill University, Montreal, QC, H3A 1A1, Canada
| | - Nathalie Labrecque
- Maisonneuve-Rosemont Hospital Research Centre, Montreal, QC, H1T 2M4, Canada
- Department of Medicine, University of Montreal, Montreal, QC, H3T 1J4, Canada
- Department of Microbiology, Infectiology and Immunology, University of Montreal, Montreal, QC, H3T 1J4, Canada
| | - Nicolas Cermakian
- Douglas Mental Health University Institute, Montreal, QC, H4H 1R3, Canada.
- Department of Psychiatry, McGill University, Montreal, QC, H3A 1A1, Canada.
| |
Collapse
|
6
|
Edmonds RE, Garvican ER, Smith RKW, Dudhia J. Influence of commonly used pharmaceutical agents on equine bone marrow-derived mesenchymal stem cell viability. Equine Vet J 2016; 49:352-357. [PMID: 27160051 DOI: 10.1111/evj.12590] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 05/01/2016] [Indexed: 12/27/2022]
Abstract
REASON FOR PERFORMING STUDY To provide evidence to support recommendations regarding the co-administration of drugs with mesenchymal stem cell (MSC) therapy. OBJECTIVES To determine the influence of sedatives, local anaesthetic and corticosteroids on MSC viability and proliferation, in comparison to somatic cells derived from tendon (TDCs). STUDY DESIGN In vitro cell culture. MATERIALS AND METHODS MSCs (n = 3) and TDCs (n = 2) were cultured in media containing a clinically relevant dose range of xylazine, romifidine, detomidine and butorphanol, mepivacaine, methylprednisolone, or triamcinolone acetonide. Cell viability in suspension culture was assessed at intervals up to 4 h using the trypan blue dye assay. MSCs in monolayer culture were exposed to the highest concentrations of drug and proliferation was measured using the alamarBlue fluorescence assay. RESULTS Exposure to romifidine or mepivacaine did not significantly affect viability or proliferation rate of MSCs or TDCs at any of the dosages tested. At the highest concentration of detomidine and butorphanol, MSC viability was significantly reduced compared to controls. Although xylazine exposure caused a significant (P < 0.001), dose-dependent reduction in MSC viability compared to controls, overall population viability remained good. Conversely, both methylprednisolone and triamcinolone resulted in the rapid death of significant numbers of MSCs (P < 0.001). CONCLUSIONS Clinicians can sedate horses and administer nerve blocks to assist in intratendinous or intrathecal injection of MSCs with confidence that these drugs will not impact the viability of implanted cells. However, the concomitant use of corticosteroids is likely to have a severely detrimental effect on cell viability and should not be performed. Similarly, steroid administration into the sheath of a damaged tendon is not recommended.
Collapse
Affiliation(s)
- R E Edmonds
- Clinical Sciences and Services, The Royal Veterinary College, North Mymms, Hertfordshire, UK
| | - E R Garvican
- Clinical Sciences and Services, The Royal Veterinary College, North Mymms, Hertfordshire, UK
| | - R K W Smith
- Clinical Sciences and Services, The Royal Veterinary College, North Mymms, Hertfordshire, UK
| | - J Dudhia
- Clinical Sciences and Services, The Royal Veterinary College, North Mymms, Hertfordshire, UK
| |
Collapse
|
7
|
Halwani R, Sultana A, Al-Kufaidy R, Jamhawi A, Vazquez-Tello A, Al-Muhsen S. Th-17 regulatory cytokines inhibit corticosteroid induced airway structural cells apoptosis. Respir Res 2016; 17:6. [PMID: 26772733 PMCID: PMC4715361 DOI: 10.1186/s12931-015-0307-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2015] [Accepted: 12/04/2015] [Indexed: 12/22/2022] Open
Abstract
Background Although corticosteroid is a powerful anti-inflammatory drug that is used widely to control asthma, still severe asthmatics can develop steroid resistance. Airway fibroblasts are quite resistant to steroids during Idiopathic pulmonary fibrosis (IPF) and fibrosis in asthmatic lungs is not always controlled. Th-17 regulatory cytokine which are elevated in lung tissues of asthmatics were shown to enhance the survival of various types of cells. STAT factors are central to this anti-apoptotic function. However, it is not yet clear whether these cytokines contribute to steroid hypo-responsiveness in asthma. Therefore, in this study, we investigated the ability of Th-17 regulatory cytokines, specifically IL-21, IL22 and IL23, to protect structural airway cells against dexamethasone-induced apoptosis. Methods Primary human fibroblasts, ASM cells, and lung endothelial cells line were treated with IL-21, IL-22, and IL-23 cytokines before incubation with dexamethasone and the level of apoptosis was determined by measuring cellular Annexin-V using Flow cytometry. Results Our data indicated that treatment with Th-17 regulatory cytokines was effective in inhibiting induced apoptosis for both fibroblasts and endothelial cells but not ASM cells. STAT3 phosphorylation levels were also upregulated in fibroblasts and endothelial upon treatment with these cytokines. Interestingly, inhibiting STAT3 phosphorylation abrogated IL-21, IL-22, and IL-23 anti-apoptotic effect on fibroblasts and endothelial cells. Conclusions This data suggest that Th-17 regulatory cytokines may play a critical role in regulating the survival of fibroblasts during asthma, IPF as well as other chronic lung inflammatory diseases leading to enhanced fibrosis. Accordingly, findings of this paper may pave the way for more extensive research on the role of these regulatory cytokines in fibrosis development in various chronic inflammatory diseases.
