1
|
Powała K, Żołek T, Brown G, Kutner A. Molecular Interactions of Selective Agonists and Antagonists with the Retinoic Acid Receptor γ. Int J Mol Sci 2024; 25:6568. [PMID: 38928275 PMCID: PMC11203493 DOI: 10.3390/ijms25126568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/06/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
All-trans retinoic acid (ATRA), the major active metabolite of all-trans retinol (vitamin A), is a key hormonal signaling molecule. In the adult organism, ATRA has a widespread influence on processes that are crucial to the growth and differentiation of cells and, in turn, the acquisition of mature cell functions. Therefore, there is considerable potential in the use of retinoids to treat diseases. ATRA binds to the retinoic acid receptors (RAR) which, as activated by ATRA, selectively regulate gene expression. There are three main RAR isoforms, RARα, RARβ, and RARγ. They each have a distinct role, for example, RARα and RARγ regulate myeloid progenitor cell differentiation and hematopoietic stem cell maintenance, respectively. Hence, targeting an isoform is crucial to developing retinoid-based therapeutics. In principle, this is exemplified when ATRA is used to treat acute promyelocytic leukemia (PML) and target RARα within PML-RARα oncogenic fusion protein. ATRA with arsenic trioxide has provided a cure for the once highly fatal leukemia. Recent in vitro and in vivo studies of RARγ have revealed the potential use of agonists and antagonists to treat diseases as diverse as cancer, heterotopic ossification, psoriasis, and acne. During the final drug development there may be a need to design newer compounds with added modifications to improve solubility, pharmacokinetics, or potency. At the same time, it is important to retain isotype specificity and activity. Examination of the molecular interactions between RARγ agonists and the ligand binding domain of RARγ has revealed aspects to ligand binding that are crucial to RARγ selectivity and compound activity and key to designing newer compounds.
Collapse
Affiliation(s)
- Katarzyna Powała
- Department of Organic and Physical Chemistry, Faculty of Pharmacy, Medical University of Warsaw, 1 Banacha, 02-097 Warsaw, Poland
| | - Teresa Żołek
- Department of Organic and Physical Chemistry, Faculty of Pharmacy, Medical University of Warsaw, 1 Banacha, 02-097 Warsaw, Poland
| | - Geoffrey Brown
- School of Biomedical Sciences, Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK;
| | - Andrzej Kutner
- Department of Drug Chemistry Pharmaceutical and Biomedical Analysis, Faculty of Pharmacy, Medical University of Warsaw, 1 Banacha, 02-097 Warsaw, Poland;
| |
Collapse
|
2
|
Schlotawa L, Tyka K, Kettwig M, Ahrens‐Nicklas RC, Baud M, Berulava T, Brunetti‐Pierri N, Gagne A, Herbst ZM, Maguire JA, Monfregola J, Pena T, Radhakrishnan K, Schröder S, Waxman EA, Ballabio A, Dierks T, Fischer A, French DL, Gelb MH, Gärtner J. Drug screening identifies tazarotene and bexarotene as therapeutic agents in multiple sulfatase deficiency. EMBO Mol Med 2023; 15:e14837. [PMID: 36789546 PMCID: PMC9994482 DOI: 10.15252/emmm.202114837] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 12/09/2022] [Accepted: 01/09/2023] [Indexed: 02/16/2023] Open
Abstract
Multiple sulfatase deficiency (MSD, MIM #272200) results from pathogenic variants in the SUMF1 gene that impair proper function of the formylglycine-generating enzyme (FGE). FGE is essential for the posttranslational activation of cellular sulfatases. MSD patients display reduced or absent sulfatase activities and, as a result, clinical signs of single sulfatase disorders in a unique combination. Up to date therapeutic options for MSD are limited and mostly palliative. We performed a screen of FDA-approved drugs using immortalized MSD patient fibroblasts. Recovery of arylsulfatase A activity served as the primary readout. Subsequent analysis confirmed that treatment of primary MSD fibroblasts with tazarotene and bexarotene, two retinoids, led to a correction of MSD pathophysiology. Upon treatment, sulfatase activities increased in a dose- and time-dependent manner, reduced glycosaminoglycan content decreased and lysosomal position and size normalized. Treatment of MSD patient derived induced pluripotent stem cells (iPSC) differentiated into neuronal progenitor cells (NPC) resulted in a positive treatment response. Tazarotene and bexarotene act to ultimately increase the stability of FGE variants. The results lay the basis for future research on the development of a first therapeutic option for MSD patients.
