1
|
Ohno Y, Taura D, Okamoto K, Fujita H, Honda-Kohmo K, Matsuo K, Sone M. Nicotine reduces ROS and enhances cell proliferation via the α4 nicotinic acetylcholine receptor subunit in human induced pluripotent stem cells. Stem Cells Dev 2023; 32:237-245. [PMID: 36860198 DOI: 10.1089/scd.2022.0258] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023] Open
Abstract
The effects of smoking on fetal development and stem cell differentiation are not fully understood. Although nicotinic acetylcholine receptors (nAChRs) are expressed in many organs of the human body, their significance in human induced pluripotent stem cells (hiPSCs) remains unclear. After expression levels of nAChR subunits in hiPSCs were determined, the effects of the nAChR agonist, nicotine, on undifferentiated hiPSCs were evaluated using a Clariom S Array. We also determined the effect of nicotine alone and with a nAChR subunit antagonist on hiPSC cells. NAChR α4, α7, and β4 subunits were strongly expressed in hiPSCs. cDNA microarray, gene ontology, and enrichment analyses showed that exposing hiPSCs to nicotine altered expression of genes associated with immune responses, neurological system, carcinogenesis, cell differentiation, and cell proliferation. Particularly affected was metallothionein, which acts to decrease reactive oxygen species (ROS). The nicotine-induced reduction of ROS in hiPSCs was canceled by an α4 subunit or nonselective nAChR antagonist. HiPSC proliferation was increased by nicotine, and this effect, too, was canceled by an α4 antagonist. In conclusion, nicotine reduces ROS and enhances cell proliferation via the α4 nAChR subunit in hiPSCs. These findings provide new insight into the significance of nAChRs on human stem cells and fertilized human ova.
Collapse
Affiliation(s)
- Youichi Ohno
- Kyoto University Graduate School of Medicine, Department of Diabetes, Endocrinology and Nutrition, Kyoto, Japan;
| | - Daisuke Taura
- Kyoto University Graduate School of Medicine, Department of Diabetes, Endocrinology and Nutrition, Kyoto, Japan;
| | - Kentaro Okamoto
- Kyoto University Graduate School of Medicine, Department of Diabetes, Endocrinology and Nutrition, Kyoto, Japan;
| | - Haruka Fujita
- Kyoto University Graduate School of Medicine, Department of Diabetes, Endocrinology and Nutrition, Kyoto, Kyoto, Japan;
| | - Kyoko Honda-Kohmo
- National Cerebral and Cardiovascular Center, 13875, Division of Preventive Healthcare, Suita, Osaka, Japan;
| | - Koji Matsuo
- Kyoto University Graduate School of Medicine, Department of Diabetes, Endocrinology and Nutrition, Kyoto, Japan;
| | - Masakatsu Sone
- St Marianna University School of Medicine, 12927, Division of Metabolism and Endocrinology, Department of Internal Medicine, Kawasaki, Kanagawa, Japan;
| |
Collapse
|
2
|
Is There a Smoking Gun for Nicotine? A Review of the Role of Nicotine in Dermatologic Surgery. Dermatol Surg 2022; 48:1171-1175. [PMID: 35862721 DOI: 10.1097/dss.0000000000003547] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 06/15/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND Dermatologic surgeons are faced with a dilemma when counseling actively smoking patients who require dermatologic surgery: recommend total cessation of all nicotine that is associated with extremely high rates of cessation failure or recommend nicotine replacement therapy (NRT). OBJECTIVE To determine the safety of NRT in dermatologic surgery. MATERIALS AND METHODS PubMed was queried: [(nicotine OR electronic cigarettes) AND (flap OR wound healing)]. RESULTS Smoking tobacco is detrimental to wound healing, supported by ample evidence (1A). Perioperative smoking cessation reduces risk (1B). Basic science demonstrates both a benefit and detriment of nicotine depending on the factor studied (2A). Human studies suggest no detrimental effect of nicotine on perioperative complications (1B). Nicotine may be detrimental to flaps, but evidence is limited to basic science (2A). CONCLUSION Dermatologists should consider recommending nicotine replacement for smokers in the perioperative period. Evidence is lacking to determine safety in flaps. It is presumed based on animal studies that nicotine has a negative effect on flaps; however, it is likely less than tobacco. Weighing the risk of cessation failure without nicotine replacement versus nicotine replacement after flap is challenging. Electronic cigarettes should be discouraged as a means of NRT.
Collapse
|
3
|
Marconi GD, Fonticoli L, Rajan TS, Lanuti P, Della Rocca Y, Pierdomenico SD, Trubiani O, Pizzicannella J, Diomede F. Transforming Growth Factor-Beta1 and Human Gingival Fibroblast-to-Myofibroblast Differentiation: Molecular and Morphological Modifications. Front Physiol 2021; 12:676512. [PMID: 34093237 PMCID: PMC8176099 DOI: 10.3389/fphys.2021.676512] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 04/01/2021] [Indexed: 12/22/2022] Open
Abstract
After oral mucosal injury, the healing response following specific steps that lead to wound closure and to tissue repair. Multiple cell populations are involved in this process; in particular, fibroblasts play a key role in the production of extracellular matrix (ECM). During wound healing the remodeling of ECM is a key stage to restore the tissue functionality through multifunctional fibroblast populations that are placed in the connective tissues of gingiva and periodontal ligament. Notably, a fibroblast sub-type (myofibroblast) is centrally involved in collagen synthesis and fibrillar remodeling. The present work evidenced the role of Transforming Growth Factor-beta1 (TGF-β1) to mediate human gingival fibroblasts (hGFs) differentiation into myofibroblasts derived from gingival fibroblasts (myo-hGFs). The morphological and functional features were analyzed through Confocal Laser Scanning Microscopy (CLSM), flow cytometry, and western blotting analyses. The specific markers, such as alpha-Smooth Muscle Actin (α-SMA), Vimentin, E-cadherin, β-catenin, and Smad 2/3, were modulated in myo-hGFs after the induction with TGF-β1, at different time points (24, 48, and 72 h). After 72 h of treatment TGF-β1 operates as an inducer of hGFs into myo-hGFs differentiation. We propose that TGF-β1 may promote in vitro the fibroblasts-to-myofibroblasts transition via the morphological and molecular modifications, as the induction of α-SMA, Vimentin, E-cadherin, β-catenin, and Smad 2/3.