Collapse
Affiliation(s)
- Rabih Halwani
- Prince Naif Center for Immunology Research and Asthma Research Chair, Department of Pediatrics, College of Medicine, King Saud University, P. O. Box 2925, Postal Code 11461, Riyadh, Saudi Arabia.
| | - Asma Sultana
- Prince Naif Center for Immunology Research and Asthma Research Chair, Department of Pediatrics, College of Medicine, King Saud University, P. O. Box 2925, Postal Code 11461, Riyadh, Saudi Arabia.,Prince Naif Health Research Center, King Saud University, Riyadh, Saudi Arabia
| | - Roua Al-Kufaidy
- Prince Naif Center for Immunology Research and Asthma Research Chair, Department of Pediatrics, College of Medicine, King Saud University, P. O. Box 2925, Postal Code 11461, Riyadh, Saudi Arabia
| | - Amer Jamhawi
- Prince Naif Center for Immunology Research and Asthma Research Chair, Department of Pediatrics, College of Medicine, King Saud University, P. O. Box 2925, Postal Code 11461, Riyadh, Saudi Arabia
| | - Alejandro Vazquez-Tello
- Prince Naif Center for Immunology Research and Asthma Research Chair, Department of Pediatrics, College of Medicine, King Saud University, P. O. Box 2925, Postal Code 11461, Riyadh, Saudi Arabia
| | - Saleh Al-Muhsen
- Prince Naif Center for Immunology Research and Asthma Research Chair, Department of Pediatrics, College of Medicine, King Saud University, P. O. Box 2925, Postal Code 11461, Riyadh, Saudi Arabia
| |
Collapse
|
8
|
Performance-enhanced mesenchymal stem cells via intracellular delivery of steroids. Sci Rep 2014; 4:4645. [PMID: 24717973 PMCID: PMC3982175 DOI: 10.1038/srep04645] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 03/24/2014] [Indexed: 02/08/2023] Open
Abstract
Inadequate immunomodulatory potency of mesenchymal stem cells (MSC) may limit their therapeutic efficacy. We report glucocorticoid steroids augment MSC expression and activity of indoleamine-2,3-dioxygenase (IDO), a primary mediator of MSC immunomodulatory function. This effect depends on signaling through the glucocorticoid receptor and is mediated through up-regulation of FOXO3. Treatment of MSCs with glucocorticoids, budesonide or dexamethasone, enhanced IDO expression following IFN-γ stimulation in multiple donors and was able to restore IDO expression in over-passaged MSCs. As IDO enhancement was most notable when cells were continuously exposed to budesonide, we engineered MSC with budesonide loaded PLGA microparticles. MSC efficiently internalized budesonide microparticles and exhibited 4-fold enhanced IDO activity compared to budesonide preconditioned and naïve MSC, resulting in a 2-fold improvement in suppression of stimulated peripheral blood mononuclear cells in an IDO-dependent manner. Thus, the augmentation of MSC immune modulation may abrogate challenges associated with inadequate potency and enhance their therapeutic efficacy.
