1
|
Dutra EH, Chen PJ, Kalajzic Z, Wadhwa S, Hurley M, Yadav S. FGF Ligands and Receptors in Osteochondral Tissues of the Temporomandibular Joint in Young and Aging Mice. Cartilage 2024; 15:195-199. [PMID: 37098717 PMCID: PMC11368896 DOI: 10.1177/19476035231163691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/10/2023] [Accepted: 02/28/2023] [Indexed: 04/27/2023] Open
Abstract
OBJECTIVE Fibroblast growth factors (FGFs) are a family of 22 proteins and 4 FGF receptors (FGFRs) that are crucial elements for normal development. The contribution of different FGFs and FGFRs for the homeostasis or disease of the cartilage from the mandibular condyle is unknown. Therefore, our goal was to characterize age-related alterations in the protein expression of FGF ligands and FGFRs in the mandibular condyle of mice. METHOD Mandibular condyles of 1-, 6-, 12-, 18-, and 24-month-old C57BL/6J male mice (5 per group) were collected and histologically sectioned. Immunofluorescence for FGFs that have been reported to be relevant for chondrogenesis (FGF2, FGF8, FGF9, FGF18) as well as the activated/phosphorylated FGFRs (pFGFR1, pFGFR3) was carried out. RESULTS FGF2 and FGF8 were strongly expressed in the cartilage and subchondral bone of 1-month-old mice, but the expression shifted mainly to the subchondral bone as mice aged. FGF18 and pFGFR3 expression was limited to the cartilage of 1-month-old mice only. Meanwhile, pFGFR1 and FGF9 were mostly limited to the cartilage with a significant increase in expression as mice aged. CONCLUSIONS Our results indicate FGF2 and FGF8 are important growth factors for mandibular condylar cartilage growth in young mice but with limited role in the cartilage of older mice. In addition, the increased expression of pFGFR1 and FGF9 and the decreased expression of pFGFR3 and FGF18 as mice aged suggest the association of these factors with aging and osteoarthritis of the cartilage of the mandibular condyle.
Collapse
Affiliation(s)
| | - Po-Jung Chen
- Department of Growth and Development, University of Nebraska,
Lincoln, NE, USA
| | - Zana Kalajzic
- Department of Oral Health and Diagnostic Sciences, UConn Health, Farmington, CT, USA
| | - Sunil Wadhwa
- Division of Orthodontics, Columbia College of Dental Medicine, New York, NY, USA
| | - Marja Hurley
- Health Career Opportunity Programs, UConn Health, Farmington, CT, USA
| | - Sumit Yadav
- Division of Orthodontics, UConn Health, Farmington, CT, USA
| |
Collapse
|
2
|
Fang Q, Xin W, Chen L, Fu Y, Qi Y, Ding H, Fang L. Caffeic acid phenethyl ester suppresses metastasis of breast cancer cells by inactivating FGFR1 via MD2. PLoS One 2023; 18:e0289031. [PMID: 37490511 PMCID: PMC10368285 DOI: 10.1371/journal.pone.0289031] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 07/07/2023] [Indexed: 07/27/2023] Open
Abstract
BACKGROUND Tumor metastasis is the main cause of death for breast cancer patients. Caffeic acid phenethyl ester (CAPE) has strong anti-tumor effects with very low toxicity and may be a potential candidate drug. However, the anti-metastatic effect and molecular mechanism of CAPE on breast cancer need more research. METHODS MCF-7 and MDA-MB-231 breast cancer cells were used here. Wound healing and Transwell assay were used for migration and invasion detection. Western blot and RT-qPCR were carried out for the epithelial-to-myofibroblast transformation (EMT) process investigation. Western blot and immunofluorescence were performed for fibroblast growth factor receptor1 (FGFR1) phosphorylation and nuclear transfer detection. Co-immunoprecipitation was used for the FGFR1/myeloid differentiation protein2 (MD2) complex investigation. RESULTS Our results suggested that CAPE blocks the migration, invasion, and EMT process of breast cancer cells. Mechanistically, CAPE inhibits FGFR1 phosphorylation and nuclear transfer while overexpression of FGFR1 reduces the anti-metastasis effect of CAPE. Further, we found that FGFR1 is bound to MD2, and silencing MD2 inhibits FGFR1 phosphorylation and nuclear transfer as well as cell migration and invasion. CONCLUSION This study illustrated that CAPE restrained FGFR1 activation and nuclear transfer through MD2/FGFR1 complex inhibition and showed good inhibitory effects on the metastasis of breast cancer cells.