Collapse
Affiliation(s)
- Lars Schlotawa
- Department of Paediatrics and Adolescent MedicineUniversity Medical Centre GöttingenGöttingenGermany
| | - Karolina Tyka
- Department of Paediatrics and Adolescent MedicineUniversity Medical Centre GöttingenGöttingenGermany
| | - Matthias Kettwig
- Department of Paediatrics and Adolescent MedicineUniversity Medical Centre GöttingenGöttingenGermany
| | - Rebecca C Ahrens‐Nicklas
- Division of Human Genetics and MetabolismThe Children's Hospital of PhiladelphiaPhiladelphiaPAUSA
| | - Matthias Baud
- School of Chemistry and Institute for Life SciencesUniversity of SouthamptonSouthamptonUK
| | - Tea Berulava
- Department for Epigenetics and Systems Medicine in Neurodegenerative DiseasesGerman Centre for Neurodegenerative DiseasesGöttingenGermany
| | - Nicola Brunetti‐Pierri
- Telethon Institute of Genetics and MedicinePozzuoliItaly
- Department of Translational MedicineUniversity of Naples Federico IINaplesItaly
| | - Alyssa Gagne
- Center for Cellular and Molecular TherapeuticsThe Children's Hospital of PhiladelphiaPhiladelphiaPAUSA
- Department of Pathology and Laboratory MedicineThe Children's Hospital of PhiladelphiaPhiladelphiaPAUSA
| | | | - Jean A Maguire
- Center for Cellular and Molecular TherapeuticsThe Children's Hospital of PhiladelphiaPhiladelphiaPAUSA
- Department of Pathology and Laboratory MedicineThe Children's Hospital of PhiladelphiaPhiladelphiaPAUSA
| | - Jlenia Monfregola
- Telethon Institute of Genetics and MedicinePozzuoliItaly
- Department of Translational MedicineUniversity of Naples Federico IINaplesItaly
| | - Tonatiuh Pena
- Department for Epigenetics and Systems Medicine in Neurodegenerative DiseasesGerman Centre for Neurodegenerative DiseasesGöttingenGermany
- Bioinformatics UnitGerman Centre for Neurodegenerative DiseasesGöttingenGermany
| | | | - Sophie Schröder
- Department for Epigenetics and Systems Medicine in Neurodegenerative DiseasesGerman Centre for Neurodegenerative DiseasesGöttingenGermany
| | - Elisa A Waxman
- Center for Cellular and Molecular TherapeuticsThe Children's Hospital of PhiladelphiaPhiladelphiaPAUSA
- Department of Pathology and Laboratory MedicineThe Children's Hospital of PhiladelphiaPhiladelphiaPAUSA
| | - Andrea Ballabio
- Telethon Institute of Genetics and MedicinePozzuoliItaly
- Department of Translational MedicineUniversity of Naples Federico IINaplesItaly
- Department of Molecular and Human Genetics and Neurological Research InstituteBaylor College of MedicineHoustonTXUSA
| | - Thomas Dierks
- Faculty of Chemistry, Biochemistry IBielefeld UniversityBielefeldGermany
| | - André Fischer
- Department for Epigenetics and Systems Medicine in Neurodegenerative DiseasesGerman Centre for Neurodegenerative DiseasesGöttingenGermany
- Department of Psychiatry and PsychotherapyUniversity Medical Center GöttingenGöttingenGermany
- Multiscale Bioimaging Cluster of Excellence, University Medical Center GöttingenUniversity of GöttingenGöttingenGermany
| | - Deborah L French
- Center for Cellular and Molecular TherapeuticsThe Children's Hospital of PhiladelphiaPhiladelphiaPAUSA
- Department of Pathology and Laboratory MedicineThe Children's Hospital of PhiladelphiaPhiladelphiaPAUSA
| | - Michael H Gelb
- Department of ChemistryUniversity of WashingtonSeattleWAUSA
| | - Jutta Gärtner
- Department of Paediatrics and Adolescent MedicineUniversity Medical Centre GöttingenGöttingenGermany
| |
Collapse
|
3
|
Antagonizing RARγ Drives Necroptosis of Cancer Stem Cells. Int J Mol Sci 2022; 23:ijms23094814. [PMID: 35563205 PMCID: PMC9105400 DOI: 10.3390/ijms23094814] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 04/25/2022] [Accepted: 04/25/2022] [Indexed: 12/23/2022] Open
Abstract
There is a need for agents that eliminate cancer stem cells, which sustain cancer and are also largely responsible for disease relapse and metastasis. Conventional chemotherapeutics and radiotherapy are often highly effective against the bulk of cancer cells, which are proliferating, but spare cancer stem cells. Therapeutics that target cancer stem cells may also provide a bona fide cure for cancer. There are two rationales for targeting the retinoic acid receptor (RAR)γ. First, RARγ is expressed selectively within primitive cells. Second, RARγ is a putative oncogene for a number of human cancers, including cases of acute myeloid leukemia, cholangiocarcinoma, and colorectal, renal and hepatocellular carcinomas. Prostate cancer cells depend on active RARγ for their survival. Antagonizing all RARs caused necroptosis of prostate and breast cancer stem cell-like cells, and the cancer stem cells that gave rise to neurospheres from pediatric patients’ primitive neuroectodermal tumors and an astrocytoma. As tested for prostate cancer, antagonizing RARγ was sufficient to drive necroptosis. Achieving cancer-selectively is a longstanding paradigm for developing new treatments. The normal prostate epithelium was less sensitive to the RARγ antagonist and pan-RAR antagonist than prostate cancer cells, and fibroblasts and blood mononuclear cells were insensitive. The RARγ antagonist and pan-RAR antagonist are promising new cancer therapeutics.
Collapse
|
4
|
Petrie K, Urban‐Wójciuk Z, Sbirkov Y, Graham A, Hamann A, Brown G. Retinoic acid receptor γ is a therapeutically targetable driver of growth and survival in prostate cancer. Cancer Rep (Hoboken) 2020; 3:e1284. [PMID: 32881426 PMCID: PMC7941583 DOI: 10.1002/cnr2.1284] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 07/15/2020] [Accepted: 07/21/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Prostate cancer (PC) tissue contains all-trans retinoic acid (ATRA) at a very low level (10-9 M), at least an order of magnitude lower than in adjacent normal healthy prostate cells or benign prostate hyperplasia. When this is coupled with deregulated expression of the intracellular lipid-binding proteins FABP5 and CRABP2 that is frequently found in PC, this is likely to result in the preferential delivery of ATRA to oncogenic PPARβ/δ rather than retinoic acid receptors (RARs). There are three isotypes of RARs (RARα, RARβ, and RARγ) and recent studies have revealed discrete physiological roles. For example, RARα and RARγ promote differentiation and self-renewal, respectively, which are critical for proper hematopoiesis. AIMS We have previously shown that ATRA stimulates transactivation of RARγ at sub-nanomolar concentrations (EC50 0.24 nM), whereas an 80-fold higher concentration was required for RARα-mediated transactivation (EC50 19.3 nM). Additionally, we have shown that RAR pan-antagonists inhibit the growth of PC cells (at 16-34 nM). These findings, together with the low level of ATRA in PC, led us to hypothesize that RARγ plays a role in PC pathogenesis and that RARγ-selective antagonism may be an effective treatment. METHODS AND RESULTS We found that concentrations of 10-9 M and below of ATRA promoted survival/proliferation and opposed adipogenic differentiation of human PC cell lines by a mechanism that involves RARγ. We also found that a RARγ-selective antagonist (AGN205728) potently induced mitochondria-dependent, but caspase-independent, cell death in PC cell lines. Furthermore, AGN205728 demonstrated synergism in killing PC cells in combination with cytotoxic chemotherapeutic agents. CONCLUSION We suggest that the use of RARγ-selective antagonists may be effective in PC (and potentially other cancers), either as a single agent or in combination with cytotoxic chemotherapy.