Collapse
Affiliation(s)
- Guya D Marconi
- Department of Medical, Oral and Biotechnological Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Luigia Fonticoli
- Department of Innovative Technologies in Medicine and Dentistry, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | | | - Paola Lanuti
- Department of Medicine and Aging Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy.,Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Ylenia Della Rocca
- Department of Innovative Technologies in Medicine and Dentistry, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Sante D Pierdomenico
- Department of Innovative Technologies in Medicine and Dentistry, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Oriana Trubiani
- Department of Innovative Technologies in Medicine and Dentistry, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | | | - Francesca Diomede
- Department of Innovative Technologies in Medicine and Dentistry, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| |
Collapse
|
4
|
Torshabi M, Rezaei Esfahrood Z, Jamshidi M, Mansuri Torshizi A, Sotoudeh S. Efficacy of vitamins E and C for reversing the cytotoxic effects of nicotine and cotinine. Eur J Oral Sci 2017; 125:426-437. [DOI: 10.1111/eos.12375] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Maryam Torshabi
- Department of Dental Biomaterials; School of Dentistry; Shahid Beheshti University of Medical Sciences; Tehran Iran
| | - Zeinab Rezaei Esfahrood
- Department of Periodontics; School of Dentistry; Shahid Beheshti University of Medical Sciences; Tehran Iran
| | - Mahshid Jamshidi
- School of Dentistry; Shahid Beheshti University of Medical Sciences; Tehran Iran
| | | | - Samira Sotoudeh
- School of Dentistry; Shahid Beheshti University of Medical Sciences; Tehran Iran
| |
Collapse
|
5
|
Chiquet M, Katsaros C, Kletsas D. Multiple functions of gingival and mucoperiosteal fibroblasts in oral wound healing and repair. Periodontol 2000 2017; 68:21-40. [PMID: 25867977 DOI: 10.1111/prd.12076] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/01/2014] [Indexed: 12/22/2022]
Abstract
Fibroblasts are cells of mesenchymal origin. They are responsible for the production of most extracellular matrix in connective tissues and are essential for wound healing and repair. In recent years, it has become clear that fibroblasts from different tissues have various distinct traits. Moreover, wounds in the oral cavity heal under very special environmental conditions compared with skin wounds. Here, we reviewed the current literature on the various interconnected functions of gingival and mucoperiosteal fibroblasts during the repair of oral wounds. The MEDLINE database was searched with the following terms: (gingival OR mucoperiosteal) AND fibroblast AND (wound healing OR repair). The data gathered were used to compare oral fibroblasts with fibroblasts from other tissues in terms of their regulation and function during wound healing. Specifically, we sought answers to the following questions: (i) what is the role of oral fibroblasts in the inflammatory response in acute wounds; (ii) how do growth factors control the function of oral fibroblasts during wound healing; (iii) how do oral fibroblasts produce, remodel and interact with extracellular matrix in healing wounds; (iv) how do oral fibroblasts respond to mechanical stress; and (v) how does aging affect the fetal-like responses and functions of oral fibroblasts? The current state of research indicates that oral fibroblasts possess unique characteristics and tightly controlled specific functions in wound healing and repair. This information is essential for developing new strategies to control the intraoral wound-healing processes of the individual patient.
Collapse
|
6
|
Reuther WJ, Hale B, Matharu J, Blythe JN, Brennan PA. Do you mind if I vape? Immediate effects of electronic cigarettes on perfusion in buccal mucosal tissue--a pilot study. Br J Oral Maxillofac Surg 2016; 54:338-41. [PMID: 26809237 DOI: 10.1016/j.bjoms.2015.12.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Accepted: 12/02/2015] [Indexed: 11/13/2022]
Abstract
The association between smoking and postoperative complications is compounded in patients who have oral and maxillofacial operations by an additional local effect, and patients often continue to smoke after operation despite advice to stop. Recent studies have suggested that nicotine may reduce inflammation and improve angiogenesis, so topical application may be beneficial for smokers. The electronic cigarette is increasing in popularity and more patients ask whether they can vape after operation. We investigated the effect of electronic cigarettes (of which half contained nicotine and half did not) on blood flow in the buccal mucosa in 10 volunteers immediately after vaping. Smokers were excluded as this was considered an additional variable in a small pilot study and our Trust has a no-smoking policy. After vaping for 5 minutes, capillary blood flow was measured in the buccal mucosa at 5-minute intervals using a laser Doppler probe, and the results were expressed as arbitrary perfusion units. There was a wide variation in results and a small but significant rise (p=0.008) as a result of nicotine vaping, but these fell to the same levels as before within 30 minutes. Electronic cigarettes may have an effect on blood flow to the oral mucosa, although further studies are needed to show whether they improve healing time after operation. Additional work is also needed to compare them with cigarettes.
Collapse
Affiliation(s)
- William J Reuther
- Maxillofacial Department, Queen Alexandra Hospital, Portsmouth PO6 3LY, UK.
| | - Beverley Hale
- Maxillofacial Department, Queen Alexandra Hospital, Portsmouth PO6 3LY, UK
| | - Jas Matharu
- Maxillofacial Department, Queen Alexandra Hospital, Portsmouth PO6 3LY, UK
| | - John N Blythe
- Maxillofacial Department, Queen Alexandra Hospital, Portsmouth PO6 3LY, UK
| | - Peter A Brennan
- Maxillofacial Department, Queen Alexandra Hospital, Portsmouth PO6 3LY, UK
| |
Collapse
|
7
|
Romero A, Cáceres M, Arancibia R, Silva D, Couve E, Martínez C, Martínez J, Smith PC. Cigarette smoke condensate inhibits collagen gel contraction and prostaglandin E2 production in human gingival fibroblasts. J Periodontal Res 2015; 50:371-9. [PMID: 25073540 DOI: 10.1111/jre.12216] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/21/2014] [Indexed: 01/02/2023]
Abstract
BACKGROUND Granulation tissue remodeling and myofibroblastic differentiation are critically important events during wound healing. Tobacco smoking has a detrimental effect in gingival tissue repair. However, studies evaluating the effects of cigarette smoke on these events are lacking. MATERIAL AND METHODS We used gingival fibroblasts cultured within free-floating and restrained collagen gels to simulate the initial and final steps of the granulation tissue phase during tissue repair. Collagen gel contraction was stimulated with serum or transforming growth factor-β1. Cigarette smoke condensate (CSC) was used to evaluate the effects of tobacco smoke on gel contraction. Protein levels of alpha-smooth muscle actin, β1 integrin, matrix metalloproteinase-3 and connective tissue growth factor were evaluated through Western blot. Prostaglandin E(2) (PGE(2)) levels were determined through ELISA. Actin organization was evaluated through confocal microscopy. RESULTS CSC reduced collagen gel contraction induced by serum and transforming growth factor-β1 in restrained collagen gels. CSC also altered the development of actin stress fibers in fibroblasts cultured within restrained collagen gels. PGE(2) levels were strongly diminished by CSC in three-dimensional cell cultures. However, other proteins involved in granulation tissue remodeling and myofibroblastic differentiation such as alpha-smooth muscle actin, β1 integrin, matrix metalloproteinase-3 and connective tissue growth factor, were unmodified by CSC. CONCLUSIONS CSC may alter the capacity of gingival fibroblasts to remodel and contract a collagen matrix. Inhibition of PGE(2) production and alterations of actin stress fibers in these cells may impair proper tissue maturation during wound healing in smokers.