Collapse
Affiliation(s)
- Qilu Fang
- Zhejiang Cancer Hospital, Hangzhou Institute Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Wenxiu Xin
- Zhejiang Cancer Hospital, Hangzhou Institute Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
- Postgraduate Training Base of Zhejiang Cancer Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Liangsheng Chen
- Postgraduate Training Base of Zhejiang Cancer Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yuxuan Fu
- Postgraduate Training Base of Zhejiang Cancer Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yajun Qi
- Zhejiang Cancer Hospital, Hangzhou Institute Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Haiying Ding
- Zhejiang Cancer Hospital, Hangzhou Institute Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Luo Fang
- Zhejiang Cancer Hospital, Hangzhou Institute Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
- Postgraduate Training Base of Zhejiang Cancer Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
3
|
Zhao X, Erhardt S, Sung K, Wang J. FGF signaling in cranial suture development and related diseases. Front Cell Dev Biol 2023; 11:1112890. [PMID: 37325554 PMCID: PMC10267317 DOI: 10.3389/fcell.2023.1112890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 05/22/2023] [Indexed: 06/17/2023] Open
Abstract
Suture mesenchymal stem cells (SMSCs) are a heterogeneous stem cell population with the ability to self-renew and differentiate into multiple cell lineages. The cranial suture provides a niche for SMSCs to maintain suture patency, allowing for cranial bone repair and regeneration. In addition, the cranial suture functions as an intramembranous bone growth site during craniofacial bone development. Defects in suture development have been implicated in various congenital diseases, such as sutural agenesis and craniosynostosis. However, it remains largely unknown how intricate signaling pathways orchestrate suture and SMSC function in craniofacial bone development, homeostasis, repair and diseases. Studies in patients with syndromic craniosynostosis identified fibroblast growth factor (FGF) signaling as an important signaling pathway that regulates cranial vault development. A series of in vitro and in vivo studies have since revealed the critical roles of FGF signaling in SMSCs, cranial suture and cranial skeleton development, and the pathogenesis of related diseases. Here, we summarize the characteristics of cranial sutures and SMSCs, and the important functions of the FGF signaling pathway in SMSC and cranial suture development as well as diseases caused by suture dysfunction. We also discuss emerging current and future studies of signaling regulation in SMSCs.
Collapse
Affiliation(s)
- Xiaolei Zhao
- Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Shannon Erhardt
- Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
- MD Anderson Cancer Center and UT Health Graduate School of Biomedical Sciences, The University of Texas, Houston, TX, United States
| | - Kihan Sung
- Department of BioSciences, Rice University, Houston, TX, United States
| | - Jun Wang
- Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
- MD Anderson Cancer Center and UT Health Graduate School of Biomedical Sciences, The University of Texas, Houston, TX, United States
| |
Collapse
|
4
|
Wagner CS, Pontell ME, Shakir S, Xu E, Zhang E, Swanson JW, Bartlett SP, Taylor JA. Utilization of carbonated calcium phosphate cement for contouring cranioplasty in patients with syndromic craniosynostosis. Childs Nerv Syst 2023:10.1007/s00381-023-05920-5. [PMID: 36947197 DOI: 10.1007/s00381-023-05920-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 03/12/2023] [Indexed: 03/23/2023]
Abstract
PURPOSE Carbonated calcium phosphate (CCP) cement is an alloplastic material which has been increasingly utilized for cranioplasty reconstruction; however, there is a paucity of data investigating its use in patients with syndromic craniosynostosis. The purpose of this study was to characterize our institutional experience with CCP cement for secondary contouring cranioplasty in these patients to establish safety and aesthetic efficacy. METHODS Patients with syndromic craniosynostosis undergoing cranioplasty with CCP cement from 2009 to 2022 were retrospectively reviewed for prior medical and surgical history, cranioplasty size, cement usage, and postoperative complications. Aesthetic ratings of the forehead region were quantified using the Whitaker scoring system at three timepoints: preoperative (T1), < 6 months postoperative (T2), and > 1 year postoperative (T3). RESULTS Twenty-one patients were included. Age at surgery was 16.2 ± 2.8 years, forehead cranioplasty area was 135 ± 112 cm2, and mass of cement was 17.2 ± 7.8 g. Patients were followed for 3.0 ± 3.1 years. Whitaker scores decreased from 1.9 ± 0.4 at T1 to 1.4 ± 0.5 at T2 (p = 0.005). Whitaker scores at T2 and T3 were not significantly different (p = 0.720). Two infectious complications (9.5%) were noted, one at 4.5 months postoperatively and the other at 23 months, both requiring operative removal of CCP cement. CONCLUSION Our results suggest that aesthetic forehead ratings improve after CCP contouring cranioplasty and that the improvement is sustained in medium-term follow-up. Complications were uncommon, suggesting that CCP is relatively safe though longer-term follow-up is needed before reaching definitive conclusions.