Collapse
Affiliation(s)
- Kevin Petrie
- School of MedicineFaculty of Health Sciences and Wellbeing University of SunderlandSunderlandUK
| | | | | | | | | | - Geoffrey Brown
- School of Biomedical Sciences, Institute of Clinical Sciences and Institute of Immunology and Immunotherapy, College of Medical and Dental SciencesThe University of BirminghamBirminghamUK
| |
Collapse
|
5
|
Abstract
Nuclear receptors have a broad spectrum of biological functions in normal physiology and in the pathology of various diseases, including glomerular disease. The primary therapies for many glomerular diseases are glucocorticoids, which exert their immunosuppressive and direct podocyte protective effects via the glucocorticoid receptor (GR). As glucocorticoids are associated with important adverse effects and a substantial proportion of patients show resistance to these therapies, the beneficial effects of selective GR modulators are now being explored. Peroxisome proliferator-activated receptor-γ (PPARγ) agonism using thiazolidinediones has potent podocyte cytoprotective and nephroprotective effects. Repurposing of thiazolidinediones or identification of novel PPARγ modulators are potential strategies to treat non-diabetic glomerular disease. Retinoic acid receptor-α is the key mediator of the renal protective effects of retinoic acid, and repair of the endogenous retinoic acid pathway offers another potential therapeutic strategy for glomerular disease. Vitamin D receptor, oestrogen receptor and mineralocorticoid receptor modulators regulate podocyte injury in experimental models. Further studies are needed to better understand the mechanisms of these nuclear receptors, evaluate their synergistic pathways and identify their novel modulators. Here, we focus on the role of nuclear receptors in podocyte biology and non-diabetic glomerular disease.
Collapse
|
6
|
Xu A, Zhang N, Cao J, Zhu H, Yang B, He Q, Shao X, Ying M. Post-translational modification of retinoic acid receptor alpha and its roles in tumor cell differentiation. Biochem Pharmacol 2020; 171:113696. [DOI: 10.1016/j.bcp.2019.113696] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 11/05/2019] [Indexed: 12/22/2022]
|
7
|
Brown G, Marchwicka A, Cunningham A, Toellner KM, Marcinkowska E. Antagonizing Retinoic Acid Receptors Increases Myeloid Cell Production by Cultured Human Hematopoietic Stem Cells. Arch Immunol Ther Exp (Warsz) 2017; 65:69-81. [PMID: 27412076 PMCID: PMC5274652 DOI: 10.1007/s00005-016-0411-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 04/20/2016] [Indexed: 02/07/2023]
Abstract
Activities of the retinoic acid receptor (RAR)α and RARγ are important to hematopoiesis. Here, we have investigated the effects of receptor selective agonists and antagonists on the primitive human hematopoietic cell lines KG1 and NB-4 and purified normal human hematopoietic stem cells (HSCs). Agonizing RARα (by AGN195183) was effective in driving neutrophil differentiation of NB-4 cells and this agonist synergized with a low amount (10 nM) of 1α,25-dihydroxyvitamin D3 to drive monocyte differentiation of NB-4 and KG1 cells. Treatment of cultures of human HSCs (supplemented with stem cell factor ± interleukin 3) with an antagonist of all RARs (AGN194310) or of RARα (AGN196996) prolonged the lifespan of cultures, up to 55 days, and increased the production of neutrophils and monocytes. Slowing down of cell differentiation was not observed, and instead, hematopoietic stem and progenitor cells had expanded in number. Antagonism of RARγ (by AGN205728) did not affect cultures of HSCs. Studies of CV-1 and LNCaP cells transfected with RAR expression vectors and a reporter vector revealed that RARγ and RARβ are activated by sub-nM all-trans retinoic acid (EC50-0.3 nM): ~50-fold more is required for activation of RARα (EC50-16 nM). These findings further support the notion that the balance of expression and activity of RARα and RARγ are important to hematopoietic stem and progenitor cell expansion and differentiation.
Collapse
Affiliation(s)
- Geoffrey Brown
- Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| | - Aleksandra Marchwicka
- Laboratory of Protein Biochemistry, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | - Alan Cunningham
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Kai-Michael Toellner
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Ewa Marcinkowska
- Laboratory of Protein Biochemistry, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| |
Collapse
|
8
|
Marchwicka A, Cebrat M, Łaszkiewicz A, Śnieżewski Ł, Brown G, Marcinkowska E. Regulation of vitamin D receptor expression by retinoic acid receptor alpha in acute myeloid leukemia cells. J Steroid Biochem Mol Biol 2016; 159:121-30. [PMID: 26969398 DOI: 10.1016/j.jsbmb.2016.03.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2015] [Revised: 03/04/2016] [Accepted: 03/06/2016] [Indexed: 11/28/2022]
Abstract
Acute myeloid leukemia (AML) is the predominant acute leukemia among adults, characterized by an accumulation of malignant immature myeloid precursors. A very promising way to treat AML is differentiation therapy using either all-trans-retinoic acid (ATRA) or 1,25-dihydroxyvitamin D3 (1,25D), or the use of both these differentiation-inducing agents. However, the effect of combination treatment varies in different AML cell lines, and this is due to ATRA either down- or up-regulating transcription of vitamin D receptor (VDR) in the cells examined. The mechanism of transcriptional regulation of VDR in response to ATRA has not been fully elucidated. Here, we show that the retinoic acid receptor α (RARα) is responsible for regulating VDR transcription in AML cells. We have shown that a VDR transcriptional variant, originating in exon 1a, is regulated by RARα agonists in AML cells. Moreover, in cells with a high basal level of RARα protein, the VDR gene is transcriptionally repressed as long as RARα agonist is absent. In these cells down-regulation of the level of RARα leads to increased expression of VDR. We consider that our findings provide a mechanistic background to explain the different outcomes from treating AML cell lines with a combination of ATRA and 1,25D.