Collapse
|
9
|
Moriue T, Igarashi J, Yoneda K, Hashimoto T, Nakai K, Kosaka H, Kubota Y. Sphingosine 1-phosphate attenuates peroxide-induced apoptosis in HaCaT cells culturedin vitro. Clin Exp Dermatol 2013; 38:638-45. [DOI: 10.1111/ced.12037] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/22/2012] [Indexed: 01/30/2023]
Affiliation(s)
- T. Moriue
- Departments of Dermatology; Faculty of Medicine; Kagawa University; Kagawal; Japan
| | - J. Igarashi
- Cardiovascular Physiology; Faculty of Medicine; Kagawa University; Kagawa; Japan
| | - K. Yoneda
- Departments of Dermatology; Faculty of Medicine; Kagawa University; Kagawal; Japan
| | - T. Hashimoto
- Cardiovascular Physiology; Faculty of Medicine; Kagawa University; Kagawa; Japan
| | - K. Nakai
- Cardiovascular Physiology; Faculty of Medicine; Kagawa University; Kagawa; Japan
| | - H. Kosaka
- Cardiovascular Physiology; Faculty of Medicine; Kagawa University; Kagawa; Japan
| | - Y. Kubota
- Departments of Dermatology; Faculty of Medicine; Kagawa University; Kagawal; Japan
| |
Collapse
|
10
|
Dihydrotestosterone regulating apolipoprotein M expression mediates via protein kinase C in HepG2 cells. Lipids Health Dis 2012; 11:168. [PMID: 23216709 PMCID: PMC3543304 DOI: 10.1186/1476-511x-11-168] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2012] [Accepted: 11/20/2012] [Indexed: 11/14/2022] Open
Abstract
Background Administration of androgens decreases plasma concentrations of high-density lipid cholesterol (HDL-C). However, the mechanisms by which androgens mediate lipid metabolism remain unknown. This present study used HepG2 cell cultures and ovariectomized C57BL/6 J mice to determine whether apolipoprotein M (ApoM), a constituent of HDL, was affected by dihydrotestosterone (DHT). Methods HepG2 cells were cultured in the presence of either DHT, agonist of protein kinase C (PKC), phorbol-12-myristate-13-acetate (PMA), blocker of androgen receptor flutamide together with different concentrations of DHT, or DHT together with staurosporine at different concentrations for 24 hrs. Ovariectomized C57BL/6 J mice were treated with DHT or vehicle for 7d or 14d and the levels of plasma ApoM and livers ApoM mRNA were measured. The mRNA levels of ApoM, ApoAI were determined by real-time RT-PCR. ApoM and ApoAI were determined by western blotting analysis. Results Addition of DHT to cell culture medium selectively down-regulated ApoM mRNA expression and ApoM secretion in a dose-dependent manner. At 10 nM DHT, the ApoM mRNA levels were about 20% lower than in untreated cells and about 40% lower at 1000 nM DHT than in the control cells. The secretion of ApoM into the medium was reduced to a similar extent. The inhibitory effect of DHT on ApoM secretion was not blocked by the classical androgen receptor blocker flutamide but by an antagonist of PKC, Staurosporine. Agonist of PKC, PMA, also reduced ApoM. At 0.5 μM PMA, the ApoM mRNA levels and the secretion of ApoM into the medium were about 30% lower than in the control cells. The mRNA expression levels and secretion of another HDL-associated apolipoprotein AI (ApoAI) were not affected by DHT. The levels of plasma ApoM and liver ApoM mRNA of DHT-treated C57BL/6 J mice were lower than those of vehicle-treated mice. Conclusions DHT directly and selectively down-regulated the level of ApoM mRNA and the secretion of ApoM by protein kinase C but independently of the classical androgen receptor.
Collapse
|
11
|
Syed F, Bayat A. Superior effect of combination vs. single steroid therapy in keloid disease: A comparative in vitro analysis of glucocorticoids. Wound Repair Regen 2012; 21:88-102. [DOI: 10.1111/j.1524-475x.2012.00862.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Accepted: 08/20/2012] [Indexed: 11/30/2022]
Affiliation(s)
- Farhatullah Syed
- Plastic & Reconstructive Surgery Research; Manchester Institute of Biotechnology; University of Manchester; Manchester United Kingdom
| | - Ardeshir Bayat
- Plastic & Reconstructive Surgery Research; Manchester Institute of Biotechnology; University of Manchester; Manchester United Kingdom
- Department of Plastic and Reconstructive Surgery; University Hospital South Manchester NHS Foundation Trust; Wythenshawe Hospital; Manchester United Kingdom
| |
Collapse
|
12
|
Saffar AS, Ashdown H, Gounni AS. The molecular mechanisms of glucocorticoids-mediated neutrophil survival. Curr Drug Targets 2011; 12:556-62. [PMID: 21504070 PMCID: PMC3267167 DOI: 10.2174/138945011794751555] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Neutrophil-dominated inflammation plays an important role in many airway diseases including asthma, chronic obstructive pulmonary disease (COPD), bronchiolitis and cystic fibrosis. In cases of asthma where neutrophil-dominated inflammation is a major contributing factor to the disease, treatment with corticosteroids can be problematic as corticosteroids have been shown to promote neutrophil survival which, in turn, accentuates neutrophilic inflammation. In light of such cases, novel targeted medications must be developed that could control neutrophilic inflammation while still maintaining their antibacterial/anti-fungal properties, thus allowing individuals to maintain effective innate immune responses to invading pathogens. The aim of this review is to describe the molecular mechanisms of neutrophil apoptosis and how these pathways are modulated by glucocorticoids. These new findings are of potential clinical value and provide further insight into treatment of neutrophilic inflammation in lung disease.