Collapse
Affiliation(s)
- Connor S Wagner
- Division of Plastic, Reconstructive, and Oral Surgery, Children's Hospital of Philadelphia, 3401 Civic Center Blvd, Philadelphia, PA, 19104, USA
| | - Matthew E Pontell
- Division of Plastic, Reconstructive, and Oral Surgery, Children's Hospital of Philadelphia, 3401 Civic Center Blvd, Philadelphia, PA, 19104, USA
| | - Sameer Shakir
- Division of Pediatric Plastic Surgery, Children's Wisconsin, Milwaukee, WI, USA
| | - Emily Xu
- Division of Plastic, Reconstructive, and Oral Surgery, Children's Hospital of Philadelphia, 3401 Civic Center Blvd, Philadelphia, PA, 19104, USA
| | - Emily Zhang
- Division of Plastic, Reconstructive, and Oral Surgery, Children's Hospital of Philadelphia, 3401 Civic Center Blvd, Philadelphia, PA, 19104, USA
| | - Jordan W Swanson
- Division of Plastic, Reconstructive, and Oral Surgery, Children's Hospital of Philadelphia, 3401 Civic Center Blvd, Philadelphia, PA, 19104, USA
| | - Scott P Bartlett
- Division of Plastic, Reconstructive, and Oral Surgery, Children's Hospital of Philadelphia, 3401 Civic Center Blvd, Philadelphia, PA, 19104, USA
| | - Jesse A Taylor
- Division of Plastic, Reconstructive, and Oral Surgery, Children's Hospital of Philadelphia, 3401 Civic Center Blvd, Philadelphia, PA, 19104, USA.
| |
Collapse
|
5
|
Yamaguchi H, Kitami M, Uchima Koecklin KH, He L, Wang J, Lagor WR, Perrien DS, Komatsu Y. Temporospatial regulation of intraflagellar transport is required for the endochondral ossification in mice. Dev Biol 2021; 482:91-100. [PMID: 34929174 DOI: 10.1016/j.ydbio.2021.12.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 08/24/2021] [Accepted: 12/10/2021] [Indexed: 01/28/2023]
Abstract
Ciliogenic components, such as the family of intraflagellar transport (IFT) proteins, are recognized to play key roles in endochondral ossification, a critical process to form most bones. However, the unique functions and roles of each IFT during endochondral ossification remain unclear. Here, we show that IFT20 is required for endochondral ossification in mice. Utilizing osteo-chondrocyte lineage-specific Cre mice (Prx1-Cre and Col2-Cre), we deleted Ift20 to examine its function. Although chondrocyte-specific Ift20 deletion with Col2-Cre mice did not cause any overt skeletal defects, mesoderm-specific Ift20 deletion using Prx1-Cre (Ift20:Prx1-Cre) mice resulted in shortened limb outgrowth. Primary cilia were absent on chondrocytes of Ift20:Prx1-Cre mice, and ciliary-mediated Hedgehog signaling was attenuated in Ift20:Prx1-Cre mice. Interestingly, loss of Ift20 also increased Fgf18 expression in the perichondrium that sustained Sox9 expression, thus preventing endochondral ossification. Inhibition of enhanced phospho-ERK1/2 activation partially rescued defective chondrogenesis in Ift20 mutant cells, supporting an important role for FGF signaling. Our findings demonstrate that IFT20 is a critical regulator of temporospatial FGF signaling that is required for endochondral ossification.
