1
|
Niu L, Hou Y, Jiang M, Bai G. The rich pharmacological activities of Magnolia officinalis and secondary effects based on significant intestinal contributions. JOURNAL OF ETHNOPHARMACOLOGY 2021; 281:114524. [PMID: 34400262 DOI: 10.1016/j.jep.2021.114524] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 08/01/2021] [Accepted: 08/13/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Magnolia officinalis Cortex (M. officinalis) is a traditional herbal drug widely used in Asian countries. Depending on its multiple biological activities, M. officinalis is used to regulate gastrointestinal (GI) motility, relieve cough and asthma, prevent cardiovascular and cerebrovascular diseases, and treat depression and anxiety. AIM OF THE REVIEW We aimed to review the abundant form of pharmacodynamics activity and potential mechanisms of action of M. officinalis and the characteristics of the internal processes of the main components. The potential mechanisms of local and distance actions of M. officinalis based on GI tract was provided, and it was used to reveal the interconnections between traditional use, phytochemistry, and pharmacology. MATERIALS AND METHODS Published literatures about M. officinalis and its main components were collected from several scientific databases, including PubMed, Elsevier, ScienceDirect, Google Scholar and Web of Science etc. RESULTS: M. officinalis was shown multiple effects including effects on digestive system, respiratory system, central system, which is consistent with traditional applications, as well as some other activities such as cardiovascular system, anticancer, anti-inflammatory and antioxidant effects and so on. The mechanisms of these activities are abundant. Its chief ingredients such as magnolol and honokiol can be metabolized into active metabolites in vivo, which can increase water solubility and bioavailability and exert pharmacological activity in the whole body. In the GI tract, M. officinalis and its main ingredient can regulate GI hormones and substance metabolism, protect the intestinal barrier and affect the gut microbiota (GM). These actions are effective to improve local discomfort and some distal symptoms such as depression, asthma, or metabolic disorders. CONCLUSIONS Although M. officinalis has rich pharmacological effects, the GI tract makes great contributions to it. The GI tract is not only an important place for absorption and metabolism but also a key site to help M. officinalis exert local and distal efficacy. Pharmacodynamical studies on the efficacies of distal tissues based on the contributions of the GI tract hold great potential for understanding the benefits of M. officinalis and providing new ideas for the treatment of important diseases.
Collapse
Affiliation(s)
- Lin Niu
- Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, People's Republic of China
| | - Yuanyuan Hou
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin, 300353, People's Republic of China
| | - Min Jiang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin, 300353, People's Republic of China
| | - Gang Bai
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin, 300353, People's Republic of China.
| |
Collapse
|
2
|
Pd-catalyzed protecting-group-free cross-couplings of iodophenols with atom-economic triarylbismuth reagents. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2019.151512] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
3
|
Insights on the Multifunctional Activities of Magnolol. BIOMED RESEARCH INTERNATIONAL 2019; 2019:1847130. [PMID: 31240205 PMCID: PMC6556366 DOI: 10.1155/2019/1847130] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 05/03/2019] [Accepted: 05/15/2019] [Indexed: 12/31/2022]
Abstract
Over years, various biological constituents are isolated from Traditional Chinese Medicine and confirmed to show multifunctional activities. Magnolol, a hydroxylated biphenyl natural compound isolated from Magnolia officinalis, has been extensively documented and shows a range of biological activities. Many signaling pathways include, but are not limited to, NF-κB/MAPK, Nrf2/HO-1, and PI3K/Akt pathways, which are implicated in the biological functions mediated by magnolol. Thus, magnolol is considered as a promising therapeutic agent for clinic research. However, the low water solubility, the low bioavailability, and the rapid metabolism of magnolol dramatically limit its clinical application. In this review, we will comprehensively discuss the last five-year progress of the biological activities of magnolol, including anti-inflammatory, antimicroorganism, antioxidative, anticancer, neuroprotective, cardiovascular protection, metabolism regulation, and ion-mediating activity.
