1
|
Truong AD, Tran HTT, Chu NT, Nguyen HT, Phan L, Phan HT, Vu TH, Song KD, Lillehoj HS, Hong YH, Dang HV. Comprehensive genome‑wide analysis of the chicken heat shock protein family: identification, genomic organization, and expression profiles in indigenous chicken with highly pathogenic avian influenza infection. BMC Genomics 2023; 24:793. [PMID: 38124030 PMCID: PMC10734131 DOI: 10.1186/s12864-023-09908-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023] Open
Abstract
BACKGROUND Heat shock proteins (HSPs) function as molecular chaperones with critical roles in chicken embryogenesis, immune response to infectious diseases, and response to various environmental stresses. However, little is known on HSP genes in chicken. In this study, to understand the roles of chicken HSPs, we performed genome-wide identification, expression, and functional analyses of the HSP family genes in chicken. RESULTS A total of 76 HSP genes were identified in the chicken genome, which were further classified into eight distinct groups (I-VIII) based on phylogenetic tree analysis. The gene-structure analysis revealed that the members of each clade had the same or similar exon-intron structures. Chromosome mapping suggested that HSP genes were widely dispersed across the chicken genome, except in chromosomes 16, 18, 22, 25, 26, and 28-32, which lacked chicken HSP genes. On the other hand, the interactions among chicken HSPs were limited, indicating that the remaining functions of HSPs could be investigated in chicken. Moreover, KEGG pathway analysis showed that the HSP gene family was involved in the regulation of heat stress, apoptotic, intracellular signaling, and immune response pathways. Finally, RNA sequencing data revealed that, of the 76 chicken HSP genes, 46 were differentially expressed at 21 different growth stages in chicken embryos, and 72 were differentially expressed on post-infection day 3 in two indigenous Ri chicken lines infected with highly pathogenic avian influenza. CONCLUSIONS This study provides significant insights into the potential functions of HSPs in chicken, including the regulation of apoptosis, heat stress, chaperone activity, intracellular signaling, and immune response to infectious diseases.
Collapse
Affiliation(s)
- Anh Duc Truong
- Department of Biochemistry and Immunology, National Institute of Veterinary Research, 86 Truong Chinh, Dong Da, Ha Noi, 100000, Vietnam
| | - Ha Thi Thanh Tran
- Department of Biochemistry and Immunology, National Institute of Veterinary Research, 86 Truong Chinh, Dong Da, Ha Noi, 100000, Vietnam
| | - Nhu Thi Chu
- Department of Biochemistry and Immunology, National Institute of Veterinary Research, 86 Truong Chinh, Dong Da, Ha Noi, 100000, Vietnam
| | - Huyen Thi Nguyen
- Department of Biochemistry and Immunology, National Institute of Veterinary Research, 86 Truong Chinh, Dong Da, Ha Noi, 100000, Vietnam
| | - Lanh Phan
- Department of Biochemistry and Immunology, National Institute of Veterinary Research, 86 Truong Chinh, Dong Da, Ha Noi, 100000, Vietnam
| | - Hoai Thi Phan
- Department of Biochemistry and Immunology, National Institute of Veterinary Research, 86 Truong Chinh, Dong Da, Ha Noi, 100000, Vietnam
| | - Thi Hao Vu
- Department of Biochemistry and Immunology, National Institute of Veterinary Research, 86 Truong Chinh, Dong Da, Ha Noi, 100000, Vietnam
- Department of Animal Science and Technology, Chung-Ang University, Anseong, 17546, Republic of Korea
| | - Ki-Duk Song
- The Animal Molecular Genetics and Breeding Center, Department of Animal Biotechnology, JeonBuk National University, Jeonju, 54896, Republic of Korea
| | - Hyun S Lillehoj
- Animal Biosciences and Biotechnology Laboratory, Agricultural Research Services, United States Department of Agriculture, Beltsville, MD, 20705, USA
| | - Yeong Ho Hong
- Department of Animal Science and Technology, Chung-Ang University, Anseong, 17546, Republic of Korea.