Collapse
Affiliation(s)
- Hiroyuki Yamaguchi
- Department of Pediatrics, McGovern Medical School, UTHealth, Houston, TX, 77030, USA
| | - Megumi Kitami
- Department of Pediatrics, McGovern Medical School, UTHealth, Houston, TX, 77030, USA
| | | | - Li He
- Department of Pediatrics, McGovern Medical School, UTHealth, Houston, TX, 77030, USA
| | - Jianbo Wang
- Department of Pediatrics, McGovern Medical School, UTHealth, Houston, TX, 77030, USA
| | - William R Lagor
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Daniel S Perrien
- Division of Endocrinology, Metabolism, and Lipids, Department of Medicine, Emory University, Atlanta, GA, 30232, USA
| | - Yoshihiro Komatsu
- Department of Pediatrics, McGovern Medical School, UTHealth, Houston, TX, 77030, USA; Graduate Program in Genetics & Epigenetics, The University of Texas MD Anderson Cancer Center, UTHealth, Graduate School of Biomedical Sciences, Houston, TX, 77030, USA.
| |
Collapse
|
6
|
Czarkwiani A, Dylus DV, Carballo L, Oliveri P. FGF signalling plays similar roles in development and regeneration of the skeleton in the brittle star Amphiura filiformis. Development 2021; 148:dev180760. [PMID: 34042967 PMCID: PMC8180256 DOI: 10.1242/dev.180760] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 04/13/2021] [Indexed: 12/16/2022]
Abstract
Regeneration as an adult developmental process is in many aspects similar to embryonic development. Although many studies point out similarities and differences, no large-scale, direct and functional comparative analyses between development and regeneration of a specific cell type or structure in one animal exist. Here, we use the brittle star Amphiura filiformis to characterise the role of the FGF signalling pathway during skeletal development in embryos and arm regeneration. In both processes, we find ligands expressed in ectodermal cells that flank underlying skeletal mesenchymal cells, which express the receptors. Perturbation of FGF signalling showed inhibited skeleton formation in both embryogenesis and regeneration, without affecting other key developmental processes. Differential transcriptome analysis finds mostly differentiation genes rather than transcription factors to be downregulated in both contexts. Moreover, comparative gene analysis allowed us to discover brittle star-specific differentiation genes. In conclusion, our results show that the FGF pathway is crucial for skeletogenesis in the brittle star, as in other deuterostomes, and provide evidence for the re-deployment of a developmental gene regulatory module during regeneration.
Collapse
Affiliation(s)
- Anna Czarkwiani
- Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, UK
| | - David V. Dylus
- Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, UK
- Centre for Mathematics, Physics and Engineering in the Life Sciences and Experimental Biology, University College London, London WC1E 6BT, UK
| | - Luisana Carballo
- Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, UK
| | - Paola Oliveri
- Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, UK
- Centre for Life's Origin and Evolution (CLOE), University College London, London WC1E 6BT, UK
| |
Collapse
|
7
|
Patil KC, Soekmadji C. Extracellular Vesicle-Mediated Bone Remodeling and Bone Metastasis: Implications in Prostate Cancer. Subcell Biochem 2021; 97:297-361. [PMID: 33779922 DOI: 10.1007/978-3-030-67171-6_12] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Bone metastasis is the tendency of certain primary tumors to spawn and dictate secondary neoplasia in the bone. The process of bone metastasis is regulated by the dynamic crosstalk between metastatic cancer cells, cellular components of the bone marrow microenvironment (osteoblasts, osteoclasts, and osteocytes), and the bone matrix. The feed-forward loop mechanisms governs the co-option of homeostatic bone remodeling by cancer cells in bone. Recent developments have highlighted the discovery of extracellular vesicles (EVs) and their diverse roles in distant outgrowths. Several studies have implicated EV-mediated interactions between cancer cells and the bone microenvironment in synergistically promoting pathological skeletal metabolism in the metastatic site. Nevertheless, the potential role that EVs serve in arbitrating intricate sequences of coordinated events within the bone microenvironment remains an emerging field. In this chapter, we review the role of cellular participants and molecular mechanisms in regulating normal bone physiology and explore the progress of current research into bone-derived EVs in directly triggering and coordinating the processes of physiological bone remodeling. In view of the emerging role of EVs in interorgan crosstalk, this review also highlights the multiple systemic pathophysiological processes orchestrated by the EVs to direct organotropism in bone in prostate cancer. Given the deleterious consequences of bone metastasis and its clinical importance, in-depth knowledge of the multifarious role of EVs in distant organ metastasis is expected to open new possibilities for prognostic evaluation and therapeutic intervention for advanced bone metastatic prostate cancer.