Collapse
Affiliation(s)
- Arash S Saffar
- Department of Immunology, Faculty of Medicine, University of Manitoba, Winnipeg, Canada
| | | | | |
Collapse
|
13
|
Facchinetti MM, Gandini NA, Fermento ME, Sterin-Speziale NB, Ji Y, Patel V, Gutkind JS, Rivadulla MG, Curino AC. The expression of sphingosine kinase-1 in head and neck carcinoma. Cells Tissues Organs 2010; 192:314-24. [PMID: 20606403 DOI: 10.1159/000318173] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/07/2010] [Indexed: 12/22/2022] Open
Abstract
Sphingosine kinase-1 (SPHK1) modulates the proliferation, apoptosis and differentiation of keratinocytes through the regulation of ceramide and sphingosine-1-phosphate levels. However, studies on the expression of SPHK1 in human head and neck squamous cell carcinoma (HNSCC) specimens are lacking. Therefore, the aim of the present work was to evaluate SPHK1 expression in human primary HNSCCs and to correlate the results with clinical and anatomopathological parameters. We investigated the expression of this protein by immunohistochemistry performed in tissue microarrays of HNSCC and in an independent cohort of 37 paraffin-embedded specimens. SPHK1 expression was further validated by real-time PCR performed on laser capture-microdissected tissue samples. The positive rate of SPHK1 protein in the cancerous tissues was significantly higher (74%) than that in the nontumor oral tissues (23%), and malignant tissues showed stronger immunoreactivity for SPHK1 than normal matching samples. These results were confirmed by real-time PCR quantification of SPHK1 mRNA. Interestingly, the positive expression of SPHK1 was associated with shorter patient survival time (Kaplan-Meier survival curves) and with the loss of p21 expression. Taken together, these results demonstrate that SPHK1 is upregulated in HNSCC and provide clues of the role SPHK1 might play in tumor progression.
Collapse
Affiliation(s)
- María M Facchinetti
- Instituto de Investigaciones Bioquímicas Bahía Blanca, INIBIBB-CONICET, Argentina
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Lucki NC, Sewer MB. The interplay between bioactive sphingolipids and steroid hormones. Steroids 2010; 75:390-9. [PMID: 20138078 PMCID: PMC2854287 DOI: 10.1016/j.steroids.2010.01.020] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2009] [Revised: 01/25/2010] [Accepted: 01/26/2010] [Indexed: 01/02/2023]
Abstract
Steroid hormones regulate various physiological processes including development, reproduction, and metabolism. These regulatory molecules are synthesized from cholesterol in endocrine organs - such as the adrenal glands and gonads - via a multi-step enzymatic process that is catalyzed by the cytochrome P450 superfamily of monooxygenases and hydroxysteroid dehydrogenases. Steroidogenesis is induced by trophic peptide hormones primarily via the activation of a cAMP/protein kinase A (PKA)-dependent pathway. However, other signaling molecules, including cytokines and growth factors, control the steroid hormone biosynthetic pathway. More recently, sphingolipids, including ceramide, sphingosine-1-phosphate, and sphingosine, have been found to modulate steroid hormone secretion at multiple levels. In this review, we provide a brief overview of the mechanisms by which sphingolipids regulate steroidogenesis. In addition, we discuss how steroid hormones control sphingolipid metabolism. Finally, we outline evidence supporting the emerging role of bioactive sphingolipids in various nuclear processes and discuss a role for nuclear sphingolipid metabolism in the control of gene transcription.
Collapse
Affiliation(s)
- Natasha C. Lucki
- School of Biology and Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 310 Ferst Dr., Atlanta, GA 30332
| | - Marion B. Sewer
- Skaggs School of Pharmacy & Pharmaceutical Sciences, University of California San Diego, 9500 Gilman Dr. MC0704, La Jolla, CA 92093
| |
Collapse
|
15
|
Nieuwenhuis B, Lüth A, Chun J, Huwiler A, Pfeilschifter J, Schäfer-Korting M, Kleuser B. Involvement of the ABC-transporter ABCC1 and the sphingosine 1-phosphate receptor subtype S1P(3) in the cytoprotection of human fibroblasts by the glucocorticoid dexamethasone. J Mol Med (Berl) 2009; 87:645-57. [PMID: 19370318 DOI: 10.1007/s00109-009-0468-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2008] [Revised: 03/24/2009] [Accepted: 04/01/2009] [Indexed: 10/20/2022]
Abstract
Glucocorticoids (GC) represent the most commonly used drugs for the treatment of acute and chronic inflammatory skin diseases. However, the topical long-term therapy of GC is limited by the occurrence of skin atrophy. Most interestingly, although GC inhibit proliferation of human fibroblasts, they exert a pronounced anti-apoptopic action. In the present study, we further elucidated the molecular mechanism of the GC dexamethasone (Dex) to protect human fibroblasts from programmed cell death. Dex not only significantly alters the expression of the cytosolic isoenzyme sphingosine kinase 1 but also initiated an enhanced intracellular formation of the sphingolipid sphingosine 1-phosphate (S1P). Investigations using S1P (3) ((-/-)) -fibroblasts revealed that this S1P-receptor subtype is essential for the Dex-induced cytoprotection. Moreover, we demonstrate that the ATP-binding cassette (ABC)-transporter ABCC1 is upregulated by Dex and may represent a crucial carrier to transport S1P from the cytosol to the S1P(3)-receptor subtype.