Collapse
|
4
|
Wang H, Gao X, Lv Z, Abdelilah T, Lei A. Recent Advances in Oxidative R 1-H/R 2-H Cross-Coupling with Hydrogen Evolution via Photo-/Electrochemistry. Chem Rev 2019; 119:6769-6787. [PMID: 31074264 DOI: 10.1021/acs.chemrev.9b00045] [Citation(s) in RCA: 445] [Impact Index Per Article: 74.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Photo-/electrochemical catalyzed oxidative R1-H/R2-H cross-coupling with hydrogen evolution has become an increasingly important issue for molecular synthesis. The dream of construction of C-C/C-X bonds from readily available C-H/X-H with release of H2 can be facilely achieved without external chemical oxidants, providing a greener model for chemical bond formation. Given the great influence of these reactions in organic chemistry, we give a summary of the state of the art in oxidative R1-H/R2-H cross-coupling with hydrogen evolution via photo/electrochemistry, and we hope this review will stimulate the development of a greener synthetic strategy in the near future.
Collapse
Affiliation(s)
- Huamin Wang
- Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Xinlong Gao
- Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Zongchao Lv
- Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Takfaoui Abdelilah
- Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Aiwen Lei
- Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, China.,National Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang 330022, China
| |
Collapse
|
5
|
Dahms B, Kohlpaintner PJ, Wiebe A, Breinbauer R, Schollmeyer D, Waldvogel SR. Selective Formation of 4,4'-Biphenols by Anodic Dehydrogenative Cross- and Homo-Coupling Reaction. Chemistry 2019; 25:2713-2716. [PMID: 30638281 DOI: 10.1002/chem.201805737] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 12/17/2018] [Indexed: 12/30/2022]
Abstract
A simple and selective electrochemical synthesis by dehydrogenative coupling of unprotected 2,6- or 2,5-substituted phenols to the desired 4,4'-biphenols is reported. Using electricity as the oxidizing reagent avoids pre-functionalization of the starting materials, since a selective activation of the substrates takes place. Without the necessity for metal-catalysts or the use of stoichiometric reagents it is an economic and environmentally friendly transformation. The elaborated electrochemical protocol leads to a broad variety of the desired 4,4'-biphenols in a very simplified manner compared to classical approaches. This is particular the case for the cross-coupled products.
Collapse
Affiliation(s)
- Benedikt Dahms
- Institut für Organische Chemie, Johannes Gutenberg-Universität Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Philipp J Kohlpaintner
- Institut für Organische Chemie, Johannes Gutenberg-Universität Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Anton Wiebe
- Institut für Organische Chemie, Johannes Gutenberg-Universität Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Rolf Breinbauer
- Institut für Organische Chemie, Technische Universität Graz, Stremayrgasse 9, 8010, Graz, Austria
| | - Dieter Schollmeyer
- Institut für Organische Chemie, Johannes Gutenberg-Universität Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Siegfried R Waldvogel
- Institut für Organische Chemie, Johannes Gutenberg-Universität Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| |
Collapse
|
6
|
Lips S, Waldvogel SR. Use of Boron‐Doped Diamond Electrodes in Electro‐Organic Synthesis. ChemElectroChem 2019. [DOI: 10.1002/celc.201801620] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Sebastian Lips
- Institut für Organische ChemieJohannes Gutenberg-Universität Mainz Duesbergweg 10–14 55128 Mainz Germany) Homepage: http//www.chemie.uni-mainz.de/OC/AK-Waldvogel/
| | - Siegfried R. Waldvogel
- Institut für Organische ChemieJohannes Gutenberg-Universität Mainz Duesbergweg 10–14 55128 Mainz Germany) Homepage: http//www.chemie.uni-mainz.de/OC/AK-Waldvogel/
| |
Collapse
|
7
|
Bonam SR, Wu YS, Tunki L, Chellian R, Halmuthur MSK, Muller S, Pandy V. What Has Come out from Phytomedicines and Herbal Edibles for the Treatment of Cancer? ChemMedChem 2018; 13:1854-1872. [PMID: 29927521 DOI: 10.1002/cmdc.201800343] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 06/19/2018] [Indexed: 12/20/2022]
Abstract
Several modern treatment strategies have been adopted to combat cancer with the aim of minimizing toxicity. Medicinal plant-based compounds with the potential to treat cancer have been widely studied in preclinical research and have elicited many innovations in cutting-edge clinical research. In parallel, researchers have eagerly tried to decrease the toxicity of current chemotherapeutic agents either by combining them with herbals or in using herbals alone. The aim of this article is to present an update of medicinal plants and their bioactive compounds, or mere changes in the bioactive compounds, along with herbal edibles, which display efficacy against diverse cancer cells and in anticancer therapy. It describes the basic mechanism(s) of action of phytochemicals used either alone or in combination therapy with other phytochemicals or herbal edibles. This review also highlights the remarkable synergistic effects that arise between certain herbals and chemotherapeutic agents used in oncology. The anticancer phytochemicals used in clinical research are also described; furthermore, we discuss our own experience related to semisynthetic derivatives, which are developed based on phytochemicals. Overall, this compilation is intended to facilitate research and development projects on phytopharmaceuticals for successful anticancer drug discovery.