Collapse
Affiliation(s)
- Kalyani C Patil
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Carolina Soekmadji
- Department of Cell and Molecular Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia. .,School of Biomedical Sciences, Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia.
| |
Collapse
|
8
|
Novais A, Chatzopoulou E, Chaussain C, Gorin C. The Potential of FGF-2 in Craniofacial Bone Tissue Engineering: A Review. Cells 2021; 10:932. [PMID: 33920587 PMCID: PMC8073160 DOI: 10.3390/cells10040932] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 04/10/2021] [Accepted: 04/15/2021] [Indexed: 12/21/2022] Open
Abstract
Bone is a hard-vascularized tissue, which renews itself continuously to adapt to the mechanical and metabolic demands of the body. The craniofacial area is prone to trauma and pathologies that often result in large bone damage, these leading to both aesthetic and functional complications for patients. The "gold standard" for treating these large defects is autologous bone grafting, which has some drawbacks including the requirement for a second surgical site with quantity of bone limitations, pain and other surgical complications. Indeed, tissue engineering combining a biomaterial with the appropriate cells and molecules of interest would allow a new therapeutic approach to treat large bone defects while avoiding complications associated with a second surgical site. This review first outlines the current knowledge of bone remodeling and the different signaling pathways involved seeking to improve our understanding of the roles of each to be able to stimulate or inhibit them. Secondly, it highlights the interesting characteristics of one growth factor in particular, FGF-2, and its role in bone homeostasis, before then analyzing its potential usefulness in craniofacial bone tissue engineering because of its proliferative, pro-angiogenic and pro-osteogenic effects depending on its spatial-temporal use, dose and mode of administration.
Collapse
Affiliation(s)
- Anita Novais
- Pathologies, Imagerie et Biothérapies Orofaciales, Université de Paris, URP2496, 1 rue Maurice Arnoux, 92120 Montrouge, France; (A.N.); (E.C.); (C.C.)
- AP-HP Département d’Odontologie, Services d’odontologie, GH Pitié Salpêtrière, Henri Mondor, Paris Nord, Hôpital Rothschild, Paris, France
| | - Eirini Chatzopoulou
- Pathologies, Imagerie et Biothérapies Orofaciales, Université de Paris, URP2496, 1 rue Maurice Arnoux, 92120 Montrouge, France; (A.N.); (E.C.); (C.C.)
- AP-HP Département d’Odontologie, Services d’odontologie, GH Pitié Salpêtrière, Henri Mondor, Paris Nord, Hôpital Rothschild, Paris, France
- Département de Parodontologie, Université de Paris, UFR Odontologie-Garancière, 75006 Paris, France
| | - Catherine Chaussain
- Pathologies, Imagerie et Biothérapies Orofaciales, Université de Paris, URP2496, 1 rue Maurice Arnoux, 92120 Montrouge, France; (A.N.); (E.C.); (C.C.)
- AP-HP Département d’Odontologie, Services d’odontologie, GH Pitié Salpêtrière, Henri Mondor, Paris Nord, Hôpital Rothschild, Paris, France
| | - Caroline Gorin
- Pathologies, Imagerie et Biothérapies Orofaciales, Université de Paris, URP2496, 1 rue Maurice Arnoux, 92120 Montrouge, France; (A.N.); (E.C.); (C.C.)
- AP-HP Département d’Odontologie, Services d’odontologie, GH Pitié Salpêtrière, Henri Mondor, Paris Nord, Hôpital Rothschild, Paris, France
| |
Collapse
|
9
|
Genetic variations at 10q26 regions near FGFR2 gene and its association with non-syndromic cleft lip with or without cleft palate. Int J Pediatr Otorhinolaryngol 2021; 143:110648. [PMID: 33684891 DOI: 10.1016/j.ijporl.2021.110648] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 01/18/2021] [Accepted: 02/07/2021] [Indexed: 11/23/2022]
Abstract
OBJECTIVES In our study, we focussed on three SNPs in the non-coding regions near FGFR2 gene, as studies on non-coding variants in the genome are the novel trends to identify the susceptible loci for nonsyndromic cleft lip with or without cleft palate (NSCL/P). FGFR2 gene is selected as a candidate gene based on knock out animal models and the role played in syndromic forms of clefting. FGFR2 gene also plays an important role in FGF signaling pathway during craniofacial development. METHODS In the present study 148 case-parent triads were assessed for three SNPs rs10749408, rs11199874 and rs10788165 near FGFR2 gene by using TaqMan allelic discrimination method. Transmission disequilibrium test (TDT) was used to find the allelic association. Linkage disequilibrium (LD) between the markers was analysed using Haploview program 4.2. Haplotype transmission effects were estimated using FAMHAP package. The possible parent-of-origin effects were assessed by likelihood based approach. RESULTS TDT analysis of three SNPs failed to show significant transmission disortion from heterozygous parents to the affected child and are not associated with NSCL/P. Linkage disequilibrium analysis showed strong LD between rs11199874 and rs10788165 SNPs. In the haplotype TDT analysis, GG haplotype of rs11199874-rs10788165 showed significant undertransmission to affected child. No significant parent-of-origin effects were observed. CONCLUSION The present study on noncoding variants near FGFR2 gene is not associated with NSCL/P. As the numbers of triads included in the study are less, further studies are needed including large sample size to find association with NSCL/P.