Collapse
Affiliation(s)
- Barbara Nieuwenhuis
- Institute of Pharmacy, Pharmacology and Toxicology, Freie Universität Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|
16
|
Qian YH, Xiao Q, Chen H, Xu J. Dexamethasone inhibits camptothecin-induced apoptosis in C6-glioma via activation of Stat5/Bcl-xL pathway. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2009; 1793:764-71. [PMID: 19339209 DOI: 10.1016/j.bbamcr.2009.01.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2008] [Revised: 01/02/2009] [Accepted: 01/22/2009] [Indexed: 10/21/2022]
Abstract
Dexamethasone (DX) induces apoptosis resistance in most solid malignant tumors during co-treatment with chemotherapy agents, such as camptothecin (CAM). In this study, we investigated the mechanism by which DX reduces chemotherapy efficiency in C6-glioma. DX reduced CAM-increased DNA fragmentation and caspase-3 activation. The DX's protection was negated by RU486, an antagonist of glucocorticoid receptor (GR). DX itself increased anti-apoptotic gene, Bcl-xL expression, and its transcription factor, signaling transducer and activator of transcription 5 (Stat5), DNA binding activity and phospho-Stat5 expression. DX blocked the CAM-decreased Bcl-xL and phospho-Stat5 expression, and Stat5 binding activity. RU486 negated DX's actions. To determine whether Stat5 regulates Bcl-xL expression in CAM-induced cell death, C6-glioma was infected with an adenovirus containing a constitutively activated Stat5-GFP (Ad-Stat5ca). Overexpression of Stat5ca increased Bcl-xL and decreased CAM-induced cell death compared to control adenovirus infected cells; whereas Stat5 siRNA decreased DX-induced Bcl-xL and increased cell death. Phospho-Stat5 expression was observed in the nuclear extract by co-immunoprecipitation with an anti-GR antibody, indicating that Stat5 and GR were interactive and formed a complex in the nuclei. These results suggest that DX's prevention from CAM-induced apoptosis and RU486's antagonism of DX's protection may be through Stat5/Bcl-xL signal pathway regulated by a GR.
Collapse
Affiliation(s)
- Yi-Hua Qian
- Department of Human Anatomy and Histology-Embryology, School of Medicine, Xi'an Jiaotong University, Xi'an, People's Republic of China
| | | | | | | |
Collapse
|
17
|
Herr I, Büchler MW, Mattern J. Glucocorticoid-mediated apoptosis resistance of solid tumors. Results Probl Cell Differ 2009; 49:191-218. [PMID: 19132324 DOI: 10.1007/400_2008_20] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
More than a quarter of a century ago, the phenomenon of glucocorticoid-induced apoptosis in the majority of hematological cells was first recognized. More recently, glucocorticoid-induced antiapoptotic signaling associated with apoptosis resistance towards cytotoxic therapy has been identified in cells of epithelial origin, most of malignant solid tumors and some other tissues. Despite these huge amounts of data demonstrating differential pro- and anti-apoptotic effects of glucocorticoids, the underlying mechanisms of cell type-specific glucocorticoid signaling are just beginning to be described. This review summarizes our present understanding of cell type-specific pro- and anti-apoptotic signaling induced by glucocorticoids. We shortly introduce mechanisms of glucocorticoid resistance of hematological cells. We highlight and discuss the emerging molecular evidence of a general induction of survival signaling in epithelial cells and carcinoma cells by glucocorticoids. We give a summary of our current knowledge of decreased proliferation rates in response to glucocorticoid pre- and combination treatment, which are suspicious to be involved not only in protection of normal tissues, but also in protection of solid tumors from cytotoxic effects of anticancer agents.
Collapse
Affiliation(s)
- Ingrid Herr
- Department of Surgery, University of Heidelberg, Germany.