Collapse
Affiliation(s)
- A Romero
- Dentistry Academic Unit, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Holloway AC, Salomon A, Soares MJ, Garnier V, Raha S, Sergent F, Nicholson CJ, Feige JJ, Benharouga M, Alfaidy N. Characterization of the adverse effects of nicotine on placental development: in vivo and in vitro studies. Am J Physiol Endocrinol Metab 2014; 306:E443-56. [PMID: 24368670 PMCID: PMC4865199 DOI: 10.1152/ajpendo.00478.2013] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In utero exposure to nicotine is associated with increased risk of numerous adverse fetal and neonatal outcomes, which suggests that it acts directly to affect placental development and the establishment of the fetomaternal circulation (FC). This study used both in vivo [Wistar rats treated with 1 mg/kg nicotine from 2 wk prior to mating until gestational day (GD) 15] and in vitro (RCHO-1 cell line; treated with 10(-9) to 10(-3)M nicotine) models to examine the effects of nicotine on these pathways. At GD 15, control and treated placentas were examined for the impact of nicotine on 1) trophoblast invasion, proliferation, and degree of hypoxia, 2) labyrinth vascularization, 3) expression of key genes of placental development, and 4) expression of placental angiogenic factors. The RCHO-1 cell line was used to determine the direct effects of nicotine on trophoblast differentiation. Our in vivo experiments show that nicotine inhibits trophoblast interstitial invasion, increases placental hypoxia, downregulates labyrinth vascularization as well as key transcription factors Hand1 and GCM1, and decreases local and circulating EG-VEGF, a key placental angiogenic factor. The in vitro experiments confirmed the inhibitory effects of nicotine on the trophoblast migration, invasion, and differentiation processes and demonstrated that those effects are most likely due to a dysregulation in the expression of nicotine receptors and a decrease in MMP9 activity. Taken together, these data suggest that adverse effects of maternal smoking on pregnancy outcome are due in part to direct and endocrine effects of nicotine on the main processes of placental development and establishment of FC.
Collapse
Affiliation(s)
- A. C. Holloway
- 5Department of Obstetrics and Gynecology, McMaster University, Hamilton, Ontario, Canada;
| | - A. Salomon
- 2Commissariat à l'Energie Atomique, Grenoble, France;
- 3Université Joseph Fourrier, Grenoble, France;
- 4Institut National de la Santé et de la Recherche Médicale, Grenoble, France;
| | - M. J. Soares
- 7Institute for Reproductive Health and Regenerative Medicine, University of Kansas Medical Center, Kansas City, Kansas
| | - V. Garnier
- 2Commissariat à l'Energie Atomique, Grenoble, France;
- 3Université Joseph Fourrier, Grenoble, France;
- 4Institut National de la Santé et de la Recherche Médicale, Grenoble, France;
| | - S. Raha
- 6Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada; and
| | - F. Sergent
- 2Commissariat à l'Energie Atomique, Grenoble, France;
- 3Université Joseph Fourrier, Grenoble, France;
- 4Institut National de la Santé et de la Recherche Médicale, Grenoble, France;
| | - C. J. Nicholson
- 5Department of Obstetrics and Gynecology, McMaster University, Hamilton, Ontario, Canada;
| | - J. J. Feige
- 2Commissariat à l'Energie Atomique, Grenoble, France;
- 3Université Joseph Fourrier, Grenoble, France;
- 4Institut National de la Santé et de la Recherche Médicale, Grenoble, France;
| | - M. Benharouga
- 1Centre National de la Recherche Scientifique, Grenoble, France;
- 2Commissariat à l'Energie Atomique, Grenoble, France;
- 3Université Joseph Fourrier, Grenoble, France;
| | - N. Alfaidy
- 2Commissariat à l'Energie Atomique, Grenoble, France;
- 3Université Joseph Fourrier, Grenoble, France;
- 4Institut National de la Santé et de la Recherche Médicale, Grenoble, France;
| |
Collapse
|
9
|
Tinti F, Soory M. Oxidative actions of hydrogen peroxide in human gingival and oral periosteal fibroblasts: responses to glutathione and nicotine, relevant to healing in a redox environment. Redox Biol 2013; 2:36-43. [PMID: 24371803 PMCID: PMC3871294 DOI: 10.1016/j.redox.2013.11.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Revised: 11/26/2013] [Accepted: 11/29/2013] [Indexed: 12/22/2022] Open
Abstract
Background This study aims to validate pro-oxidant actions of nicotine (N), using hydrogen peroxide (H2O2) and the antioxidant glutathione (G) in an in vitro model of human gingival fibroblasts (HGF) and human oral periosteal fibroblasts (HPF); radiolabelled androgens are used as biomarkers of redox status. Oxidative stress is an important mediator of inflammatory repair. The androgen metabolite 5α-dihydrotestosterone (DHT) is an effective biomarker of oxidative stress and healing. Methods 6 Cell-lines of HGF and HPF established in confluent monolayer culture were incubated in Eagle's MEM using 14C-testosterone and 14C-4-androstendione as substrate; in conjunction with effective concentrations of N, G and H2O2 established at N250, G3 μg/ml and 3%H2O2 w/w, 0.5 μl/ml. Combinations of H2O2G and H2O2GN were used in order to compare the oxidative effects of N/H2O2 and their responses to glutathione. At 24 h, the medium was solvent extracted, evaporated to dryness and subjected to TLC in a benzene/acetone solvent system 4:1 v/v for the separation of metabolites. The separated metabolites were quantified using a radioisotope scanner. Results The mean trends of 6 cell-lines for both substrates and each cell type demonstrated that the yield of the main metabolite DHT was significantly reduced by N and H2O2 alone (2-fold, n=6; p<0.01). The inhibition caused by H2O2 was overcome by the antioxidant glutathione in the combination H2O2G, to values similar to those of controls (n=6; p<0.01). It is relevant that when N was added to this neutralized combination, the decrease in yields of DHT triggered by N were comparable to those induced by H2O2; and retaining the positive effect of G. Conclusion Oxidative stress mediated by H2O2 was overcome by glutathione and recurred when nicotine was added, suggestive of a pro- oxidant role for nicotine. Androgen biomarkers are a sensitive index of oxidative stress which affects wound healing. DHT is an effective redox marker in HGF and oral periosteal fibroblasts in vitro. Both nicotine and H2O2 reduced yields of DHT, indicative of induced oxidative stress. Nicotine has oxidative effects that are comparable to those of H2O2 mediated by AR. Effects of nicotine and H2O2 were reduced by glutathione in HGF and HPF cultures. Redox status is relevant to androgen receptor-mediated inflammatory wound healing.