| | - Hoang Vu Dang
- Department of Biochemistry and Immunology, National Institute of Veterinary Research, 86 Truong Chinh, Dong Da, Ha Noi, 100000, Vietnam.
| |
Collapse
|
2
|
Truong AD, Tran HTT, Chu NT, Nguyen HT, Vu TH, Hong Y, Song KD, Dang HV, Hong YH. Genome‑wide identification, organization, and expression profiles of the chicken fibroblast growth factor genes in public databases and Vietnamese indigenous Ri chickens against highly pathogenic avian influenza H5N1 virus infection. Anim Biosci 2023; 36:570-583. [PMID: 36397707 PMCID: PMC9996274 DOI: 10.5713/ab.22.0277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 09/16/2022] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE Fibroblast growth factors (FGFs) play critical roles in embryo development, and immune responses to infectious diseases. In this study, to investigate the roles of FGFs, we performed genome-wide identification, expression, and functional analyses of FGF family members in chickens. METHODS Chicken FGFs genes were identified and analyzed by using bioinformatics approach. Expression profiles and Hierarchical cluster analysis of the FGFs genes in different chicken tissues were obtained from the genome-wide RNA-seq. RESULTS A total of 20 FGF genes were identified in the chicken genome, which were classified into seven distinct groups (A-F) in the phylogenetic tree. Gene structure analysis revealed that members of the same clade had the same or similar exon-intron structure. Chromosome mapping suggested that FGF genes were widely dispersed across the chicken genome and were located on chromosomes 1, 4-6, 9-10, 13, 15, 28, and Z. In addition, the interactions among FGF proteins and between FGFs and mitogen‑activated protein kinase (MAPK) proteins are limited, indicating that the remaining functions of FGF proteins should be further investigated in chickens. Kyoto encyclopedia of genes and genomes pathway analysis showed that FGF gene interacts with MAPK genes and are involved in stimulating signaling pathway and regulating immune responses. Furthermore, this study identified 15 differentially expressed genes (DEG) in 21 different growth stages during early chicken embryo development. RNA-sequencing data identified the DEG of FGFs on 1- and 3-days post infection in two indigenous Ri chicken lines infected with the highly pathogenic avian influenza virus H5N1 (HPAIV). Finally, all the genes examined through quantitative real-time polymerase chain reaction and RNA-Seq analyses showed similar responses to HPAIV infection in indigenous Ri chicken lines (R2 = 0.92- 0.95, p<0.01). CONCLUSION This study provides significant insights into the potential functions of FGFs in chickens, including the regulation of MAPK signaling pathways and the immune response of chickens to HPAIV infections.
Collapse
Affiliation(s)
- Anh Duc Truong
- Department of Biochemistry and Immunology, National Institute of Veterinary Research, 86 Truong Chinh, Dong Da, Ha Noi 100000, Vietnam
| | - Ha Thi Thanh Tran
- Department of Biochemistry and Immunology, National Institute of Veterinary Research, 86 Truong Chinh, Dong Da, Ha Noi 100000, Vietnam
| | - Nhu Thi Chu
- Department of Biochemistry and Immunology, National Institute of Veterinary Research, 86 Truong Chinh, Dong Da, Ha Noi 100000, Vietnam
| | - Huyen Thi Nguyen
- Department of Biochemistry and Immunology, National Institute of Veterinary Research, 86 Truong Chinh, Dong Da, Ha Noi 100000, Vietnam
| | - Thi Hao Vu
- Department of Biochemistry and Immunology, National Institute of Veterinary Research, 86 Truong Chinh, Dong Da, Ha Noi 100000, Vietnam.,Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Korea
| | - Yeojin Hong
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Korea
| | - Ki-Duk Song
- The Animal Molecular Genetics and Breeding Center and Department of Animal Biotechnology, JeonBuk National University, Jeonju 54896, Korea
| | - Hoang Vu Dang
- Department of Biochemistry and Immunology, National Institute of Veterinary Research, 86 Truong Chinh, Dong Da, Ha Noi 100000, Vietnam
| | - Yeong Ho Hong
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Korea
| |
Collapse
|
3
|