Collapse
Affiliation(s)
- Srinivasa Reddy Bonam
- UMR 7242 CNRS, Biotechnology and Cell Signaling, University of Strasbourg, Laboratory of Excellence Medalis, Illkirch, 67400, France.,Vaccine Immunology Laboratory, Natural Product Chemistry Division, CSIR - Indian Institute of Chemical Technology (IICT), Hyderabad, 500007, India.,Academy of Scientific and Innovative Research, CSIR - Indian Institute of Chemical Technology, Hyderabad, 500007, India
| | - Yuan Seng Wu
- Department of Pharmacology, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Lakshmi Tunki
- Vaccine Immunology Laboratory, Natural Product Chemistry Division, CSIR - Indian Institute of Chemical Technology (IICT), Hyderabad, 500007, India
| | - Ranjithkumar Chellian
- Department of Pharmacology, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Mahabalarao Sampath Kumar Halmuthur
- Vaccine Immunology Laboratory, Natural Product Chemistry Division, CSIR - Indian Institute of Chemical Technology (IICT), Hyderabad, 500007, India.,Academy of Scientific and Innovative Research, CSIR - Indian Institute of Chemical Technology, Hyderabad, 500007, India
| | - Sylviane Muller
- UMR 7242 CNRS, Biotechnology and Cell Signaling, University of Strasbourg, Laboratory of Excellence Medalis, Illkirch, 67400, France.,University of Strasbourg Institute for Advanced Study (USIAS), Strasbourg, 67000, France
| | - Vijayapandi Pandy
- Department of Pharmacology, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia.,Department of Pharmacology, Chalapathi Institute of Pharmaceutical Sciences, Lam, Guntur, Andhra Pradesh, 522034, India
| |
Collapse
|
8
|
Chang CK, Lin XR, Lin YL, Fang WH, Lin SW, Chang SY, Kao JT. Magnolol-mediated regulation of plasma triglyceride through affecting lipoprotein lipase activity in apolipoprotein A5 knock-in mice. PLoS One 2018; 13:e0192740. [PMID: 29425239 PMCID: PMC5806881 DOI: 10.1371/journal.pone.0192740] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 01/30/2018] [Indexed: 01/24/2023] Open
Abstract
Hyperlipidemia is a risk factor of arteriosclerosis, stroke, and other coronary heart disease, which has been shown to correlate with single nucleotide polymorphisms of genes essential for lipid metabolism, such as lipoprotein lipase (LPL) and apolipoprotein A5 (APOA5). In this study, the effect of magnolol, the main active component extracted from Magnolia officinalis, on LPL activity was investigated. A dose-dependent up-regulation of LPL activity, possibly through increasing LPL mRNA transcription, was observed in mouse 3T3-L1 pre-adipocytes cultured in the presence of magnolol for 6 days. Subsequently, a transgenic knock-in mice carrying APOA5 c.553G>T variant was established and then fed with corn oil with or without magnolol for four days. The baseline plasma triglyceride levels in transgenic knock-in mice were higher than those in wild-type mice, with the highest increase occurred in homozygous transgenic mice (106 mg/dL vs 51 mg/dL, p<0.01). After the induction of hyperglyceridemia along with the administration of magnolol, the plasma triglyceride level in heterozygous transgenic mice was significantly reduced by half. In summary, magnolol could effectively lower the plasma triglyceride levels in APOA5 c.553G>T variant carrier mice and facilitate the triglyceride metabolism in postprandial hypertriglyceridemia.