Collapse
Affiliation(s)
- Aleksandra Marchwicka
- Laboratory of Protein Biochemistry, Faculty of Biotechnology, University of Wrocław, Joliot-Curie 14a, 50-383 Wrocław, Poland
| | - Małgorzata Cebrat
- Laboratory of Molecular and Cellular Immunology, Department of Tumor Immunology, Institute of Immunology and Experimental Therapy, Polish Academy of Science, Weigla 12, 53-114 Wrocław, Poland
| | - Agnieszka Łaszkiewicz
- Laboratory of Molecular and Cellular Immunology, Department of Tumor Immunology, Institute of Immunology and Experimental Therapy, Polish Academy of Science, Weigla 12, 53-114 Wrocław, Poland
| | - Łukasz Śnieżewski
- Laboratory of Molecular and Cellular Immunology, Department of Tumor Immunology, Institute of Immunology and Experimental Therapy, Polish Academy of Science, Weigla 12, 53-114 Wrocław, Poland
| | - Geoffrey Brown
- School of Immunity and Infection, College of Medical and Dental Sciences, University of Birmingham, Edgbaston B15 2TT, UK
| | - Ewa Marcinkowska
- Laboratory of Protein Biochemistry, Faculty of Biotechnology, University of Wrocław, Joliot-Curie 14a, 50-383 Wrocław, Poland.
| |
Collapse
|
9
|
Wai HA, Kawakami K, Wada H, Müller F, Vernallis AB, Brown G, Johnson WEB. The development and growth of tissues derived from cranial neural crest and primitive mesoderm is dependent on the ligation status of retinoic acid receptor γ: evidence that retinoic acid receptor γ functions to maintain stem/progenitor cells in the absence of retinoic acid. Stem Cells Dev 2015; 24:507-19. [PMID: 25233141 PMCID: PMC4313414 DOI: 10.1089/scd.2014.0235] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2014] [Accepted: 09/18/2014] [Indexed: 12/21/2022] Open
Abstract
Retinoic acid (RA) signaling is important to normal development. However, the function of the different RA receptors (RARs)--RARα, RARβ, and RARγ--is as yet unclear. We have used wild-type and transgenic zebrafish to examine the role of RARγ. Treatment of zebrafish embryos with an RARγ-specific agonist reduced somite formation and axial length, which was associated with a loss of hoxb13a expression and less-clear alterations in hoxc11a or myoD expression. Treatment with the RARγ agonist also disrupted formation of tissues arising from cranial neural crest, including cranial bones and anterior neural ganglia. There was a loss of Sox 9-immunopositive neural crest stem/progenitor cells in the same anterior regions. Pectoral fin outgrowth was blocked by RARγ agonist treatment. However, there was no loss of Tbx-5-immunopositive lateral plate mesodermal stem/progenitor cells and the block was reversed by agonist washout or by cotreatment with an RARγ antagonist. Regeneration of the caudal fin was also blocked by RARγ agonist treatment, which was associated with a loss of canonical Wnt signaling. This regenerative response was restored by agonist washout or cotreatment with the RARγ antagonist. These findings suggest that RARγ plays an essential role in maintaining stem/progenitor cells during embryonic development and tissue regeneration when the receptor is in its nonligated state.
Collapse
Affiliation(s)
- Htoo Aung Wai
- Life and Health Sciences, Aston University, Birmingham, United Kingdom
| | - Koichi Kawakami
- Division of Molecular and Developmental Biology, National Institute of Genetics, Mishima, Japan
| | - Hironori Wada
- Division of Molecular and Developmental Biology, National Institute of Genetics, Mishima, Japan
| | - Ferenc Müller
- School of Clinical and Experimental Medicine, University of Birmingham, United Kingdom
| | | | - Geoffrey Brown
- School of Immunity and Infection, University of Birmingham, United Kingdom
| | | |
Collapse
|
10
|
Perri M, Yap JL, Yu J, Cione E, Fletcher S, Kane MA. BCL-xL/MCL-1 inhibition and RARγ antagonism work cooperatively in human HL60 leukemia cells. Exp Cell Res 2014; 327:183-91. [PMID: 25088254 PMCID: PMC4727751 DOI: 10.1016/j.yexcr.2014.07.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Revised: 07/18/2014] [Accepted: 07/22/2014] [Indexed: 12/25/2022]
Abstract
The acute promyelocytic leukemia (APL) subtype of acute myeloid leukemia (AML) is characterized by chromosomal translocations that result in fusion proteins, including the promyelocytic leukemia-retinoic acid receptor, alpha fusion protein (PML-RARα). All-trans retinoic acid (atRA) treatment is the standard drug treatment for APL yielding cure rates > 80% by activating transcription and proteasomal degradation of retinoic acid receptor, alpha (RARα). Whereas combination therapy with As2O3 has increased survival further, patients that experience relapse and are refractory to atRA and/or As2O3 is a clinically significant problem. BCL-2 family proteins regulate apoptosis and over-expression of anti-apoptotic B-cell leukemia/lymphoma 2 (BCL-2) family proteins has been associated with chemotherapeutic resistance in APL including impairment of the ability of atRA to induce growth arrest and differentiation. Here we investigated the novel BH3 domain mimetic, JY-1-106, which antagonizes the anti-apoptotic BCL-2 family members B-cell lymphoma-extra large (BCL-xL) and myeloid cell leukemia-1 (MCL-1) alone and in combination with retinoids including atRA, AM580 (RARα agonist), and SR11253 (RARγ antagonist). JY-1-106 reduced cell viability in HL-60 cells alone and in combination with retinoids. The combination of JY-1-106 and SR11253 had the greatest impact on cell viability by stimulating apoptosis. These studies indicate that dual BCL-xL/MCL-1 inhibitors and retinoids could work cooperatively in leukemia treatment.
Collapse
MESH Headings
- Antineoplastic Combined Chemotherapy Protocols/pharmacology
- Apoptosis/drug effects
- Benzamides/administration & dosage
- Benzoates/administration & dosage
- Blotting, Western
- Cell Proliferation/drug effects
- Humans
- Leukemia, Promyelocytic, Acute/drug therapy
- Leukemia, Promyelocytic, Acute/metabolism
- Leukemia, Promyelocytic, Acute/pathology
- Myeloid Cell Leukemia Sequence 1 Protein/antagonists & inhibitors
- RNA, Messenger/genetics
- Real-Time Polymerase Chain Reaction
- Receptors, Retinoic Acid/agonists
- Receptors, Retinoic Acid/antagonists & inhibitors
- Retinoic Acid Receptor alpha
- Reverse Transcriptase Polymerase Chain Reaction
- Tetrahydronaphthalenes/administration & dosage
- Tretinoin/administration & dosage
- Tumor Cells, Cultured
- bcl-X Protein/antagonists & inhibitors
- para-Aminobenzoates/administration & dosage
- Retinoic Acid Receptor gamma
Collapse
Affiliation(s)
- Mariarita Perri
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 N Pine Street, Baltimore, MD 21201, USA
| | - Jeremy L Yap
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 N Pine Street, Baltimore, MD 21201, USA
| | - Jianshi Yu
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 N Pine Street, Baltimore, MD 21201, USA
| | - Erika Cione
- Department of Pharmacy, Health and Nutritional Sciences, Ed. Polifunzionale, University of Calabria, 87036 Rende, CS, Italy
| | - Steven Fletcher
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 N Pine Street, Baltimore, MD 21201, USA
| | - Maureen A Kane
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 N Pine Street, Baltimore, MD 21201, USA.