| | | | | |
Collapse
|
18
|
Evaluation of beneficial and adverse effects of glucocorticoids on a newly developed full-thickness skin model. Toxicol In Vitro 2008; 22:747-59. [DOI: 10.1016/j.tiv.2007.11.022] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2007] [Revised: 11/13/2007] [Accepted: 11/28/2007] [Indexed: 11/21/2022]
|
19
|
Moriue T, Igarashi J, Yoneda K, Nakai K, Kosaka H, Kubota Y. Sphingosine 1-phosphate attenuates H2O2-induced apoptosis in endothelial cells. Biochem Biophys Res Commun 2008; 368:852-7. [PMID: 18267109 DOI: 10.1016/j.bbrc.2008.01.155] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2008] [Accepted: 01/27/2008] [Indexed: 10/22/2022]
Abstract
Reactive oxygen species including H(2)O(2) lead vascular endothelial cells (EC) to undergo apoptosis. Sphingosine 1-phosphate (S1P) is a platelet-derived sphingolipid mediator that elicits various EC responses. We aimed to explore whether and how S1P modulates EC apoptosis induced by H(2)O(2). Treatment of cultured bovine aortic EC (BAEC) with H(2)O(2) (750 microM for 6h) led to DNA fragmentation (ELISA), DNA nick formation (TUNEL staining), and cleavage of caspase-3, key features of EC apoptosis. These responses elicited by H(2)O(2) were alike markedly attenuated by pretreatment with S1P (1 microM, 30 min). H(2)O(2) induced robust phosphorylation of both p38 and JNK MAP kinases. However, pretreatment with S1P decreased phosphorylation of only p38 MAP kinase, but not that of JNK; conversely, an inhibitor of p38 MAP kinase, but not that of JNK, attenuated H(2)O(2)-induced caspase-3 activation. Thus S1P attenuates H(2)O(2)-induced apoptosis of cultured BAEC, involving p38 MAP kinase.
Collapse
Affiliation(s)
- Tetsuya Moriue
- Department of Dermatology, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-Cho, Kita-Gun, Kagawa 761-0793, Japan
| | | | | | | | | | | |
Collapse
|
20
|
Watterson KR, Lanning DA, Diegelmann RF, Spiegel S. Regulation of fibroblast functions by lysophospholipid mediators: Potential roles in wound healing. Wound Repair Regen 2007; 15:607-16. [DOI: 10.1111/j.1524-475x.2007.00292.x] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
21
|
Herr I, Gassler N, Friess H, Büchler MW. Regulation of differential pro- and anti-apoptotic signaling by glucocorticoids. Apoptosis 2007; 12:271-91. [PMID: 17191112 DOI: 10.1007/s10495-006-0624-5] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
More than a quarter of a century ago, the phenomenon of glucocorticoid-induced apoptosis in the majority of hematological cells was first recognized. More recently, glucocorticoid-induced antiapoptotic signaling associated with apoptosis resistance has been identified in cells of epithelial origin, most of malignant solid tumors and some other tissues. Despite these huge amount of data demonstrating differential pro- and anti-apoptotic effects of glucocorticoids, the underlying mechanisms of cell type specific glucocorticoid signaling are just beginning to be described. This review summarizes our present understanding of cell type-specific pro- and anti-apoptotic signaling induced by glucocorticoids. In the first section we give a summary and update of known glucocorticoid-induced pathways mediating apoptosis in hematological cells. We shortly introduce mechanisms of glucocorticoid resistance of hematological cells. We highlight and discuss the emerging molecular evidence of a general induction of survival signaling in epithelial cells and carcinoma cells by glucocorticoids. We provide a model for glucocorticoid-induced resistance in cells growing in a tissue formation. Thus, attachment to the extracellular matrix and cell-cell contacts typical for e.g. epithelial and tumor cells may be crucially involved in switching the balance of several interacting pathways to survival upon treatment with glucocorticoids.
Collapse
Affiliation(s)
- Ingrid Herr
- Department of Surgery, University of Heidelberg, Heidelberg, Germany.
| | | | | | | |
Collapse
|
22
|
Houben E, Uchida Y, Nieuwenhuizen WF, De Paepe K, Vanhaecke T, Holleran WM, Rogiers V. Kinetic Characteristics of Acidic and Alkaline Ceramidase in Human Epidermis. Skin Pharmacol Physiol 2007; 20:187-94. [PMID: 17396053 DOI: 10.1159/000101388] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2006] [Accepted: 12/22/2006] [Indexed: 11/19/2022]
Abstract
It has recently become evident that at least five ceramidase (CDase) isoforms are present in human epidermis, and that specifically acidic CDase (aCDase) and alkaline CDase (alkCDase) activities increase during keratinocyte differentiation, and thus might play a pivotal role(s) in permeability barrier function. Prior to investigating their possible roles in the epidermal barrier function, it is necessary to characterize basic kinetic parameters for these enzymes, as well as to determine the effects of the established CDase inhibitors and their activities. In this study, assays for both aCDase and alkCDase activities in fully differentiated human epidermis were optimized using a radiolabeled substrate. These studies revealed that aCDase activity is substantially higher than alkCDase activity, and that both isoenzymes are inhibited by a CDase inhibitor N-oleylethanolamine. These findings were also confirmed using an in situ enzyme assay.