Collapse
Affiliation(s)
- Chun-Kai Chang
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan
- Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Xiu-Ru Lin
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan
- Department of Laboratory Medicine, National Yang-Ming University Hospital, Yilan, Taiwan
| | - Yen-Lin Lin
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Woei-Horng Fang
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan
- Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Shu-Wha Lin
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan
- Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Sui-Yuan Chang
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan
- Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan
- * E-mail: (JK); (SC)
| | - Jau-Tsuen Kao
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan
- * E-mail: (JK); (SC)
| |
Collapse
|
9
|
Wiebe A, Schollmeyer D, Dyballa KM, Franke R, Waldvogel SR. Selektive Synthese teilgeschützter unsymmetrischer Biphenole durch reagens- und metallfreie anodische Kreuzkupplung. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201604321] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Anton Wiebe
- Institut für Organische Chemie; Johannes Gutenberg-Universität Mainz; Duesbergweg 10-14 55128 Mainz Deutschland
| | - Dieter Schollmeyer
- Institut für Organische Chemie; Johannes Gutenberg-Universität Mainz; Duesbergweg 10-14 55128 Mainz Deutschland
| | | | - Robert Franke
- Evonik Performance Materials GmbH; Marl Deutschland
- Lehrstuhl für Theoretische Chemie; Ruhr-Universität Bochum; Deutschland
| | - Siegfried R. Waldvogel
- Institut für Organische Chemie; Johannes Gutenberg-Universität Mainz; Duesbergweg 10-14 55128 Mainz Deutschland
| |
Collapse
|
10
|
Wiebe A, Schollmeyer D, Dyballa KM, Franke R, Waldvogel SR. Selective Synthesis of Partially Protected Nonsymmetric Biphenols by Reagent- and Metal-Free Anodic Cross-Coupling Reaction. Angew Chem Int Ed Engl 2016; 55:11801-5. [PMID: 27401116 DOI: 10.1002/anie.201604321] [Citation(s) in RCA: 145] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Indexed: 11/09/2022]
Abstract
The oxidative cross-coupling of aromatic substrates without the necessity of leaving groups or catalysts is described. The selective formation of partially protected nonsymmetric 2,2'-biphenols via electroorganic synthesis was accomplished with a high yield of isolated product. Since electric current is employed as the terminal oxidant, the reaction is reagent-free; no reagent waste is generated as only electrons are involved. The reaction is conducted in an undivided cell, and is suitable for scale-up and inherently safe. The implementation of O-silyl-protected phenols in this transformation results in both significantly enhanced yields and higher selectivity for the desired nonsymmetric 2,2'-biphenols. The use of a bulky silyl group to block one hydroxyl moiety makes the final product less prone to oxidation. Furthermore, the partially silyl-protected 2,2'-biphenols are versatile building blocks that usually require tedious or low-yielding synthetic pathways. Additionally, this strategy facilitates a large variety of new substrate combinations for oxidative cross-coupling reactions.
Collapse
Affiliation(s)
- Anton Wiebe
- Institut für Organische Chemie, Johannes Gutenberg-Universität Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Dieter Schollmeyer
- Institut für Organische Chemie, Johannes Gutenberg-Universität Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| | | | - Robert Franke
- Evonik Performance Materials GmbH, Marl, Germany.,Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, Germany
| | - Siegfried R Waldvogel
- Institut für Organische Chemie, Johannes Gutenberg-Universität Mainz, Duesbergweg 10-14, 55128, Mainz, Germany.
| |
Collapse
|
11
|
Dihydroaustrasulfone Alcohol (WA-25) Impedes Macrophage Foam Cell Formation by Regulating the Transforming Growth Factor-β1 Pathway. Int J Mol Sci 2015; 16:10507-25. [PMID: 25961956 PMCID: PMC4463659 DOI: 10.3390/ijms160510507] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 04/22/2015] [Accepted: 04/29/2015] [Indexed: 01/26/2023] Open
Abstract
Atherosclerosis is considered an inflammatory disease. However, clinically used anti-atherosclerotic drugs, such as simvastatin, have many side effects. Recently, several unique marine compounds have been isolated that possess a variety of bioactivities. In a previous study, we found a synthetic precursor of the marine compound (austrasulfone), which is dihydroaustrasulfone alcohol (WA-25), has anti-atherosclerotic effects in vivo. However, the detailed mechanisms remain unclear. Therefore, to clarify the mechanisms through which WA-25 exerts anti-atherosclerotic activity, we used RAW 264.7 macrophages as an in vitro model to evaluate the effects of WA-25. In lipopolysaccharide (LPS)-stimulated RAW 264.7 cells, WA-25 significantly inhibited expression of the pro-inflammatory proteins, inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2). In contrast, simvastatin increased the COX-2 expression compared to WA-25. In addition, WA-25 impedes foam cell formation and up-regulated the lysosomal and cyclic adenosine monophosphate (cAMP) signaling pathway. We also observed that transforming growth factor β1 (TGF-β1) was up-regulated by WA-25 and simvastatin in LPS-induced RAW 264.7 cells, and the promising anti-atherosclerosis effects of WA-25 were disrupted by blockade of TGF-β1 signaling. Besides, WA-25 might act through increasing lipolysis than through alteration of lipid export. Taken together, these data demonstrate that WA-25 may have potential as an anti-atherosclerotic drug with anti-inflammatory effects.