Oladokun S, Adewole DI. Biomarkers of heat stress and mechanism of heat stress response in Avian species: Current insights and future perspectives from poultry science. J Therm Biol 2022; 110:103332. [DOI: 10.1016/j.jtherbio.2022.103332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 09/09/2022] [Accepted: 09/13/2022] [Indexed: 11/28/2022]
|
4
|
|
5
|
Waugh DT. The Contribution of Fluoride to the Pathogenesis of Eye Diseases: Molecular Mechanisms and Implications for Public Health. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:E856. [PMID: 30857240 PMCID: PMC6427526 DOI: 10.3390/ijerph16050856] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 03/04/2019] [Accepted: 03/05/2019] [Indexed: 12/18/2022]
Abstract
This study provides diverse lines of evidence demonstrating that fluoride (F) exposure contributes to degenerative eye diseases by stimulating or inhibiting biological pathways associated with the pathogenesis of cataract, age-related macular degeneration and glaucoma. As elucidated in this study, F exerts this effect by inhibiting enolase, τ-crystallin, Hsp40, Na⁺, K⁺-ATPase, Nrf2, γ -GCS, HO-1 Bcl-2, FoxO1, SOD, PON-1 and glutathione activity, and upregulating NF-κB, IL-6, AGEs, HsP27 and Hsp70 expression. Moreover, F exposure leads to enhanced oxidative stress and impaired antioxidant activity. Based on the evidence presented in this study, it can be concluded that F exposure may be added to the list of identifiable risk factors associated with pathogenesis of degenerative eye diseases. The broader impact of these findings suggests that reducing F intake may lead to an overall reduction in the modifiable risk factors associated with degenerative eye diseases. Further studies are required to examine this association and determine differences in prevalence rates amongst fluoridated and non-fluoridated communities, taking into consideration other dietary sources of F such as tea. Finally, the findings of this study elucidate molecular pathways associated with F exposure that may suggest a possible association between F exposure and other inflammatory diseases. Further studies are also warranted to examine these associations.
Collapse
Affiliation(s)
- Declan Timothy Waugh
- EnviroManagement Services, 11 Riverview, Doherty's Rd, Bandon, P72 YF10 Co. Cork, Ireland.
| |
Collapse
|
6
|
Zhou D, Zhang Y, Xue D, Liu P. Protective Effects of Quercetin on Selenium-Induced Cataracts via Modulation of Heat Shock Protein 70 Expression. INT J PHARMACOL 2018. [DOI: 10.3923/ijp.2018.913.921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
7
|
Raghebian M, Sadeghi AA, Aminafshar M. Energy sources and levels influenced on performance parameters, thyroid hormones, and HSP70 gene expression of broiler chickens under heat stress. Trop Anim Health Prod 2016; 48:1697-1702. [PMID: 27628066 DOI: 10.1007/s11250-016-1146-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 09/06/2016] [Indexed: 01/12/2023]
Abstract
The present study was conducted to evaluate the effects of energy sources and levels on body and organs weights, thyroid hormones, and heat shock protein (HSP70) gene expression in broilers under heat stress. In a completely randomized design, 600 1-day-old Cobb chickens were assigned to five dietary treatments and four replicates. The chickens were fed diet based on corn as main energy source and energy level based on Cobb standard considered as control (C), corn-based diet with 3 % lesser energy than the control (T1), corn-based diet with 6 % lesser energy than the control (T2), corn and soybean oil-based diet according to Cobb standard (T3), and corn and soybean oil-based diet with 3 % upper energy than the control (T4). Temperature was increased to 34 °C for 8 h daily from days 12 to 41 of age to induce heat stress. The chickens in T1 and T2 had lower thyroid hormones and corticosterone levels than those in C, T3, and T4. The highest liver weight was for C and the lowest one was for T4. The highest gene expression was found in chickens fed T4 diet, and the lowest gene expression was for those in T2 group. The highest feed intake and worse feed conversion ratio was related to chickens in T2. The chickens in T3 and T4 had higher feed intake and weight gain than those in C. The results showed that the higher energy level supplied from soybean oil could enhance gene expression of HSP70 and decline the level of corticosterone and thyroid hormones and consequently improved performance.