Collapse
Affiliation(s)
- Federico Tinti
- King's College London Dental Institute, Guy's Dental Hospital, London SE1 9RT, UK
| | - Mena Soory
- King's College London Dental Institute, Guy's Dental Hospital, London SE1 9RT, UK
| |
Collapse
|
10
|
Reuther WJ, Brennan PA. Is nicotine still the bad guy? Summary of the effects of smoking on patients with head and neck cancer in the postoperative period and the uses of nicotine replacement therapy in these patients. Br J Oral Maxillofac Surg 2013; 52:102-5. [PMID: 24315200 DOI: 10.1016/j.bjoms.2013.11.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2013] [Accepted: 11/01/2013] [Indexed: 01/31/2023]
Abstract
Smoking has long been implicated in the development and progression of numerous postoperative complications. The cause is largely thought to be the presence of reactive oxygen species (ROS) in cigarette smoke, which attenuates inflammation and affects neutrophil function. Wound healing is further compromised by deficiencies in vitamins C and E, which result from a higher vitamin turnover secondary to the oxidative stress produced by smoking. However, studies recently have found that the effects of nicotine may benefit healing if used in isolation. We summarise the effects that smoking and abstaining from smoking can have on inflammation and wound healing, and describe the possible benefits that nicotine replacement and antioxidant supplements can give.
Collapse
Affiliation(s)
- William J Reuther
- Maxillofacial Department, Queen Alexandra Hospital, Portsmouth PO6 3LY, UK.
| | - Peter A Brennan
- Maxillofacial Department, Queen Alexandra Hospital, Portsmouth PO6 3LY, UK
| |
Collapse
|
11
|
Tong Z, Duncan RL, Jia X. Modulating the behaviors of mesenchymal stem cells via the combination of high-frequency vibratory stimulations and fibrous scaffolds. Tissue Eng Part A 2013; 19:1862-78. [PMID: 23516973 DOI: 10.1089/ten.tea.2012.0694] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We are interested in the in vitro engineering of artificial vocal fold tissues via the strategic combination of multipotent mesenchymal stem cells (MSCs), physiologically relevant mechanical stimulations, and biomimetic artificial matrices. We have constructed a vocal fold bioreactor that is capable of imposing vibratory stimulations on the cultured cells at human phonation frequencies. Separately, fibrous poly (ɛ-caprolactone) (PCL) scaffolds emulating the ligamentous structure of the vocal fold were prepared by electrospinning, were incorporated in the vocal fold bioreactor, and were driven into a wave-like motion in an axisymmetrical fashion by the oscillating air. MSC-laden PCL scaffolds were subjected to vibrations at 200 Hz with a normal center displacement of ∼40 μm for a total of 7 days. A continuous (CT) or a 1 h-on-1 h-off (OF) regime with a total dynamic culture time of 12 h per day was applied. The dynamic loading did not cause any physiological trauma to the cells. Immunohistotochemical staining revealed the reinforcement of the actin filament and the enhancement of α5β1 integrin expression under selected dynamic culture conditions. Cellular expression of essential vocal fold extracellular matrix components, such as elastin, hyaluronic acid, and matrix metalloproteinase-1, was significantly elevated as compared with the static controls, and the OF regime is more conducive to matrix production than the CT vibration mode. Analyses of genes of typical fibroblast hallmarks (tenascin-C, collagen III, and procollagen I) as well as markers for MSC differentiation into nonfibroblastic lineages confirmed MSCs' adaptation of fibroblastic behaviors. Overall, the high-frequency vibratory stimulation, when combined with a synthetic fibrous scaffold, serves as a potent modulator of MSC functions. The novel bioreactor system presented here, as a versatile, yet well-controlled model, offers an in vitro platform for understanding vibration-induced mechanotransduction and for engineering of functional vocal fold tissues.
Collapse
Affiliation(s)
- Zhixiang Tong
- Department of Materials Science and Engineering, Delaware Biotechnology Institute, University of Delaware, Newark, DE 19716, USA
| | | | | |
Collapse
|
12
|
Caesar M, Zach S, Carlson CB, Brockmann K, Gasser T, Gillardon F. Leucine-rich repeat kinase 2 functionally interacts with microtubules and kinase-dependently modulates cell migration. Neurobiol Dis 2013; 54:280-8. [PMID: 23318930 DOI: 10.1016/j.nbd.2012.12.019] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Revised: 11/29/2012] [Accepted: 12/21/2012] [Indexed: 11/24/2022] Open
Abstract
Recent studies indicate that the Parkinson's disease-linked leucine-rich repeat kinase 2 (LRRK2) modulates cytoskeletal functions by regulating actin and tubulin dynamics, thereby affecting neurite outgrowth. By interactome analysis we demonstrate that the binding of LRRK2 to tubulins is significantly enhanced by pharmacological LRRK2 inhibition in cells. Co-incubation of LRRK2 with microtubules increased the LRRK2 GTPase activity in a cell-free assay. Destabilization of microtubules causes a rapid decrease in cellular LRRK2(S935) phosphorylation indicating a decreased LRRK2 kinase activity. Moreover, both human LRRK2(G2019S) fibroblasts and mouse LRRK2(R1441G) fibroblasts exhibit alterations in cell migration in culture. Treatment of mouse fibroblasts with the selective LRRK2 inhibitor LRRK2-IN1 reduces cell motility. These findings suggest that LRRK2 and microtubules mutually interact both in non-neuronal cells and in neurons, which might contribute to our understanding of its pathogenic effects in Parkinson's disease.