Collapse
|
12
|
Liu W, Yue Y, Li Y, Zheng X, Zhang K, Du Z. Inspired by magnolol: design of NSAID-based compounds with excellent anti-inflammatory effects. MEDCHEMCOMM 2015. [DOI: 10.1039/c5md00308c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A10was selected to elucidate the anti-inflammatory mechanism at the transcriptional level, suggesting its potential to serve as a novel anti-inflammatory agent.
Collapse
Affiliation(s)
- Wenfeng Liu
- Laboratory of Natural Medicinal Chemistry & Green Chemistry
- Faculty of Light Industry and Chemical Engineering
- Guangdong University of Technology
- Guangzhou
- China
| | - Yuan Yue
- Laboratory of Natural Medicinal Chemistry & Green Chemistry
- Faculty of Light Industry and Chemical Engineering
- Guangdong University of Technology
- Guangzhou
- China
| | - Yonglian Li
- Guangdong Industry Technical College
- Guangzhou
- China
| | - Xi Zheng
- Laboratory of Natural Medicinal Chemistry & Green Chemistry
- Faculty of Light Industry and Chemical Engineering
- Guangdong University of Technology
- Guangzhou
- China
| | - Kun Zhang
- Laboratory of Natural Medicinal Chemistry & Green Chemistry
- Faculty of Light Industry and Chemical Engineering
- Guangdong University of Technology
- Guangzhou
- China
| | - Zhiyun Du
- Laboratory of Natural Medicinal Chemistry & Green Chemistry
- Faculty of Light Industry and Chemical Engineering
- Guangdong University of Technology
- Guangzhou
- China
| |
Collapse
|
13
|
Schmidt B, Riemer M. Suzuki-Miyaura coupling of halophenols and phenol boronic acids: systematic investigation of positional isomer effects and conclusions for the synthesis of phytoalexins from pyrinae. J Org Chem 2014; 79:4104-18. [PMID: 24724893 DOI: 10.1021/jo500675a] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The Suzuki-Miyaura couplings of o-, m-, and p-halophenols with o-, m-, and p-phenol boronic acids were investigated for all combinations under standardized conditions, using Pd/C as a heterogeneous catalyst and water as a solvent. In the case of iodophenols, conventional heating was used, while for bromophenols significantly better results could be obtained using microwave irradiation. This systematic study revealed that 2,4'-biphenol is particularly difficult to access, irrespective of the starting materials used, but that these difficulties can be overcome by using different additives. The conclusions drawn from this investigation allowed us to identify conditions for the protecting group-free or minimized total synthesis of biaryl-type phytoalexins. These compounds possess antibacterial activity and are produced by fruit trees as a response to microbial infection.