Collapse
Affiliation(s)
- E Houben
- Department of Toxicology, Dermato-Cosmetology and Pharmacognosy, Vrije Universiteit Brussel, Brussels, Belgium.
| | | | | | | | | | | | | |
Collapse
|
23
|
Scoltock AB, Heimlich G, Cidlowski JA. Glucocorticoids inhibit the apoptotic actions of UV-C but not Fas ligand in hepatoma cells: direct evidence for a critical role of Bcl-xL. Cell Death Differ 2006; 14:840-50. [PMID: 17170751 DOI: 10.1038/sj.cdd.4402071] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Our laboratory has shown that glucocorticoids can inhibit apoptosis in rat hepatoma cells; however, the mechanisms are incompletely understood. To address this issue we sought to determine if glucocorticoid inhibition is effective when death is induced by stimuli that more selectively activate either the intrinsic (UV-C) or extrinsic (FasL) apoptotic pathways. Using flow cytometric analysis, we show that pretreatment of HTC cells with dexamethasone (Dex) inhibits UV-C- but not FasL-induced apoptosis. This inhibition requires Dex pretreatment and can be abrogated by the glucocorticoid antagonist RU486 indicating glucocorticoid receptor-mediated action. Dex increases anti-apoptotic Bcl-x(L) at both mRNA and protein levels. The Bcl-x(L) protein level remains elevated even after apoptosis induction with either UV-C or FasL although only UV-C-induced cell death is inhibited. Repression of Bcl-x(L) protein with siRNA abrogates the anti-apoptotic effect of glucocorticoids. Together these data provide direct evidence that Bcl-x(L) mediates glucocorticoid inhibition of UV-C induced apoptosis.
Collapse
Affiliation(s)
- A B Scoltock
- Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC 27709, USA
| | | | | |
Collapse
|
24
|
Stojadinovic O, Lee B, Vouthounis C, Vukelic S, Pastar I, Blumenberg M, Brem H, Tomic-Canic M. Novel genomic effects of glucocorticoids in epidermal keratinocytes: inhibition of apoptosis, interferon-gamma pathway, and wound healing along with promotion of terminal differentiation. J Biol Chem 2006; 282:4021-34. [PMID: 17095510 DOI: 10.1074/jbc.m606262200] [Citation(s) in RCA: 140] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Glucocorticoids (GCs) have a long history of use as therapeutic agents for numerous skin diseases. Surprisingly, their specific molecular effects are largely unknown. To characterize GC action in epidermis, we compared the transcriptional profiles of primary human keratinocytes untreated and treated with dexamethasone (DEX) for 1, 4, 24, 48, and 72 h using large scale microarray analyses. The majority of genes were found to be regulated only after 24 h and remained regulated throughout treatment. In addition to regulation of the expected pro-inflammatory genes, we found that GCs regulate cell fate, tissue remodeling, cell motility, differentiation, and metabolism. GCs suppress the expression of essentially all IFNgamma-regulated genes, including IFNgamma receptor and STAT-1, an effect that was previously unknown. GCs also block STAT-1 activation and nuclear translocation. Unexpectedly, GCs induce the expression of anti-apoptotic genes and repress pro-apoptotic ones, preventing UV-induced keratinocyte apoptosis. Consequently, treatment with GCs blocked UV-induced apoptosis of keratinocytes. GCs have profound effect on wound healing by inhibiting cell motility and the expression of the proangiogenic factor, vascular endothelial growth factor. They play an important role in tissue remodeling and scar formation by suppressing the expression of TGFbeta1 and -2 and MMP1, -2, -9, and -10 and inducing TIMP-2. Finally, GCs promote terminal epidermal differentiation while simultaneously inhibiting early stage differentiation. These results provide new insights into the beneficial and adverse effects of GCs in the epidermis, defining the participating genes and mechanisms that coordinate the cellular responses important for GC-based therapies.
Collapse
Affiliation(s)
- Olivera Stojadinovic
- Hospital for Special Surgery, Tissue Repair Laboratory, Tissue Engineering, Regeneration and Repair Program, New York, New York 10021, USA
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Luo X, Zhou Y, Tao D, Yu Y, Hu J, Qiu F, Kulkarni H, Gong J. Usefulness of oral mucosal epithelial cell apoptosis rate in nutritional assessment. Nutrition 2006; 22:1032-8. [PMID: 16979323 DOI: 10.1016/j.nut.2006.03.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2005] [Revised: 03/11/2006] [Accepted: 03/17/2006] [Indexed: 10/24/2022]
Abstract
OBJECTIVE This preliminary study was designed to explore a new method for nutritional assessment by measuring oral mucosal cell apoptosis or proliferation. METHODS Forty-two consecutive patients with gastrointestinal malignant tumors were hospitalized on the surgical wards and studied prospectively. Patient-Generated Subjective Global Assessment was used to identify malnourished patients. Anthropometric measurements including weight, body mass index, triceps skinfold thickness, and midarm muscle circumference were recorded. The serum proteins measured were retinol-binding protein (RBP), transferrin, prealbumin (PA), and albumin. Simultaneously, the rates of oral epithelial cell apoptosis and proliferation were measured by flow cytometry. Of the 20 malnourished patients, 14 were followed up in a serial study with a 3-d nutritional support therapy. Nutritional indices and oral epithelial cell apoptosis rate were measured after 3 d of nutritional support. RESULTS Malnutrition was diagnosed in 20 of 42 patients (47.6%). Oral epithelial apoptosis and proliferation rates were significantly decreased (P < 0.01 and P < 0.05, respectively) in malnourished compared with non-malnourished patients, although there were no significant differences between their anthropometric data. Malnourished patients had lower serum levels of RBP, albumin, and PA and rates of oral epithelial cell apoptosis and proliferation. The rate of oral epithelial cell apoptosis positively correlated with serum RBP (R = 0.32, P < 0.05) and PA (R = 0.33, P < 0.05). The rate of oral epithelial cell apoptosis and serum RBP and PA increased significantly in the malnourished patients who received nutritional support for 3 days. CONCLUSIONS Measuring the rate of oral epithelial cell apoptosis may be another non-invasive technique to determine nutritional assessment and is worthy of further exploration.