Collapse
Affiliation(s)
- Mareike Caesar
- Boehringer Ingelheim Pharma GmbH & Co. KG, CNS Diseases Research, 88397 Biberach an der Riss, Germany
| | | | | | | | | | | |
Collapse
|
13
|
San Miguel SM, Opperman LA, Allen EP, Zielinski J, Svoboda KK. Bioactive polyphenol antioxidants protect oral fibroblasts from ROS-inducing agents. Arch Oral Biol 2012; 57:1657-67. [DOI: 10.1016/j.archoralbio.2012.04.021] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Revised: 04/21/2012] [Accepted: 04/24/2012] [Indexed: 12/17/2022]
|
14
|
Silva D, Cáceres M, Arancibia R, Martínez C, Martínez J, Smith PC. Effects of cigarette smoke and nicotine on cell viability, migration and myofibroblastic differentiation. J Periodontal Res 2012; 47:599-607. [PMID: 23091836 DOI: 10.1111/j.1600-0765.2012.01472.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
BACKGROUND AND OBJECTIVE Several studies have analysed the role of nicotine as a prominent agent affecting wound repair in smokers. However, tobacco smoke contains several components that may alter gingival wound healing. The present study aimed to analyse the roles of cigarette smoke condensate (CSC) and nicotine on cell viability, cell migration/invasion and myofibroblastic differentiation using primary cultures of human gingival fibroblasts. MATERIAL AND METHODS To compare the effects of CSC and nicotine, gingival fibroblasts were stimulated with CSC (0.4–500 lg/mL) and the corresponding nicotine concentrations (0.025–32 lg/mL) present in research cigarettes (1R3F). Cell viability was evaluated through the MTS assay. Cell migration and invasion were assessed through scratch wound assays, collagen nested matrices and trans well migration. a-Smooth muscle actin production was evaluated by western blotting. RESULTS Cigarette smoke condensate at 50 lg/mL induced a moderate increase in cell viability, whereas the corresponding nicotine concentration (3.2 lg/mL) did not produce this response. Cigarette smoke condensate at 250 lg/mL, but not nicotine at 16 lg/mL (the corresponding nicotine concentration), induced cell death. Both nicotine and CSC stimulated cell migration (50 lg/mL CSC; 3.2 lg/mL nicotine). At 150 lg/mL, CSC inhibited cell migration; however, the corresponding concentration of nicotine (9.6 lg/mL), did not have this effect. Although both nicotine and CSC inhibited a-smooth muscle actin production, only the latter induced a statistically significant effect on this response. CONCLUSION Cigarette smoke condensate may stimulate cell survival and migration at low concentrations and inhibit these cell responses at higher levels of exposure. Moreover, CSC may interfere in myofibroblastic differentiation.These results show that cigarette smoke, but not nicotine, may significantly alter cell viability, cell migration and myofibroblastic differentiation in gingival mesenchymal cells.
Collapse
Affiliation(s)
- D Silva
- Laboratory of Periodontal Physiology, Dentistry Academic Unit, Faculty of Medicine, Pontificia Universidad Catlica de Chile, Santiago, Chile
| | | | | | | | | | | |
Collapse
|
15
|
Mechanisms for redox actions of nicotine and glutathione in cell culture, relevant to periodontitis. Sci Rep 2012; 2:566. [PMID: 22876341 PMCID: PMC3413880 DOI: 10.1038/srep00566] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Accepted: 07/23/2012] [Indexed: 12/17/2022] Open
Abstract
The oxidative effect of nicotine was investigated using androgen biomarkers of redox status and wound healing in fibroblasts; using the antioxidant glutathione for confirmation of responses. Cultures of human gingival (HGF) and periosteal fibroblasts (HPF) were incubated with substrates 14C-testosterone/14C-4-androstenedione in the presence or absence of serial concentrations of nicotine (N100-500), glutathione (G1–5) and their combinations, in medium. At 24 h the medium was solvent extracted for metabolites, separated by TLC and quantified using radioisotope scanning. Nicotine caused significant inhibition in yields of the physiologically active metabolite 5α-dihydrotestosterone (DHT) in HGF and HPF, overcome to varying degrees by the anti-oxidant glutathione (n = 6; p<0.01, one way ANOVA); this is suggestive of moderation of an oxidative mechanism induced by nicotine. Down-regulation of 5α-reductase activity by nicotine resulting in reduced yields of DHT was overcome by glutathione. Overcoming oxidative stress in a redox environment is applicable to treatment outcome.
Collapse
|
16
|
|
17
|
Bulmanski Z, Brady M, Stoute D, Lallier TE. Cigarette smoke extract induces select matrix metalloproteinases and integrin expression in periodontal ligament fibroblasts. J Periodontol 2012; 83:787-96. [PMID: 22122519 DOI: 10.1902/jop.2011.110395] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND The periodontal ligament (PDL) is the connective tissue that anchors the cementum of the teeth to the alveolar bone. PDL fibroblasts are responsible for the production of collagen and remodeling of the PDL. Periodontal disease is increased among smokers in both incidence and severity. This study examines the direct effect of smoking on PDL fibroblasts and their production of various matrix components and remodeling enzymes. METHODS PDL cells were plated for 1 day and then treated with various concentrations of cigarette smoke extract (CSE). Survival of PDL cells was quantified after exposure to CSE, and their ability to contract three-dimensional collagen gels was examined. Changes in transcript expression after CSE treatment was compared using reverse transcription-polymerase chain reaction analysis for matrix metalloproteinases (MMPs), collagens, and integrins. RESULTS Treatment with CSE-induced cell death at concentrations of ≥5%. PDL-cell-induced collagen gel contraction was reduced at concentrations of 1.5% CSE. Treatment with CSE selectively increased the expression of collagen Vα3 and decreased collagen XIα1. CSE increased the expression of MMP1 and MMP3 and, to a lesser extent, MMP2 and MMP8. CSE also increased the expression of integrins α1, α2, and α10 (collagen receptors) and α9 (a tenascin receptor). CONCLUSIONS This study shows that cigarette smoking has local effects on the cells of the PDL. CSE reduced survival of PDL cells and their ability to contract collagen matrices. CSE also altered the expression of molecules known to provide the structural integrity of the ligament by altering collagen synthesis and remodeling as well as cell adhesion.