| |
Collapse
|
11
|
Huang GL, Luo Q, Rui G, Zhang W, Zhang QY, Chen QX, Shen DY. Oncogenic activity of retinoic acid receptor γ is exhibited through activation of the Akt/NF-κB and Wnt/β-catenin pathways in cholangiocarcinoma. Mol Cell Biol 2013; 33:3416-25. [PMID: 23798555 PMCID: PMC3753848 DOI: 10.1128/mcb.00384-13] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Accepted: 06/13/2013] [Indexed: 01/27/2023] Open
Abstract
Aberrant expression and function of retinoic acid receptor γ (RARγ) are often involved in the progression of several cancers. However, the role of RARγ in cholangiocarcinoma (CCA), chemoresistant bile duct carcinoma with a poor prognosis, remains unclear. In the present study, we found that RARγ was frequently overexpressed in human CCA specimens. Its overexpression was associated with poor differentiation, lymph node metastasis, high serum carbohydrate antigen 19-9 level, and poor prognosis of CCA. Downregulation of RARγ reduced CCA cell proliferation, migration, invasion, and colony formation ability in vitro and tumorigenic potential in nude mice. RARγ knockdown resulted in upregulation of cell cycle inhibitor P21, as well as downregulation of cyclin D1, proliferating cell nuclear antigen, and matrix metallopeptidase 9, in parallel with suppression of the Akt/NF-κB pathway. Furthermore, overexpression of RARγ contributed to the multidrug chemoresistance of CCA cells, at least in part due to upregulation of P glycoprotein via activation of the Wnt/β-catenin pathway. Molecular mechanism studies revealed that RARγ interacted with β-catenin and led to β-catenin nuclear translocation. Taken together, our results suggested that RARγ plays an important role in the proliferation, metastasis, and chemoresistance of CCA through simultaneous activation of the Akt/NF-κB and Wnt/β-catenin pathways, serving as a potential molecular target for CCA treatment.
Collapse
Affiliation(s)
- Gui-Li Huang
- Center Laboratory, First Affiliated Hospital of Xiamen University, Xiamen, People's Republic of China
| | - Qi Luo
- Department of Surgical Oncology, First Affiliated Hospital of Xiamen University, Xiamen Cancer Center, Xiamen, People's Republic of China
| | - Gang Rui
- Department of Surgical Oncology, First Affiliated Hospital of Xiamen University, Xiamen Cancer Center, Xiamen, People's Republic of China
| | - Wei Zhang
- Center Laboratory, First Affiliated Hospital of Xiamen University, Xiamen, People's Republic of China
| | - Qiu-Yan Zhang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, People's Republic of China
| | - Qing-Xi Chen
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, People's Republic of China
| | - Dong-Yan Shen
- Center Laboratory, First Affiliated Hospital of Xiamen University, Xiamen, People's Republic of China
| |
Collapse
|
12
|
Oncogenic activity of retinoic acid receptor γ is exhibited through activation of the Akt/NF-κB and Wnt/β-catenin pathways in cholangiocarcinoma. Mol Cell Biol 2013. [PMID: 23798555 DOI: 10.1128/mcb.00384-13mcb.00384-13] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Aberrant expression and function of retinoic acid receptor γ (RARγ) are often involved in the progression of several cancers. However, the role of RARγ in cholangiocarcinoma (CCA), chemoresistant bile duct carcinoma with a poor prognosis, remains unclear. In the present study, we found that RARγ was frequently overexpressed in human CCA specimens. Its overexpression was associated with poor differentiation, lymph node metastasis, high serum carbohydrate antigen 19-9 level, and poor prognosis of CCA. Downregulation of RARγ reduced CCA cell proliferation, migration, invasion, and colony formation ability in vitro and tumorigenic potential in nude mice. RARγ knockdown resulted in upregulation of cell cycle inhibitor P21, as well as downregulation of cyclin D1, proliferating cell nuclear antigen, and matrix metallopeptidase 9, in parallel with suppression of the Akt/NF-κB pathway. Furthermore, overexpression of RARγ contributed to the multidrug chemoresistance of CCA cells, at least in part due to upregulation of P glycoprotein via activation of the Wnt/β-catenin pathway. Molecular mechanism studies revealed that RARγ interacted with β-catenin and led to β-catenin nuclear translocation. Taken together, our results suggested that RARγ plays an important role in the proliferation, metastasis, and chemoresistance of CCA through simultaneous activation of the Akt/NF-κB and Wnt/β-catenin pathways, serving as a potential molecular target for CCA treatment.
Collapse
|
13
|
Retinoid differentiation therapy for common types of acute myeloid leukemia. LEUKEMIA RESEARCH AND TREATMENT 2012; 2012:939021. [PMID: 23213553 PMCID: PMC3504222 DOI: 10.1155/2012/939021] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Accepted: 03/05/2012] [Indexed: 11/25/2022]
Abstract
Many cancers arise in a tissue stem cell, and cell differentiation is impaired resulting in an accumulation of immature cells. The introduction of all-trans retinoic acid (ATRA) in 1987 to treat acute promyelocytic leukemia (APL), a rare subtype of acute myeloid leukemia (AML), pioneered a new approach to obtain remission in malignancies by restoring the terminal maturation of leukemia cells resulting in these cells having a limited lifespan. Differentiation therapy also offers the prospect of a less aggressive treatment by virtue of attenuated growth of leukemia cells coupled to limited damage to normal cells. The success of ATRA in differentiation therapy of APL is well known. However, ATRA does not work in non-APL AML. Here we examine some of the molecular pathways towards new retinoid-based differentiation therapy of non-APL AML. Prospects include modulation of the epigenetic status of ATRA-insensitive AML cells, agents that influence intracellular signalling events that are provoked by ATRA, and the use of novel synthetic retinoids.