Collapse
|
10
|
Padula SL, Anand D, Hoang TV, Chaffee BR, Liu L, Liang C, Lachke SA, Robinson ML. High-throughput transcriptome analysis reveals that the loss of Pten activates a novel NKX6-1/RASGRP1 regulatory module to rescue microphthalmia caused by Fgfr2-deficient lenses. Hum Genet 2019; 138:1391-1407. [PMID: 31691004 DOI: 10.1007/s00439-019-02084-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 10/28/2019] [Indexed: 01/17/2023]
Abstract
FGFR signaling is critical to development and disease pathogenesis, initiating phosphorylation-driven signaling cascades, notably the RAS-RAF-MEK-ERK and PI3 K-AKT cascades. PTEN antagonizes FGFR signaling by reducing AKT and ERK activation. Mouse lenses lacking FGFR2 exhibit microphakia and reduced ERK and AKT phosphorylation, widespread apoptosis, and defective lens fiber cell differentiation. In contrast, simultaneous deletion of both Fgfr2 and Pten restores ERK and AKT activation levels as well as lens size, cell survival and aspects of fiber cell differentiation; however, the molecular basis of this "rescue" remains undefined. We performed transcriptomic analysis by RNA sequencing of mouse lenses with conditional deletion of Fgfr2, Pten or both Fgfr2 and Pten, which reveal new molecular mechanisms that uncover how FGFR2 and PTEN signaling interact during development. The FGFR2-deficient lens transcriptome demonstrates overall loss of fiber cell identity with deregulated expression of 1448 genes. We find that ~ 60% of deregulated genes return to normal expression levels in lenses lacking both Fgfr2 and Pten. Further, application of customized filtering parameters to these RNA-seq data sets identified 68 high-priority candidate genes. Bioinformatics analyses showed that the cis-binding motif of a high-priority homeodomain transcription factor, NKX6-1, was present in the putative promoters of ~ 78% of these candidates. Finally, biochemical reporter assays demonstrate that NKX6-1 activated the expression of the high-priority candidate Rasgrp1, a RAS-activating protein. Together, these data define a novel regulatory module in which NKX6-1 directly activates Rasgrp1 expression to restore the balance of ERK and AKT activation, thus providing new insights into alternate regulation of FGFR downstream events.
Collapse
Affiliation(s)
| | - Deepti Anand
- Department of Biological Sciences, University of Delaware, Newark, DE, USA
| | - Thanh V Hoang
- Department of Biology, Miami University, Oxford, OH, 45056, USA.,Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Blake R Chaffee
- Department of Biology, Miami University, Oxford, OH, 45056, USA
| | - Lin Liu
- Department of Biology, Miami University, Oxford, OH, 45056, USA
| | - Chun Liang
- Department of Biology, Miami University, Oxford, OH, 45056, USA
| | - Salil A Lachke
- Department of Biological Sciences, University of Delaware, Newark, DE, USA.,Center for Bioinformatics and Computational Biology, University of Delaware, Newark, DE, USA
| | | |
Collapse
|
11
|
Abstract
Fibroblast growth factors (FGFs) and their receptors (FGFRs) are expressed throughout all stages of skeletal development. In the limb bud and in cranial mesenchyme, FGF signaling is important for formation of mesenchymal condensations that give rise to bone. Once skeletal elements are initiated and patterned, FGFs regulate both endochondral and intramembranous ossification programs. In this chapter, we review functions of the FGF signaling pathway during these critical stages of skeletogenesis, and explore skeletal malformations in humans that are caused by mutations in FGF signaling molecules.