Collapse
Affiliation(s)
- Zachary Bulmanski
- Department of Oral Biology, Center of Excellence in Oral and Craniofacial Biology, Louisiana State University Health Sciences Center, School of Dentistry, 1100 Florida Ave., New Orleans, LA 70119, USA
| | | | | | | |
Collapse
|
18
|
Kim YS, Shin SI, Kang KL, Chung JH, Herr Y, Bae WJ, Kim EC. Nicotine and lipopolysaccharide stimulate the production of MMPs and prostaglandin E2 by hypoxia-inducible factor-1α up-regulation in human periodontal ligament cells. J Periodontal Res 2012; 47:719-28. [PMID: 22571166 DOI: 10.1111/j.1600-0765.2012.01487.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND AND OBJECTIVE Although hypoxia-inducible factor 1α (HIF-1α) is up-regulated in the periodontal pockets of periodontitis patients, the expression and precise molecular mechanisms of HIF-1α remain unknown in human periodontal ligament cells (PDLCs). The aim of this study was to explore the effects, as well as the signaling pathway, of nicotine and lipopolysaccharide (LPS) on the expression of HIF-1α and on the production of its target genes, including cyclooxygenase-2 (COX-2)-derived prostaglandin E(2) (PGE(2) ), MMP-2 and MMP-9 in PDLCs. MATERIAL AND METHODS The expression of COX-2 and HIF-1α proteins was evaluated using western blotting. The production of PGE(2) and MMPs was evaluated using enzyme immunoassays and zymography, respectively. RESULTS LPS and nicotine synergistically induced the production of PGE(2) , MMP-2 and MMP-9, and increased the expression of MMP-2, MMP-9, COX-2 and HIF-1α proteins. Inhibition of HIF-1α activity by chetomin or knockdown of HIF1α gene expression by small interfering RNA markedly attenuated the production of LPS- and nicotine-stimulated PGE(2) and MMPs, as well as the expression of COX-2 and HIF-1α. Furthermore, pretreatment with inhibitors of COX-2, p38, extracellular signal-regulated kinase, Jun N-terminal kinase, protein kinase C, phosphatidylinositol 3-kinase and nuclear factor-kappaB decreased the expression of nicotine- and LPS-induced HIF-1α and COX-2, as well as the activity of PGE(2) and MMPs. CONCLUSION These data demonstrate novel mechanisms by which nicotine and LPS promote periodontal tissue destruction, and provide further evidence that HIF-1α is a potential target in periodontal disease associated with smoking and dental plaque.
Collapse
Affiliation(s)
- Y-S Kim
- Department of Maxillofacial Tissue Regeneration, School of Dentistry and Institute of Oral Biology, Seoul, Korea
| | | | | | | | | | | | | |
Collapse
|
19
|
Wang T, Chen M, Liu L, Cheng H, Yan YE, Feng YH, Wang H. Nicotine induced CpG methylation of Pax6 binding motif in StAR promoter reduces the gene expression and cortisol production. Toxicol Appl Pharmacol 2011; 257:328-37. [PMID: 21971485 DOI: 10.1016/j.taap.2011.09.016] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Revised: 09/15/2011] [Accepted: 09/16/2011] [Indexed: 12/18/2022]
Abstract
Steroidogenic acute regulatory protein (StAR) mediates the rate-limiting step in the synthesis of steroid hormones, essential to fetal development. We have reported that the StAR expression in fetal adrenal is inhibited in a rat model of nicotine-induced intrauterine growth retardation (IUGR). Here using primary human fetal adrenal cortex (pHFAC) cells and a human fetal adrenal cell line NCI-H295A, we show that nicotine inhibits StAR expression and cortisol production in a dose- and time-dependent manner, and prolongs the inhibitory effect on cells proliferating over 5 passages after termination of nicotine treatment. Methylation detection within the StAR promoter region uncovers a single site CpG methylation at nt -377 that is sensitive to nicotine treatment. Nicotine-induced alterations in frequency of this point methylation correlates well with the levels of StAR expression, suggesting an important role of the single site in regulating StAR expression. Further studies using bioinformatics analysis and siRNA approach reveal that the single CpG site is part of the Pax6 binding motif (CGCCTGA) in the StAR promoter. The luciferase activity assays validate that Pax6 increases StAR gene expression by binding to the glucagon G3-like motif (CGCCTGA) and methylation of this site blocks Pax6 binding and thus suppresses StAR expression. These data identify a nicotine-sensitive CpG site at the Pax6 binding motif in the StAR promoter that may play a central role in regulating StAR expression. The results suggest an epigenetic mechanism that may explain how nicotine contributes to onset of adult diseases or disorders such as metabolic syndrome via fetal programming.
Collapse
Affiliation(s)
- Tingting Wang
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071, China
| | | | | | | | | | | | | |
Collapse
|
20
|
Bioactive antioxidant mixtures promote proliferation and migration on human oral fibroblasts. Arch Oral Biol 2011; 56:812-22. [DOI: 10.1016/j.archoralbio.2011.01.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2010] [Revised: 01/05/2011] [Accepted: 01/11/2011] [Indexed: 12/17/2022]
|
21
|
Garcia VG, Macarini VC, de Almeida JM, Bosco AF, Nagata MJH, Okamoto T, Longo M, Theodoro LH. Influence of low-level laser therapy on wound healing in nicotine-treated animals. Lasers Med Sci 2011; 27:437-43. [DOI: 10.1007/s10103-011-0956-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Accepted: 06/24/2011] [Indexed: 12/17/2022]
|
22
|
Zhang W, Fang M, Song F, Windsor LJ. Effects of cigarette smoke condensate and nicotine on human gingival fibroblast-mediated collagen degradation. J Periodontol 2011; 82:1071-9. [PMID: 21142980 DOI: 10.1902/jop.2010.100540] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
BACKGROUND Members of the matrix metalloproteinase (MMP) family have been shown to be involved in periodontal disease. Risk factors for periodontal disease include tobacco smoking. Cigarette smoke condensate (CSC) is comprised of thousands of chemicals. Nicotine is one of the active components in tobacco. This study compares the effects of CSC and nicotine at the level in CSC on the collagen-degrading ability of human gingival fibroblasts (HGFs) and the expression of selected MMPs and tissue inhibitors of metalloproteinases (TIMPs). METHODS HGFs were seeded in six-well collagen-coated plates, exposed to 100 μg/mL (2.4 μg/mL nicotine) of CSC or 2.4 μg/mL nicotine for 3 days, and then collagen degradation was analyzed. After 3 days exposure to CSC or nicotine, the conditioned media from HGFs was collected and the membrane proteins were extracted for gelatin zymography and Western blot analyses. The mRNA levels of MMP-2, MMP-14, and TIMP-2 were measured by reverse transcription-polymerase chain reaction. RESULTS The CSC increased collagen degradation, and increased the levels of TIMP-2, MMP-14, and the active MMP-2 in the membrane extracts, and their mRNA levels. CSC also increased the level of active MMP-2 in the conditioned media. Nicotine at the level in CSC (2.4 μg/mL) had little influence on collagen degradation, as well as on the protein and mRNA levels of MMP-2, MMP-14, and TIMP-2. CONCLUSIONS CSC may increase HGF-mediated collagen degradation by affecting membrane-associated MMPs and TIMPs.