Collapse
Affiliation(s)
- Majid Raghebian
- Department of Animal Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Ali Asghar Sadeghi
- Department of Animal Science, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| | - Mehdi Aminafshar
- Department of Animal Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
8
|
A novel HSF4 mutation in a Chinese family with autosomal dominant congenital cataract. ACTA ACUST UNITED AC 2015; 35:316-318. [PMID: 25877371 DOI: 10.1007/s11596-015-1430-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 10/24/2014] [Indexed: 10/23/2022]
Abstract
This study was aimed to identify the mutation of the whole coding region of shock transcription factor 4 (HSF4) gene in a Chinese family with autosomal dominant congenital cataract (ADCC). All exons of HSF4 were amplified by PCR. Sequence analysis of PCR products was performed. Restriction fragment length polymorphism (RFLP) analysis was conducted to confirm the pathogenic mutation. The results showed that a C to T substitution occurred at nucleotide 331 in patients of this family, leading to the replacement of the amino acid arginine-111 with cysteine in exon 3. RFLP analysis showed that the amino acid change was co-segregated with all affected individuals. It was concluded that the new mutation of c.331C>T in HSF4 DNA may be responsible for the autosomal dominant congenital cataract in this family.
Collapse
|
9
|
The association of SNPs in Hsp90β gene 5' flanking region with thermo tolerance traits and tissue mRNA expression in two chicken breeds. Mol Biol Rep 2013; 40:5295-306. [PMID: 23793829 DOI: 10.1007/s11033-013-2630-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Accepted: 04/30/2013] [Indexed: 10/26/2022]
Abstract
Thermo stress induces heat shock proteins (HSPs) expression and HSP90 family is one of them that has been reported to involve in cellular protection against heat stress. But whether there is any association of genetic variation in the Hsp90β gene in chicken with thermo tolerance is still unknown. Direct sequencing was used to detect possible SNPs in Hsp90β gene 5' flanking region in 3 chicken breeds (n = 663). Six mutations, among which 2 SNPs were chosen and genotypes were analyzed with PCR-RFLP method, were found in Hsp90β gene in these 3 chicken breeds. Association analysis indicated that SNP of C.-141G>A in the 5' flanking region of the Hsp90β gene in chicken had some effect on thermo tolerance traits, which may be a potential molecular marker of thermo tolerance, and the genotype GG was the thermo tolerance genotype. Hsp90β gene mRNA expression in different tissues detected by quantitative real-time PCR assay were demonstrated to be tissue dependent, implying that different tissues have distinct sensibilities to thermo stress. Besides, it was shown time specific and varieties differences. The expression of Hsp90β mRNA in Lingshan chickens in some tissues including heart, liver, brain and spleen were significantly higher or lower than that of White Recessive Rock (WRR). In this study, we presume that these mutations could be used in marker assisted selection for anti-heat stress chickens in our breeding program, and WRR were vulnerable to tropical thermo stress whereas Lingshan chickens were well adapted.
Collapse
|
10
|
Heise EA, Fort PE. Impact of diabetes on alpha-crystallins and other heat shock proteins in the eye. J Ocul Biol Dis Infor 2011; 4:62-9. [PMID: 23264844 DOI: 10.1007/s12177-011-9073-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Accepted: 12/05/2011] [Indexed: 12/25/2022] Open
Abstract
Diabetes and its related complications represent a major growing health concern and economic burden worldwide. Ocular manifestations of diabetes include cataractogenesis and retinopathy, the latter being the leading cause of blindness in the working-age population. Despite numerous studies and recent progress, the exact pathophysiology of the disease remains to be fully elucidated and development of new and improved therapeutic strategies for this chronic condition are greatly needed. Heat shock proteins (Hsps) are highly conserved families of proteins, which are generally regarded as protective molecules that play a wide variety of roles and can be expressed in response to different types of cellular stresses. In recent years, numerous studies have reported their implication in various ocular diseases including diabetic retinopathy. The present review focuses on the potential implication of Hsps in ocular diabetic complications and discusses their specific mechanisms of regulation with respect to their expression, functions and alteration during diabetes. The review will conclude by examining the potential of Hsps as therapeutic agents or targets for the treatment of diabetic retinopathy.