Collapse
Affiliation(s)
- Bernd Schmidt
- Institut fuer Chemie (Organische Synthesechemie), Universitaet Potsdam , Karl-Liebknecht-Straße 24-25, D-14476 Potsdam-Golm, Germany
| | | |
Collapse
|
14
|
Schmidt B, Riemer M, Karras M. 2,2′-Biphenols via Protecting Group-Free Thermal or Microwave-Accelerated Suzuki–Miyaura Coupling in Water. J Org Chem 2013; 78:8680-8. [DOI: 10.1021/jo401398n] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Bernd Schmidt
- Institut fuer Chemie (Organische Synthesechemie), Universitaet Potsdam, Karl-Liebknecht-Strasse 24-25,
D-14476 Potsdam-Golm, Germany
| | - Martin Riemer
- Institut fuer Chemie (Organische Synthesechemie), Universitaet Potsdam, Karl-Liebknecht-Strasse 24-25,
D-14476 Potsdam-Golm, Germany
| | - Manfred Karras
- Institut fuer Chemie (Organische Synthesechemie), Universitaet Potsdam, Karl-Liebknecht-Strasse 24-25,
D-14476 Potsdam-Golm, Germany
| |
Collapse
|
15
|
Kumar S, Kumar A, Pathania AS, Guru SK, Jada S, Sharma PR, Bhushan S, Saxena AK, Kumar HMS, Malik F. Tiron and trolox potentiate the autophagic cell death induced by magnolol analog Ery5 by activation of Bax in HL-60 cells. Apoptosis 2013; 18:605-17. [PMID: 23494480 DOI: 10.1007/s10495-013-0805-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This study describes the mechanism of trolox and tiron induced potentiation of cytotoxicity caused by Ery5, an analog of magnolol, in human myeloid leukemia HL-60 cells. Ery5 induced cytotoxicity in HL-60 cells by involving activation of bax and cleavage of caspase 3, which contributed towards activation of both apoptotic and autophagic pathways. Trolox and tiron, even at non-toxic concentrations, contributed to the cytotoxicity of Ery5 by activation of autophagic proteins like ATG7, ATG12 and LC3-II. Z-VAD-fmk mediated reduction in the cytotoxicity and expression of autophagic proteins, further suggested that autophagy induced by Ery5 is largely dependent upon caspases. Interestingly, Ery5 induced autophagy was accompanied by the downregulation of PI3K/AKT pathway whereas, trolox and tiron strongly enhanced this effect. In addition to that treatment of cells with Ery5, trolox and tiron individually, displayed a marked upregulation of Bax. The involvement of Bax in trolox and tiron induced enhancement of the cytotoxicity of Ery5 was confirmed, when siRNA induced silencing of Bax led to increased viability of the cells and exerted a strong inhibitory effect on LC3-II accumulation and p62 degradation in case of cells treated by the combination of Ery5 with trolox or tiron. Additionally, an important role of PARP in Ery5 mediated cell death has been suggested by PARP silencing experiments, however, potentiation of autophagic cytotoxicity by trolox and tiron did not seem to be dependent on PARP-1. Therefore, Bax seems to play a vital role in trolox and tiron mediated potentiation of autophagic cell death by Ery5 in HL-60 cells.
Collapse
Affiliation(s)
- Suresh Kumar
- Department of Cancer Pharmacology, Indian Institute of Integrative Medicine CSIR, Canal Road, Jammu 180001, India
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Seo JU, Kim MH, Kim HM, Jeong HJ. Anticancer potential of magnolol for lung cancer treatment. Arch Pharm Res 2011; 34:625-33. [DOI: 10.1007/s12272-011-0413-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2010] [Revised: 11/29/2010] [Accepted: 12/29/2010] [Indexed: 12/22/2022]
|
17
|
Protein kinase Cμ mediates adenosine-stimulated steroidogenesis in primary rat adrenal cells. FEBS Lett 2010; 584:4442-8. [DOI: 10.1016/j.febslet.2010.10.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2010] [Revised: 09/17/2010] [Accepted: 10/06/2010] [Indexed: 11/22/2022]
|
18
|
Lee DH, Szczepanski MJ, Lee YJ. Magnolol induces apoptosis via inhibiting the EGFR/PI3K/Akt signaling pathway in human prostate cancer cells. J Cell Biochem 2009; 106:1113-22. [PMID: 19229860 DOI: 10.1002/jcb.22098] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
We observed that treatment of prostate cancer cells for 24 h with magnolol, a phenolic component extracted from the root and stem bark of the oriental herb Magnolia officinalis, induced apoptotic cell death in a dose- and time-dependent manner. A sustained inhibition of the major survival signal, Akt, occurred in magnolol-treated cells. Treatment of PC-3 cells with an apoptosis-inducing concentration of magnolol (60 microM) resulted in a rapid decrease in the level of phosphorylated Akt leading to inhibition of its kinase activity. Magnolol treatment (60 microM) also caused a decrease in Ser((136)) phosphorylation of Bad (a proapoptotic protein), which is a downstream target of Akt. Protein interaction assay revealed that Bcl-xL, an anti-apoptotic protein, was associated with Bad during treatment with magnolol. We also observed that during treatment with magnolol, translocation of Bax to the mitochondrial membrane occurred and the translocation was accompanied by cytochrome c release, and cleavage of procaspase-8, -9, -3, and poly(ADP-ribose) polymerase (PARP). Similar results were observed in human colon cancer HCT116Bax(+/-) cell line, but not HCT116Bax(-/-) cell line. Interestingly, at similar concentrations (60 microM), magnolol treatment did not affect the viability of normal human prostate epithelial cell (PrEC) line. We also observed that apoptotic cell death by magnolol was associated with significant inhibition of pEGFR, pPI3K, and pAkt. These results suggest that one of the mechanisms of the apoptotic activity of magnolol involves its effect on epidermal growth factor receptor (EGFR)-mediated signaling transduction pathways.