Collapse
Affiliation(s)
- Weiping Zhang
- Department of Oral Biology, Indiana University School of Dentistry, Indianapolis, IN 46202, USA
| | | | | | | |
Collapse
|
23
|
San Miguel SM, Opperman LA, Allen EP, Zielinski J, Svoboda KK. Antioxidants Counteract Nicotine and Promote Migration via RacGTP in Oral Fibroblast Cells. J Periodontol 2010; 81:1675-90. [DOI: 10.1902/jop.2010.100187] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
24
|
Zhang W, Song F, Windsor LJ. Cigarette smoke condensate affects the collagen-degrading ability of human gingival fibroblasts. J Periodontal Res 2009; 44:704-13. [PMID: 19453854 DOI: 10.1111/j.1600-0765.2008.01179.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND AND OBJECTIVE Cigarette smoke condensate, the particulate matter of cigarette smoke, is composed of thousands of chemicals, including nicotine. Cigarette smoking is a risk factor for periodontal disease. This study investigated the influence of cigarette smoke condensate on the collagen-degrading ability of human gingival fibroblasts and its mechanism. MATERIAL AND METHODS Human gingival fibroblasts were exposed for 72 h to various concentrations of total particulate matter cigarette smoke condensate. Cell proliferation and cytotoxicity were evaluated using water-soluble tetrazolium-1 and lactate dehydrogenase, respectively. The collagen-degrading ability of human gingival fibroblasts was evaluated in collagen-coated six-well plates. Conditioned media and membrane extracts were collected for zymography and western blot analyses of matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs). RESULTS Cell proliferation decreased and cytotoxicity increased in human gingival fibroblasts with increasing concentrations of cigarette smoke condensate. Cell proliferation decreased by more than 50% (p < 0.05) when the concentrations of total particulate matter cigarette smoke condensate were above 200 microg/mL, and cytotoxicity increased to more than 30% (p < 0.05) when the concentrations of total particulate matter cigarette smoke condensate were above 400 microg/mL. Cigarette smoke condensate increased the collagen-degrading ability of human gingival fibroblasts, especially at a concentration of 100 microg/mL (1.5-fold increase, p < 0.05) compared with the control. Cigarette smoke condensate increased the production of proMMP-1, proMMP-2, MMP-14 and TIMP-1, and decreased the production of TIMP-2, in conditioned media. Furthermore, compared with the control group, cigarette smoke condensate increased the production of MMP-2, MMP-14 and TIMP-2 in membrane extracts, especially at concentrations of 50-100 microg/mL. CONCLUSION Cigarette smoke condensate affects human gingival fibroblast proliferation and is toxic at total particulate matter cigarette smoke condensate concentrations of >or= 400 microg/mL. Cigarette smoke condensate can increase the collagen-degrading ability of human gingival fibroblasts by altering the production and localization of MMPs and TIMPs.
Collapse
Affiliation(s)
- W Zhang
- Department of Oral Biology, Indiana University School of Dentistry, Indianapolis, IN 46202, USA
| | | | | |
Collapse
|
25
|
Biondo-Simões MDLP, Tetilla MR, Biondo-Simões R, Martin MM, Repka JCD, Zanato D. A influência da nicotina na densidade de colágeno em cicatrizes cutâneas, em ratos. Rev Col Bras Cir 2009; 36:425-30. [DOI: 10.1590/s0100-69912009000500011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2008] [Accepted: 02/28/2009] [Indexed: 11/22/2022] Open
Abstract
OBJETIVO: Estudar a reação inflamatória e a deposição de colágeno na cicatrização de feridas cutâneas sob a influência da nicotina. MÉTODOS: Analisaram-se as cicatrizes de feridas abdominais de ratos tratados com nicotina, 2 mg/kg/d, comparando-as às de ratos controle. O tratamento foi iniciado sete dias antes do ato operatório e mantido por sete ou 14 dias, no pós-operatório. Os cortes histológicos foram corados pela hematoxilina e eosina e neles por meio de escores estabelecidos, reconheceu-se a intensidade e o tipo da reação inflamatória. Cortes histológicos corados pelo Sirius Supra red F3BA permitiram reconhecer a densidade do colágeno. RESULTADOS: Não houve diferença quanto à intensidade da reação inflamatória na análise de sete dias (p=0,165) e nem na de 14 dias (p=0,684). Pôde-se verificar que não existiu diferença significante na densidade de colágeno tipo I, na avaliação feita com sete dias (p=0,912) e com 14 dias (p=0,211). O grupo controle mostrava mais colágeno tipo III com sete dias (p=0,004), mas aos 14 não havia diferença significante (p=0,720). A quantificação do colágeno total, embora fosse maior no grupo controle, não o foi de forma significante em nenhum dos tempos estudados (p=0,103 aos sete e p=0,549 aos 14 dias). CONCLUSÃO: Não houve, nas cicatrizes dos animais tratados com nicotina, em relação aos controles, diferença quanto à intensidade do processo inflamatório, nem quanto à densidade do colágeno.
Collapse
|
26
|
Cardoso JF, Mendes FA, Amadeu TP, Romana-Souza B, Valença SS, Porto LCDMS, Abreu JG, Monte-Alto-Costa A. Ccn2/Ctgf overexpression induced by cigarette smoke during cutaneous wound healing is strain dependent. Toxicol Pathol 2009; 37:175-82. [PMID: 19332661 DOI: 10.1177/0192623308328134] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Cigarette smoke has been associated with poor healing in several studies, but the precise mechanisms involving this impairment are still not elucidated. The aim of this work was to investigate cigarette smoke exposure effects on initial phases of cutaneous healing in mice, focusing mainly on gene expression of two molecules involved in wound repair (Ccn2/Ctgf and Tgfb1) and to study if these effects are strain dependent. Mice were exposed to the smoke of nine cigarettes per day, three times per day, for ten days. In the eleventh day an excisional wound was made. The control group was sham-exposed. The cigarette smoke exposure protocol was performed until euthanasia, seven days after wounding. Wound contraction was evaluated. Sections were stained with hematoxylin-eosin, Sirius red, and toluidine blue, and also immunostained for alpha-smooth muscle actin. Gene expression of Ccn2/Ctgf and Tgfb1 was evaluated by semiquantitative reverse transcriptase polymerase chain reaction (RT-PCR). Smoke-exposed animals presented delay in wound contraction; fibroblastic, inflammatory, and mast cell recruitment; re-epithelialization; myofibroblastic differentiation; and Ccn2/Ctgf and Tgfb1 gene expression. Those alterations were strain dependent. This work confirmed the deleterious effects of cigarette smoke exposure on mouse cutaneous healing depending on mouse strain and links these effects to an overexpression of Ccn2/Ctgf.