Collapse
|
14
|
ZHAN JINHUI, ZHAO XI, HUANG XURI, SUN CHIACHUNG. MOLECULAR DYNAMICS AND FREE ENERGY ANALYSES OF ERK2–PYRAZOLYLPYRROLE INHIBITORS INTERACTIONS: INSIGHT INTO STRUCTURE-BASED LIGAND DESIGN. JOURNAL OF THEORETICAL & COMPUTATIONAL CHEMISTRY 2011. [DOI: 10.1142/s0219633609005131] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The extracellular signal-regulated protein kinase 2 (ERK2) is a pivotal member involving in Ras/Raf/MEK/ERK signal transduction pathway, acting as a central point where multiple signaling pathways coalesce to drive transcription. The pyrazolylpyrrole compounds as ATP competitive inhibitors of ERK2 can bind target with a special binding mode and have higher inhibitory potency than other ERK2-inhibitors. We investigated the interaction mode of ERK2-inhibitor using molecular dynamics simulation. The molecular mechanics Poisson–Boltzmann surface area approach is used to calculate the binding free energy of ERK2 with pyrazolylpyrrole inhibitors to analyze the factors of improving the affinity. The results indicated that the electrostatic interactions play the most important role in keeping the stabilization of ERK2-inhibitor. The structural analyses showed that the protein motions can be controlled by changing the structures of inhibitors; furthermore, the full use of available space in the binding site by improving the flexibilities of inhibitors and introducing hydrophobic groups can increase the inhibitory effect.
Collapse
Affiliation(s)
- JIN-HUI ZHAN
- State Key Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun 130023, People's Republic of China
| | - XI ZHAO
- State Key Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun 130023, People's Republic of China
| | - XU-RI HUANG
- State Key Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun 130023, People's Republic of China
| | - CHIA-CHUNG SUN
- State Key Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun 130023, People's Republic of China
| |
Collapse
|
15
|
Leonarduzzi G, Sottero B, Poli G. Targeting tissue oxidative damage by means of cell signaling modulators: The antioxidant concept revisited. Pharmacol Ther 2010; 128:336-74. [DOI: 10.1016/j.pharmthera.2010.08.003] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2010] [Accepted: 08/02/2010] [Indexed: 12/25/2022]
|
16
|
Sakai Y, Dräger UC. Detection of retinoic acid catabolism with reporter systems and by in situ hybridization for CYP26 enzymes. Methods Mol Biol 2010; 652:277-94. [PMID: 20552435 DOI: 10.1007/978-1-60327-325-1_16] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
Retinoic acid (RA), an active form of vitamin A, is essential for life in vertebrates, owing to its capacity of influencing expression of a sizable fraction of all genes and proteins. It functions via two modes: (1) as controlling ligand for specific transcription factors in the nucleus it stimulates or inhibits gene expression from RA response elements in gene promoters; (2) in non-genomic pathways it activates kinase-signaling cascades that converge with additional influences to regulate gene expression and mRNA translation. RA performs a critical role in morphogenesis of the developing embryo, which is reflected in spatio-temporally changing expression patterns of RA-synthesizing and RA-degrading enzymes and in its biophysical characteristics as a small diffusible lipid. Because its histological localization cannot be directly visualized for technical reasons, its sites of action in vivo are inferred from the locations of the metabolic enzymes and through use of two kinds of RA reporter systems. Here we explain techniques for use of RA reporter cells and RA reporter mice, and we describe in situ hybridization methods for the three major RA-degrading enzymes: CYP26A1, CYP26B1, and CYP26C1. Comparisons of the different indicators for sites of RA signaling demonstrate that local RA peaks and troughs are important for inferring some but not all locations of RA actions. When integrated within cells of living mice, expression of the RA reporter construct is rarely a simple measure of local RA levels, especially in the developing brain, but it appears to provide cues to an RA involvement in site-specific regulatory networks in combination with other spatial determinants.
Collapse
Affiliation(s)
- Yasuo Sakai
- Department of Plastic Surgery, Osaka University School of Medicine, Osaka, Japan
| | | |
Collapse
|
17
|
Koball S, Korten G, Stange J, Schmidt R, Mitzner S. Biocompatibility Assessment of Peritoneal Dialysis Solutions With a New In Vitro Model of Preconditioned Human HL60 Cells. Artif Organs 2009; 33:544-50. [DOI: 10.1111/j.1525-1594.2009.00735.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
18
|
Alvarez S, Alvarez R, Khanwalkar H, Germain P, Lemaire G, Rodríguez-Barrios F, Gronemeyer H, de Lera AR. Retinoid receptor subtype-selective modulators through synthetic modifications of RARgamma agonists. Bioorg Med Chem 2009; 17:4345-59. [PMID: 19482478 DOI: 10.1016/j.bmc.2009.05.035] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2008] [Revised: 05/06/2009] [Accepted: 05/11/2009] [Indexed: 12/31/2022]
Abstract
A series of retinoids designed to interfere with the repositioning of H12 have been synthesized to identify novel RARgamma antagonists based on the structure of known RARgamma agonists. The transcriptional activities of the novel ligands were revealed by cell-based reporting assays, using engineered cells containg RAR subtype-selective fusions of the RAR ligand-binding domains with the yeast GAL4 activator DNA-binding domain and the cognate luciferase reporter gene. Whereas none of the ligands exhibited features of a selective RARgamma antagonist, some of them are endowed with interesting activities. In particular 24a acts as a pan-RAR agonist that induces at high concentration a higher transactivation potential on RARalpha than TTNPB and synergizes at low concentration with TTNPB-bound RARalpha but not RARbeta or RARgamma. Similarly, 24c synergizes with TTNPB-bound RARgamma and exhibits RARalpha,beta antagonist activity. Compounds 24b and 25b are strong RARalpha,beta-selective antagonists without agonist or antagonist activities for RARgamma. Compounds 24b and 24c display weak RXR antagonist activity. In addition several pan-antagonists and partial agonist/antagonists have been defined.