Collapse
Affiliation(s)
- Erich A Heise
- Kellogg Eye Center, Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI USA
| | | |
Collapse
|
11
|
Simoncelli F, Morosi L, Di Rosa I, Pascolini R, Fagotti A. Molecular characterization and expression of a heat-shock cognate 70 (Hsc70) and a heat-shock protein 70 (Hsp70) cDNAs in Rana (Pelophylax) lessonae embryos. Comp Biochem Physiol A Mol Integr Physiol 2010; 156:552-60. [DOI: 10.1016/j.cbpa.2010.04.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2010] [Revised: 04/21/2010] [Accepted: 04/21/2010] [Indexed: 01/11/2023]
|
12
|
Banh A, Bantseev V, Choh V, Moran KL, Sivak JG. The lens of the eye as a focusing device and its response to stress. Prog Retin Eye Res 2006; 25:189-206. [PMID: 16330238 DOI: 10.1016/j.preteyeres.2005.10.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The continued peripheral growth of the lens, resulting in the concentration of older tissue toward the center, has the important optical consequence of producing a lens of variable refractive index. An approach consisting of the projection of fine laser beams through excised lenses in physiological solution has been used for in vitro study of lens optical quality. By varying the separation of the incident beams and/or the wavelength characteristics of the laser used, lens refractive properties and relative transparency may be examined. In the review provided, these optical properties are correlated to lens suture anatomy, lens mitochondrial morphology and function and the function of lens heat shock proteins. In addition, lens spherical aberration is evaluated as a function of accommodation. This work can be highlighted as follows: Mammalian lens suture morphology has a direct impact on lens optical function and, while suture structure of mammalian and avian lenses are very different, they both show an age-related deterioration in morphology and focusing ability. The distribution and appearance of mitochondria of the lens epithelium and superficial fiber cells are similar in all vertebrates. Lens mitochondrial integrity is correlated to lens focusing ability, suggesting a correlation between lens optical properties and lens metabolic function. The induction of cold cataract measured optically in cultured mammalian lenses is enhanced by thermal (heat) shock and this effect is prevented by inhibiting heat shock protein production. Finally, lens accommodative function can be studied by measuring lens refractive change using a physiological model involving an intact accommodative apparatus.
Collapse
Affiliation(s)
- Alice Banh
- School of Optometry, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
| | | | | | | | | |
Collapse
|
13
|
Min JN, Zhang Y, Moskophidis D, Mivechi NF. Unique contribution of heat shock transcription factor 4 in ocular lens development and fiber cell differentiation. Genesis 2005; 40:205-17. [PMID: 15593327 DOI: 10.1002/gene.20087] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mammalian ocular lens development results via a differentiation program that is highly regulated by tissue-specific transcription factors. Central to this is the terminal differentiation of fiber cells, which develop from epithelial cells on the anterior surface of the lens, accompanied by a change in cell shape and expression of structural proteins (such as membrane proteins MP19, MIP26, connexin 43, 46, and 50, cytoskeletal proteins CP49, CP115, and alpha, beta, and gamma crystallins), creating a transparent, refractive index gradient in the lens. Mutations in genes controlling eye development and in lens structural protein genes are associated with multiple ocular developmental disorders, including cataracts and other opacities of the lens. Here we show that heat shock transcription factor 4 (HSF4) expression in the developing lens is required for correct lens development and that inactivation of hsf4 leads to early postnatal cataract formation with primary effects specific to terminal fiber cell differentiation. These data suggest that HSF4 acts as a critical transcription factor for lens-specific target gene expression, in particular regulating the small 25 kDa heat shock protein that acts as a modifier for lens opacity and cataract development. Thus, HSF4 fulfills a central role in controlling spatial and temporal expression of genes critical for correct development and function of the lens.