Collapse
Affiliation(s)
- Dae-Hee Lee
- Department of Surgery and Pharmacology, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | | | | |
Collapse
|
19
|
Almeida PE, Silva AR, Maya-Monteiro CM, Töröcsik D, D′Ávila H, Dezsö B, Magalhães KG, Castro-Faria-Neto HC, Nagy L, Bozza PT. Mycobacterium bovisBacillus Calmette-Guérin Infection Induces TLR2-Dependent Peroxisome Proliferator-Activated Receptor γ Expression and Activation: Functions in Inflammation, Lipid Metabolism, and Pathogenesis. THE JOURNAL OF IMMUNOLOGY 2009; 183:1337-45. [DOI: 10.4049/jimmunol.0900365] [Citation(s) in RCA: 134] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
20
|
Endolysosomal phospholipidosis and cytosolic lipid droplet storage and release in macrophages. Biochim Biophys Acta Mol Cell Biol Lipids 2008; 1791:524-39. [PMID: 19146988 DOI: 10.1016/j.bbalip.2008.12.007] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2008] [Revised: 12/08/2008] [Accepted: 12/11/2008] [Indexed: 12/12/2022]
Abstract
This review summarizes the current knowledge of endolysosomal and cytoplasmic lipid storage in macrophages induced by oxidized LDL (Ox-LDL), enzymatically degraded LDL (E-LDL) and other atherogenic lipoprotein modifications, and their relation to the adapter protein 3 (AP-3) dependent ABCA1 and ABCG1 cellular lipid efflux pathways. We compare endolysosomal lipid storage caused either through drug induced phospholipidosis, inheritable endolysosomal and cytosolic lipid storage disorders and Ox-LDL or E-LDL induced phagosomal uptake and cytosolic lipid droplet storage in macrophages. Ox-LDL is resistant to rapid endolysosomal hydrolysis and is trapped within the endolysosomal compartment generating lamellar bodies which resemble the characteristics of phospholipidosis. Various inherited lysosomal storage diseases including sphingolipidosis, glycosphingolipidosis and cholesterylester storage diseases also present a phospholipidosis phenotype. In contrast E-LDL resembling coreless unesterified cholesterol enriched LDL-particles, with a multilamellar, liposome-like structure, lead to rapid phagosomal degradation and cytosolic lipid droplet accumulation. As a consequence the uptake of E-LDL through type I and type II phagocytosis leads to increased lipid droplet formation and moderate upregulation of ABCA1 and ABCG1 while uptake of Ox-LDL leads to a rapid expansion of the lysosomal compartment and a pronounced upregulation of the ABCA1/ABCG1/AP-3 lipid efflux pathway.
Collapse
|
21
|
D'Avila H, Roque NR, Cardoso RM, Castro-Faria-Neto HC, Melo RCN, Bozza PT. Neutrophils recruited to the site of Mycobacterium bovis BCG infection undergo apoptosis and modulate lipid body biogenesis and prostaglandin E production by macrophages. Cell Microbiol 2008; 10:2589-604. [PMID: 18771558 DOI: 10.1111/j.1462-5822.2008.01233.x] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Neutrophil influx to sites of mycobacterial infections is one of the first events of tuberculosis pathogenesis. However, the role of early neutrophil recruitment in mycobacterial infection is not completely understood. We investigated the rate of neutrophil apoptosis and the role of macrophage uptake of apoptotic neutrophils in a pleural tuberculosis model induced by BCG. Recruited neutrophils were shown to phagocyte BCG and a large number of neutrophils undergo apoptosis within 24 h. Notably, the great majority of apoptotic neutrophils were infected by BCG. Increased lipid body (lipid droplets) formation, accompanied by prostaglandin E(2) (PGE(2)) and TGF-beta1 synthesis, occurred in parallel to macrophage uptake of apoptotic cells. Lipid body and PGE(2) formation was observed after macrophage exposure to apoptotic, but not necrotic or live neutrophils. Blockage of BCG-induced lipid body formation significantly inhibited PGE(2) synthesis. Pre-treatment with the pan-caspase inhibitor zVAD inhibited BCG-induced neutrophil apoptosis and lipid body formation, indicating a role for apoptotic neutrophils in macrophage lipid body biogenesis in infected mice. In conclusion, BCG infection induced activation and apoptosis of infected neutrophils at the inflammatory site. The uptake of apoptotic neutrophils by macrophages leads to TGF-beta1 generation and PGE(2)-derived lipid body formation, and may have modulator roles in mycobacterial pathogenesis.