Collapse
Affiliation(s)
- Susana Alvarez
- Departamento de Química Orgánica, Universidade de Vigo, Vigo, Spain
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Sánchez Y, Amrán D, de Blas E, Aller P. Regulation of genistein-induced differentiation in human acute myeloid leukaemia cells (HL60, NB4) Protein kinase modulation and reactive oxygen species generation. Biochem Pharmacol 2008; 77:384-96. [PMID: 19038232 DOI: 10.1016/j.bcp.2008.10.035] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2008] [Revised: 10/29/2008] [Accepted: 10/29/2008] [Indexed: 11/29/2022]
Abstract
While it has been reported that genistein induces differentiation in multiple tumour cell models, the signalling and regulation of isoflavone-provoked differentiation are poorly known. We here demonstrate that genistein causes G(2)/M cycle arrest and expression of differentiation markers in human acute myeloid leukaemia cells (HL60, NB4), and cooperates with all-trans retinoic acid (ATRA) in inducing differentiation, while ATRA attenuates the isoflavone-provoked toxicity. Genistein rapidly stimulates Raf-1, MEK1/2 and ERK1/2 phosphorylation/activation, but does not stimulate and instead causes a late decrease in Akt phosphorylation/activation which is attenuated by ATRA. Both differentiation and G(2)/M arrest are attenuated by MEK/ERK inhibitors (PD98059, U0126) and ERK1-/ERK2-directed small interfering RNAs (siRNAs), and by the PI3K inhibitor LY294002, but not by the p38-MAPK inhibitor SB203580. Genistein stimulates p21(waf1/cip1) and cyclin B1 expression, phosphorylation/activation of ATM and Chk2 kinases, and Tyr15-phosphorylation/inactivation of Cdc2 (Cdk1) kinase, and these effects are attenuated by MEK/ERK inhibitors, while LY294002 also attenuates ERK and ATM phosphorylation. Caffeine abrogates the genistein-provoked G(2)/M blockade and alterations in cell cycle regulatory proteins, and also suppresses differentiation. Finally, genistein causes reactive oxygen species (ROS) over-accumulation, but the antioxidant N-acetyl-L-cysteine fails to prevent ERK activation, G(2)/M arrest, and differentiation induction. By contrast, N-acetyl-L-cysteine and p38-MAPK inhibitor attenuate the apoptosis-sensitizing (pro-apoptotic) action of genistein when combined with the antileukaemic agent arsenic trioxide. In summary, genistein-induced differentiation in acute myeloid leukaemia cells is a ROS-independent, Raf-1/MEK/ERK-mediated and PI3K-dependent response, which is coupled and co-regulated with G(2)/M arrest, but uncoupled to the pro-apoptotic action of the drug.
Collapse
Affiliation(s)
- Yolanda Sánchez
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | | | | | | |
Collapse
|
20
|
Abstract
The protein kinase C (PKC) family of proteins includes several kinases that share structural homology, but at the same time exhibit substantial functional diversity. There is a significant amount of evidence establishing distinct patterns of expression and function for different PKC isoforms and groups in different leukemias. Although most members of this family promote leukemic cell survival and growth, others exhibit opposing effects and participate in the generation of antileukemic responses. This review summarizes work in this field on the relevance of distinct members of the PKC family in the pathophysiology of myeloid and lymphoid leukemias. The clinical-therapeutic potential of such ongoing work for the treatment of future development of novel approaches for the treatment of different types of leukemias is discussed.
Collapse
Affiliation(s)
- Amanda J Redig
- Robert H. Lurie Comprehensive Cancer Center and Division of Hematology/Oncology, Northwestern University Medical School and Lakeside VA Medical Center, Chicago, IL 60611, USA
| | | |
Collapse
|
21
|
Kim SH, Danilenko M, Kim TS. Differential enhancement of leukaemia cell differentiation without elevation of intracellular calcium by plant-derived sesquiterpene lactone compounds. Br J Pharmacol 2008; 155:814-25. [PMID: 18724384 DOI: 10.1038/bjp.2008.319] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND AND PURPOSE All-trans retinoic acid (ATRA) induces complete remission in a majority of acute promyelocytic leukaemia patients, but resistance of leukaemic cells to ATRA and its toxicity, such as hypercalcaemia, lead to a limitation of treatment. Therefore, combination therapies with differentiation-enhancing agents at non-toxic concentrations of ATRA may overcome its side effects. Here, we investigated the effect of plant-derived sesquiterpene lactone compounds and their underlying mechanisms in ATRA-induced differentiation of human leukaemia HL-60 cells. EXPERIMENTAL APPROACH HL-60 cells were treated with four sesquiterpene lactones (helenalin, costunolide, parthenolide and sclareolide) and cell differentiation was determined by NBT reduction, Giemsa and cytofluorometric analyses. Signalling pathways were assessed by western blotting, gel-shift assay and kinase activity determinations and intracellular calcium levels were determined using a calcium-specific fluorescent probe. KEY RESULTS Helenalin, costunolide and parthenolide, but not sclareolide, increased ATRA-induced HL-60 cell differentiation into a granulocytic lineage. Signalling kinases PKC and ERK were involved in the ATRA-induced differentiation enhanced by all of the effective sesquiterpene lactones, but JNK and PI3-K were involved in the ATRA-induced differentiation enhanced by costunolide and parthenolide. Enhancement of cell differentiation closely correlated with inhibition of NF-kappaB DNA-binding activity by all three effective compounds. Importantly, enhancement of differentiation induced by 50 nM ATRA by the sesquiterpene lactones was not accompanied by elevation of basal intracellular calcium concentrations. CONCLUSIONS AND IMPLICATIONS These results indicate that plant-derived sesquiterpene lactones may enhance ATRA-mediated cell differentiation through distinct pathways.