Collapse
Affiliation(s)
- Jin-Na Min
- Institute of Molecular Medicine and Genetics, Department of Radiology, Medical College of Georgia, Augusta, Georgia 30912-3175, USA
| | | | | | | |
Collapse
|
14
|
Evans TG, Yamamoto Y, Jeffery WR, Krone PH. Zebrafish Hsp70 is required for embryonic lens formation. Cell Stress Chaperones 2005; 10:66-78. [PMID: 15832949 PMCID: PMC1074573 DOI: 10.1379/csc-79r.1] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2004] [Revised: 11/08/2004] [Accepted: 11/15/2004] [Indexed: 02/01/2023] Open
Abstract
Heat shock proteins (Hsps) were originally identified as proteins expressed after exposure of cells to environmental stress. Several Hsps were subsequently shown to play roles as molecular chaperones in normal intracellular protein folding and targeting events and to be expressed during discrete periods in the development of several embryonic tissues. However, only recently have studies begun to address the specific developmental consequences of inhibiting Hsp expression to determine whether these molecular chaperones are required for specific developmental events. We have previously shown that the heat-inducible zebrafish hsp70 gene is expressed during a distinct temporal window of embryonic lens formation at normal growth temperatures. In addition, a 1.5-kb fragment of the zebrafish hsp70 gene promoter is sufficient to direct expression of a gfp reporter gene to the lens, suggesting that the hsp70 gene is expressed as part of the normal lens development program. Here, we used microinjection of morpholino-modified antisense oligonucleotides (MOs) to reduce Hsp70 levels during zebrafish development and to show that Hsp70 is required for normal lens formation. Hsp70-MO-injected embryos exhibited a small-eye phenotype relative to wild-type and control-injected animals, with the phenotype discernable during the second day of development. Histological and immunological analysis revealed a small, underdeveloped lens. Numerous terminal deoxynucleotidyl transferase-mediated dUTP-fluoroscein nick-end labeling (TUNEL)-positive nuclei appeared in the lens of small-eye embryos after 48 hours postfertilization (hpf), whereas they were no longer apparent in untreated embryos by this age. Lenses transplanted from hsp70-MO-injected embryos into wild-type hosts failed to recover and retained the immature morphology characteristic of the small-eye phenotype, indicating that the lens phenotype is lens autonomous. Our data suggest that the lens defect in hsp70-MO-injected embryos is predominantly at the level of postmitotic lens fiber differentiation, a result supported by the appearance of mature lens organization in these embryos by 5 days postfertilization, once morpholino degradation or dilution has occurred.
Collapse
Affiliation(s)
- Tyler G Evans
- Department of Anatomy and Cell Biology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada S7N 5E5
| | | | | | | |
Collapse
|
15
|
Zhou CJ, Lo WK. Association of clathrin, AP-2 adaptor and actin cytoskeleton with developing interlocking membrane domains of lens fibre cells. Exp Eye Res 2003; 77:423-32. [PMID: 12957142 DOI: 10.1016/s0014-4835(03)00171-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Interlocking membrane domains are specialized membrane interdigitations in the form of ball-and-sockets and protrusions between lens fibre cells of all species. They are believed to play a key role in maintaining fibre-fibre stability and are therefore, important for normal lens function. Here we report the specific association of the clathrin/AP-2 adaptor complex and the branching F-actin network with the development of interlocking domains in rats and several other species. By thin-section electron microscopy we consistently observed a layer of distinct coating (approximately 25-nm thick) on the concave membrane surface of small and intermediate-sized developing interlocking domains. These membrane coats remarkably resembled the clathrin-coat of endocytic vesicles in which clathrin and the AP-2 adaptor are involved in the induction of coated pit formation during receptor-mediated endocytosis. We hypothesize that the clathrin/AP-2 complex is directly involved in the induction of interlocking domains in fibre cells. By immunoconfocal microscopy, co-labelling of a dotted-pattern of clathrin and AP-2 adaptor antibodies was seen along the cortical fibre cells. Immunoblot analysis further confirmed that clathrin and AP-2 adaptor antibodies specifically stained a polypeptide band of 180 and 106kD, respectively, in the membrane fractions prepared separately from the outer and inner cortical fibres where interlocking domains are abundant but endocytic vesicles are absent. Immunoelectron microscopy showed that the clathrin antibody was localized along the interlocking membrane. In addition, branching actin filament networks were frequently observed within the cytoplasmic compartment of developing interlocking domains by TEM, in consistent with the findings by fluorescence and immunogold labelling of the F-actin antibody in the domains. These results demonstrate for the first time that the clathrin/AP-2 complex plays a new role for the formation of interlocking domains in lens fibre cells. Branching actin networks and possibly other cytoskeletal components are also associated with the development and maintenance of these interlocking domains. The coordinated 'pulling and pushing' actions generated by the clathrin/AP-2 complex and branching actin networks during interlocking domain formation are discussed.