Collapse
Affiliation(s)
- Xuelai Luo
- Molecular Centre and Department of Surgery, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Abstract
Glucocorticoids (GCs) are highly effective for the topical treatment of inflammatory skin diseases. Their long-term use, however, is often accompanied by severe and partially irreversible adverse effects, with atrophy being the most prominent limitation. Progress in the understanding of GC-mediated molecular action as well as some advances in technologies to determine the atrophogenic potential of compounds has been made recently. It is likely that the detailed mechanisms of GC-induced skin atrophy will be discovered and in vitro models for the reliable prediction of atrophy will be established in the foreseeable future. This knowledge will not only facilitate safety profiling of established drugs but will also foster further drug discovery by improving compound characterization processes. New insights into GC modes of action will guide optimization strategies aiming at novel GC receptor ligands with improved effect/side effect profile.
Collapse
Affiliation(s)
- Stefanie Schoepe
- Corporate Research Business Area Inflammation, Schering AG, Berlin, Germany
| | | | | | | |
Collapse
|
27
|
Schafer-Korting M, Kleuser B, Ahmed M, Holtje HD, Korting HC. Glucocorticoids for Human Skin: New Aspects of the Mechanism of Action. Skin Pharmacol Physiol 2005; 18:103-14. [PMID: 15897682 DOI: 10.1159/000084907] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2004] [Accepted: 10/19/2004] [Indexed: 12/23/2022]
Abstract
Topical glucocorticoids have always been considered first-line drugs for inflammatory diseases of the skin and bronchial system. Applied systemically, glucocorticoids are used for severe inflammatory and immunological diseases and the inhibition of transplant rejection. Owing to the progress in molecular pharmacology, the knowledge of the mechanism of action has increased during the last years. Besides distinct genomic targets, which are due to the activation of specific cytoplasmatic receptors resulting in the (trans-) activation or (trans-) repression of target genes, there are non-genomic effects on the basis of the interference with membrane-associated receptors as well as with membrane lipids. In fact, various glucocorticoids appear to differ with respect to the relative influence on these targets. Thus, the extended knowledge of glucocorticoid-induced cellular signalling should allow the design and development of even more specifically acting drugs - as it has been obtained with other steroids, e.g. estrogens for osteoporosis prevention.
Collapse
Affiliation(s)
- M Schafer-Korting
- Pharmakologie und Toxikologie, Institut fur Pharmazie, Freie Universitat Berlin, Deutschland.
| | | | | | | | | |
Collapse
|
28
|
Schmidt S, Rainer J, Ploner C, Presul E, Riml S, Kofler R. Glucocorticoid-induced apoptosis and glucocorticoid resistance: molecular mechanisms and clinical relevance. Cell Death Differ 2005; 11 Suppl 1:S45-55. [PMID: 15243581 DOI: 10.1038/sj.cdd.4401456] [Citation(s) in RCA: 275] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The ability of glucocorticoids (GC) to efficiently kill lymphoid cells has led to their inclusion in essentially all chemotherapy protocols for lymphoid malignancies. This review summarizes recent findings related to the molecular basis of GC-induced apoptosis and GC resistance, and discusses their potential clinical implications. Accumulating evidence suggests that GC may induce cell death via different pathways resulting in apoptotic or necrotic morphologies, depending on the availability/responsiveness of the apoptotic machinery. The former might result from regulation of typical apoptosis genes such as members of the Bcl-2 family, the latter from detrimental GC effects on essential cellular functions possibly perpetuated by GC receptor (GR) autoinduction. Although other possibilities exist, GC resistance might frequently result from defective GR expression, perhaps the most efficient means to target multiple antileukemic GC effects. Numerous novel drug combinations are currently being tested to prevent resistance and improve GC efficacy in the therapy of lymphoid malignancies.
Collapse
Affiliation(s)
- S Schmidt
- Tyrolean Cancer Research Institute, Innsbruck, Austria
| | | | | | | | | | | |
Collapse
|