Collapse
Affiliation(s)
- Heloisa D'Avila
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brazil
| | | | | | | | | | | |
Collapse
|
22
|
Huang SH, Chen Y, Tung PY, Wu JC, Chen KH, Wu JM, Wang SM. Mechanisms for the magnolol-induced cell death of CGTH W-2 thyroid carcinoma cells. J Cell Biochem 2007; 101:1011-22. [PMID: 17390340 DOI: 10.1002/jcb.21100] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Magnolol, a substance purified from the bark of Magnolia officialis, inhibits cell proliferation and induces apoptosis in a variety of cancer cells. The aim of this study was to study the effects of magnolol on CGTH W-2 thyroid carcinoma cells. After 24 h treatment with 80 microM magnolol in serum-containing medium, about 50% of the cells exhibited apoptotic features and 20% necrotic features. Cytochrome-c staining was diffused in the cytoplasm of the apoptotic cells, but restricted to the mitochondria in control cells. Western blot analyses showed an increase in levels of activated caspases (caspase-3 and -7) and of cleaved poly (ADP-ribose) polymerase (PARP) by magnolol. Concomitantly, immunostaining for apoptosis inducing factor (AIF) showed a time-dependent translocation from the mitochondria to the nucleus. Inhibition of either PARP or caspase activity blocked magnolol-induced apoptosis, supporting the involvement of the caspases and PARP. In addition, magnolol activated phosphatase and tensin homolog deleted on chromosome 10 (PTEN) and inactivated Akt by decreasing levels of phosphorylated PTEN and phosphorylated Akt. These data suggest that magnolol promoted apoptosis probably by alleviating the inhibitory effect of Akt on caspase 9. Furthermore, inhibition of PARP activity, but not of caspase activity, completely prevented magnolol-induced necrosis, suggesting the notion that it might be caused by depletion of intracellular ATP levels due to PARP activation. These results show that magnolol initiates apoptosis via the cytochrome-c/caspase 3/PARP/AIF and PTEN/Akt/caspase 9/PARP pathways and necrosis via PARP activation.
Collapse
Affiliation(s)
- Shih-Horng Huang
- Department of Surgery and Division of General Surgery, Far Eastern Memorial Hospital, Taipei, Taiwan
| | | | | | | | | | | | | |
Collapse
|
23
|
Chen YC, Chang MF, Chen Y, Wang SM. Signaling pathways of magnolol-induced adrenal steroidogensis. FEBS Lett 2005; 579:4337-43. [PMID: 16061232 DOI: 10.1016/j.febslet.2005.06.068] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2005] [Revised: 06/24/2005] [Accepted: 06/27/2005] [Indexed: 11/20/2022]
Abstract
This study focused on identifying the signalling mediating the effect of magnolol on corticosterone production. Magnolol-induced corticosterone production was completely inhibited by mitogen-activated protein kinase kinase (MEK)-inhibitor PD98059, tyrosine kinase (TK)-inhibitor genistein or Janus tyrosine kinase 2 (JAK2)-inhibitor AG490, suggesting that extracellular signal-regulated kinase (ERK) and JAK2 are both involved in this signaling cascade. Further, magnolol induced the transient phosphorylation of MEK, ERK, cAMP response-element binding protein (CREB) and the expression of 32 and 30 kDa steroidogenic acute regulatory protein (StAR) in a time-dependent manner. Inhibition of TK or JAK2 activities blocked magnolol-induced phosphorylation of MEK and ERK, again supporting the upstream role of JAK2. The activation of JAK2 or MEK apparently mediated the magnolol-induced phosphorylation of CREB and the upregulation of StAR. These findings demonstrate a novel pathway for magnolol to induce the expression of StAR, which regulates the rate-limiting step in sterodiogenesis.
Collapse
Affiliation(s)
- Yung-Chia Chen
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, 1-1 Jen-Ai Road, Taipei, Taiwan
| | | | | | | |
Collapse
|