Collapse
|
27
|
Martinez EF, Araújo VC, Sousa SOM, Arana-Chavez VE. TGF-beta1 enhances the expression of alpha-smooth muscle actin in cultured human pulpal fibroblasts: immunochemical and ultrastructural analyses. J Endod 2007; 33:1313-8. [PMID: 17963954 DOI: 10.1016/j.joen.2007.07.040] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2007] [Revised: 07/30/2007] [Accepted: 07/31/2007] [Indexed: 01/09/2023]
Abstract
Transforming growth factor-beta 1 (TGF-beta1) has been related to induce the expression of alpha-smooth muscle actin (alpha-SMA) in fibroblasts during repair. Because pulpal fibroblasts seem to be somewhat different from other fibroblasts, the present study investigated in vitro whether TGF-beta1 enhances the expression of alpha-SMA in human pulpal fibroblasts. TGF-beta1 was added in doses between 5-10 ng/mL to cultures of both dental pulp and gingival human fibroblasts. The expression of alpha-SMA was analyzed by immunofluorescence and Western blotting, whereas the ultrastructure was evaluated by electron microscopy. In addition, the expression of tenascin, osteonectin, and vimentin was also investigated. Both cell types were immunoreactive for alpha-SMA even without TGF-beta1. When TGF-beta1 was added to cell cultures, the expression of alpha-SMA increased dramatically in pulpal fibroblasts, independent of the concentration used. It was confirmed by the Western blotting analysis. Ultrastructure revealed myofilaments and indented nuclei in both fibroblasts treated with TGF-beta1. Tenascin and osteonectin were only immunolabeled in pulpal fibroblasts treated or not with TGF-beta1. Both fibroblast types were positive for vimentin. The present findings showed that TGF-beta1 up-regulated the expression of alpha-SMA, thus inducing pulpal fibroblasts to acquire the myofibroblast phenotype.
Collapse
Affiliation(s)
- Elizabeth F Martinez
- Laboratory of Mineralized Tissue Biology, Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | | | | | | |
Collapse
|
28
|
Yang M, Kroft SH, Chitambar CR. Gene expression analysis of gallium-resistant and gallium-sensitive lymphoma cells reveals a role for metal-responsive transcription factor-1, metallothionein-2A, and zinc transporter-1 in modulating the antineoplastic activity of gallium nitrate. Mol Cancer Ther 2007; 6:633-43. [PMID: 17308060 DOI: 10.1158/1535-7163.mct-06-0557] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Several clinical trials have shown gallium nitrate to be an active agent in the treatment of lymphoma. Whereas gallium is known to target cellular iron homeostasis, the basis for lymphoma cell resistance to gallium is not known. Understanding mechanisms of resistance may suggest strategies to enhance the clinical efficacy of gallium. In the present study, we used a focused DNA microarray to compare the expression of genes related to metal metabolism in gallium-resistant and gallium-sensitive lymphoma cell lines developed by us. Gallium-resistant cells were found to display a marked increase in gene expression for metallothionein-2A and the zinc transporter ZnT-1. Cells exposed to gallium nitrate displayed an increase in the binding of metal-responsive transcription factor-1 to metal response element sequences involved in the transcriptional regulation of metallothionein and ZnT-1 genes. Gallium nitrate induced metallothionein-2A and ZnT-1 expression in cells. A role for metallothionein in modulating the antineoplastic activity of gallium was confirmed by showing that the induction of metallothionein expression by zinc provided partial protection against the cytotoxicity of gallium and by showing that the level of endogenous metallothionein in lymphoma cell lines correlated with their sensitivity to gallium nitrate. Immunohistochemical staining of lymphomatous tissues revealed metallothionein protein to be variably expressed in different lymphomas. Our studies show for the first time that gallium acts on pathways related to zinc metabolism and that metal-responsive transcription factor-1 activity and metallothionein expression contribute to the development of gallium drug resistance. Furthermore, the endogenous level of metallothionein in lymphoma may be an important determinant of clinical response to gallium nitrate.
Collapse
MESH Headings
- Antineoplastic Agents/pharmacology
- Blotting, Northern
- Cation Transport Proteins/genetics
- Cation Transport Proteins/metabolism
- Cell Proliferation/drug effects
- DNA, Complementary
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Drug Resistance, Neoplasm
- Electrophoretic Mobility Shift Assay
- Gallium/pharmacology
- Gene Expression Profiling
- Gene Expression Regulation, Neoplastic
- Humans
- Immunoenzyme Techniques
- Immunosuppressive Agents/pharmacology
- Leukemia, Lymphoid/drug therapy
- Leukemia, Lymphoid/genetics
- Leukemia, Lymphoid/metabolism
- Lymphoma, B-Cell/drug therapy
- Lymphoma, B-Cell/genetics
- Lymphoma, B-Cell/metabolism
- Lymphoma, Large B-Cell, Diffuse/drug therapy
- Lymphoma, Large B-Cell, Diffuse/genetics
- Lymphoma, Large B-Cell, Diffuse/metabolism
- Metallothionein/genetics
- Metallothionein/metabolism
- Oligonucleotide Array Sequence Analysis
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Transcription, Genetic
- Transcription Factor MTF-1
Collapse
Affiliation(s)
- Meiying Yang
- Division of Neoplastic Diseases, Medical College of Wisconsin, 9200 West Wisconsin Avenue, Milwaukee, WI 53226, USA
| | | | | |
Collapse
|
29
|
Abstract
The aim of this review was to analyse the literature to assess the possibility of an association between smoking and endodontic disease and the prognosis of endodontically treated teeth. The review of the prognosis of endodontically treated teeth involved taking account of any potential associations with smoking and endodontic disease and marginal periodontitis, and smoking and prosthodontic outcomes. In addition, the role of smoking in implant failure and surgical wound healing was analysed with a view to drawing parallels regarding the possible implications of smoking on the outcome of surgical endodontics. A MEDLINE and Cochrane library search including smoking and various endodontic keyword searches identified three papers which discussed the variables, and did not just mention them separately in the text. The literature demonstrates a paucity of evidence relating smoking with endodontic disease and prognosis, but nevertheless presents evidence of a possible influence on the prognosis of endodontically treated teeth in smokers and a likely increase in surgical complications. The possible merits of a smoking cessation protocol prior to surgical endodontics are also discussed.
Collapse
Affiliation(s)
- H F Duncan
- Department of Conservative Dentistry, Dental Institute, King's College London, Guy's Hospital, London, UK.
| | | |
Collapse
|