Collapse
Affiliation(s)
- Cheng-Jing Zhou
- Department of Anatomy and Neurobiology, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | | |
Collapse
|
16
|
Yappert MC, Rujoi M, Borchman D, Vorobyov I, Estrada R. Glycero- versus sphingo-phospholipids: correlations with human and non-human mammalian lens growth. Exp Eye Res 2003; 76:725-34. [PMID: 12742355 DOI: 10.1016/s0014-4835(03)00051-4] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The human lens differs from other mammalian lenses in its very slow growth and unusual phospholipid composition of its cell membranes. Dihydrosphingomyelins (DHSMs) make up about half of all phospholipids in adult human fiber membranes. In all other membranes, sphingomyelins(SMs) with a trans double bond in their backbone, are prevalent. In our quest to understand the biological implications of such elevated DHSM levels, we analyzed membranes from various regions of human, elephant, giraffe, polar bear, pig and cow lenses. The levels of DHSMs were minor in non-human lens membranes. A strong correlation was observed between growth rate and relative contents of phosphatidylcholines(PCs) in epithelia and outer cortical fibers. Sphingomyelins became increasingly predominant in differentiated fibers and this increase was age dependent. Indeed, nuclear fiber membranes of aged non-human mammals were composed, almost exclusively, of (SMs). Although human lens membranes followed comparable compositional trends, the magnitude of the changes was much smaller. We postulate that the high relative contents of DHSMs provide a biochemically inert matrix in which only small amounts of PCs and SMs and their metabolites, known to promote and arrest growth, respectively, are present. This compositional difference is proposed to contribute to the slow multiplication and elongation of human lens cells.
Collapse
Affiliation(s)
- M Cecilia Yappert
- Department of Chemistry, College of Arts and Sciences, University of Louisville, Louisville, KY 40292, USA.
| | | | | | | | | |
Collapse
|
17
|
Bu L, Jin Y, Shi Y, Chu R, Ban A, Eiberg H, Andres L, Jiang H, Zheng G, Qian M, Cui B, Xia Y, Liu J, Hu L, Zhao G, Hayden MR, Kong X. Mutant DNA-binding domain of HSF4 is associated with autosomal dominant lamellar and Marner cataract. Nat Genet 2002; 31:276-8. [PMID: 12089525 DOI: 10.1038/ng921] [Citation(s) in RCA: 154] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Congenital cataracts cause 10-30% of all blindness in children, with one-third of cases estimated to have a genetic cause. Lamellar cataract is the most common type of infantile cataract. We carried out whole-genome linkage analysis of Chinese individuals with lamellar cataract, and found that the disorder is associated with inheritance of a 5.11-cM locus on chromosome 16. This locus coincides with one previously described for Marner cataract. We screened individuals of three Chinese families for mutations in HSF4 (a gene at this locus that encodes heat-shock transcription factor 4) and discovered that in each family, a distinct missense mutation, predicted to affect the DNA-binding domain of the protein, segregates with the disorder. We also discovered an association between a missense mutation and Marner cataract in an extensive Danish family. We suggest that HSF4 is critical to lens development.
Collapse
Affiliation(s)
- Lei Bu
- Shanghai Research Center of Biotechnology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200233, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Bagchi M, Katar M, Maisel H. Heat shock proteins of adult and embryonic human ocular lenses. J Cell Biochem 2002. [DOI: 10.1002/jcb.10023] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|