Collapse
Affiliation(s)
- S H Kim
- School of Life Sciences and Biotechnology, Korea University, Seoul, Korea.
| | | | | |
Collapse
|
22
|
Kannan-Thulasiraman P, Dolniak B, Kaur S, Sassano A, Kalvakolanu DV, Hay N, Platanias LC. Role of the translational repressor 4E-BP1 in the regulation of p21(Waf1/Cip1) expression by retinoids. Biochem Biophys Res Commun 2008; 368:983-9. [PMID: 18280804 DOI: 10.1016/j.bbrc.2008.02.028] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2008] [Accepted: 02/08/2008] [Indexed: 01/18/2023]
Abstract
The mechanisms by which retinoids regulate initiation of mRNA translation for proteins that mediate their biological effects are not known. We have previously shown that all-trans-retinoic acid (ATRA) induces mTOR-mediated activation of the p70 S6 kinase, suggesting the existence of a mechanism by which retinoids may regulate mRNA translation. We now demonstrate that treatment of acute promyelocytic leukemia (APL)-derived NB4 cells with ATRA results in dissociation of the translational repressor 4E-BP1 from the eukaryotic initiation factor eIF4E, and subsequent formation of eIF4G-eIF4E complexes. We also show that siRNA-mediated inhibition of 4E-BP1 expression enhances ATRA-dependent upregulation of p21(Waf1/Cip1), a protein that plays a key role in the induction of retinoid-dependent responses. Our data also establish that ATRA- or cis-RA-dependent p21(Waf1/Cip1) protein expression is enhanced in mouse embryonic fibroblasts with targeted disruption of the 4e-bp1 gene, in the absence of any effects on the transcriptional regulation of the p21(Waf1/Cip1) gene. Moreover, generation of ATRA- or cis-retinoic acid (cis-RA)-antiproliferative responses is enhanced in 4E-BP1 knockout cells. Altogether, these findings strongly suggest a key regulatory role for the translational repressor 4E-BP1 in the generation of retinoid-dependent functional responses.
Collapse
Affiliation(s)
- Padma Kannan-Thulasiraman
- Robert H. Lurie Comprehensive Cancer Center and Division of Hematology-Oncology, Northwestern University Medical School and Jesse Brown VA Medical Center, 303 East Superior, Chicago, IL, USA
| | | | | | | | | | | | | |
Collapse
|
23
|
Masiá S, Alvarez S, de Lera AR, Barettino D. Rapid, nongenomic actions of retinoic acid on phosphatidylinositol-3-kinase signaling pathway mediated by the retinoic acid receptor. Mol Endocrinol 2007; 21:2391-402. [PMID: 17595318 DOI: 10.1210/me.2007-0062] [Citation(s) in RCA: 140] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Retinoic acid (RA) treatment of SH-SY5Y neuroblastoma cells results in activation of phosphatidylinositol-3-kinase (PI3K) signaling pathway, and this activation is required for RA-induced differentiation. Here we show that RA activates PI3K and ERK1/2 MAPK signaling pathways through a rapid, nongenomic mechanism that does not require new gene transcription or newly synthesized proteins. Activation of PI3K by RA appears to involve the classical nuclear receptor, retinoic acid receptor (RAR), on the basis of the pharmacological profile of the activation, loss, and gain of function experiments with mouse embryo fibroblast-RAR(alpha beta gamma)(L-/L-) null cells, and the physical association between liganded RAR and PI3K activity. The association of RAR with the two subunits of PI3K was differentially regulated by the ligand. Immunoprecipitation experiments performed in SH-SY5Y cells showed stable association between RARalpha and p85, the regulatory subunit of PI3K, independently of the presence of RA. In contrast, ligand administration increased the association of p110, the catalytic subunit of PI3K, to this complex. The intracellular localization of RAR proved to be relevant for PI3K activation. A chimerical RAR fusing c-Src myristylation domain to the N terminus of RARalpha (Myr-RARalpha) was targeted to plasma membrane. Transfection of Myr-RARalpha to mouse embryo fibroblast-RAR(alpha beta gamma)(L-/L-) null cells and COS-7 cells results in strong activation of the PI3K signaling pathway, although both in the absence as well in the presence of RA. Our results support a mechanism in which ligand binding to RAR would play a major role in the assembly and intracellular location of a signaling complex involving RAR and the subunits of PI3K.
Collapse
Affiliation(s)
- Susana Masiá
- Biology of Hormone Action Unit, Department of Molecular and Cellular Pathology and Therapy, Instituto de Biomedicina de Valencia [Consejo Superior de Investigaciones Cientificas], E-46010 Valencia, Spain
| | | | | | | |
Collapse
|
24
|
Chen X, Zhang J, Baker SM, Chen G. Human constitutive androstane receptor mediated methotrexate induction of human dehydroepiandrosterone sulfotransferase (hSULT2A1). Toxicology 2006; 231:224-33. [PMID: 17276571 PMCID: PMC1919471 DOI: 10.1016/j.tox.2006.12.019] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2006] [Revised: 11/15/2006] [Accepted: 12/05/2006] [Indexed: 01/01/2023]
Abstract
Sulfotransferases (SULTs) catalyzed sulfation is important in the regulation of biological activities of hormones and neurotransmitters, the metabolism of drugs, and the detoxification of xenobiotic toxicants. Sulfation also leads to the bioactivation of procarcinogens. Human dehydroepiandrosterone sulfotransferase (hSULT2A1) is a major SULT catalyzing the sulfation of hydroxysteroids and xenobiotic alcohols. Our previous studies had shown that the anti-folate drug methotrexate (MTX) can up-regulate several major isoforms of human SULTs. To determine the mechanisms controlling the regulation of hSULT2A1, the 5'-flanking region of hSULT2A1 was constructed into the pGL3-Basic luciferase reporter vector. The transcriptional regulation mechanism of hSULT2A1 promoter was studied using Caco-2 cell line based on the reporter gene assay. Nuclear receptor co-transfection results indicated that human constitutive androstane receptor (hCAR) and human retinoid X receptor alpha (hRXRalpha) were involved in the transcriptional regulation of hSULT2A1. RNA interference experiments further proved the role of hCAR in hSULT2A1 regulation. Progressive promoter deletion, DNA sequence alignment, and site directed promoter mutation results suggested that an imperfect inverted repeat DNA motif, IR2 (-186AGCTCAGATGACCC-173), within the hSULT2A1 promoter region mediated the hSULT2A1 induction by MTX. Furthermore, electrophoretic mobility shift assay and super shift assay were employed to characterize the interactions of hCAR and hRXRalpha with the IR2 element. In summary, we identified an IR2 DNA cis-element located at -186/-173 of hSULT2A1 promoter region; the IR2 element mediates the MTX induction of hSULT2A1 through interacting with hCAR and hRXRalpha.
Collapse
Affiliation(s)
- Xinrong Chen
- Department of Physiological Sciences, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK 74078, USA
| | | | | | | |
Collapse
|