Collapse
Affiliation(s)
- David M Ornitz
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, United States.
| | - Pierre J Marie
- UMR-1132 Inserm (Institut national de la Santé et de la Recherche Médicale) and University Paris Diderot, Sorbonne Paris Cité, Hôpital Lariboisière, Paris, France
| |
Collapse
|
12
|
Gupta A, Tripathi A, Patil R, Kumar V, Khanna V, Singh V. Estimation of salivary and serum basic fibroblast growth factor in treated and untreated patients with oral squamous cell carcinoma. J Oral Biol Craniofac Res 2019; 9:19-23. [PMID: 30197859 PMCID: PMC6126432 DOI: 10.1016/j.jobcr.2018.08.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Revised: 08/23/2018] [Accepted: 08/24/2018] [Indexed: 12/24/2022] Open
Abstract
OBJECTIVE The purpose of this study was to evaluate salivary and serum basic fibroblast growth factor (bFGF) level in OSCC patients to provide a reliable biomarker for the early detection, monitoring, and prognosis of OSCC patients. MATERIALS AND METHODS The study enrolled 90 subjects, equally grouped as recently diagnosed & untreated OSCC patients (Group I), treated OSCC without any recurrence (Group II) & as control (Group III). Enzyme-linked immunosorbent assay was employed to measure bFGF concentrations in saliva and serum samples of all three groups. The results were tabulated and analyzed statistically. RESULTS Group I showed high-level of bFGF expression profile in saliva (8.80 ± 1.26 pg/ml) whereas the levels of bFGF in group II (2.69 ± 0.17 pg/ml) and Group III (3.17 ± 0.43 pg/ml) are significantly lower than group I. Serum bFGF levels were also high in group I (6.33 ± 0.81 pg/ml) and decreased significantly in group II (3.52 ± 0.45 pg/ml) however, the control group showed elevated range of levels (7.63 ± 0.88 pg/ml). CONCLUSIONS This study demonstrates the reliability of salivary bFGF marker as diagnostic as well as prognostic marker. Serum bFGF could also be used as prognostic marker only in Oral Squamous cell carcinoma patients.
Collapse
Affiliation(s)
| | - Anurag Tripathi
- Department of Oral Medicine & Radiology, King George's Medical University, Lucknow, UP, India
| | | | | | | | | |
Collapse
|
13
|
Azoury SC, Reddy S, Shukla V, Deng CX. Fibroblast Growth Factor Receptor 2 ( FGFR2) Mutation Related Syndromic Craniosynostosis. Int J Biol Sci 2017; 13:1479-1488. [PMID: 29230096 PMCID: PMC5723914 DOI: 10.7150/ijbs.22373] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 10/01/2017] [Indexed: 12/30/2022] Open
Abstract
Craniosynostosis results from the premature fusion of cranial sutures, with an incidence of 1 in 2,100-2,500 live births. The majority of cases are non-syndromic and involve single suture fusion, whereas syndromic cases often involve complex multiple suture fusion. The fibroblast growth factor receptor 2 (FGFR2) gene is perhaps the most extensively studied gene that is mutated in various craniosynostotic syndromes including Crouzon, Apert, Pfeiffer, Antley-Bixler, Beare-Stevenson cutis gyrata, Jackson-Weiss, Bent Bone Dysplasia, and Seathre-Chotzen-like syndromes. The majority of these mutations are missense mutations that result in constitutive activation of the receptor and downstream molecular pathways. Treatment involves a multidisciplinary approach with ultimate surgical fixation of the cranial deformity to prevent further sequelae. Understanding the molecular mechanisms has allowed for the investigation of different therapeutic agents that can potentially be used to prevent the disorders. Further research efforts are need to better understand screening and effective methods of early intervention and prevention. Herein, the authors provide a comprehensive update on FGFR2-related syndromic craniosynostosis.
Collapse
Affiliation(s)
- Saïd C. Azoury
- Department of Surgery, The Johns Hopkins Hospital, Baltimore, MD, USA
| | - Sashank Reddy
- Department of Plastic and Reconstructive Surgery, The Johns Hopkins Hospital, Baltimore, MD, USA
| | - Vivek Shukla
- TGIB, NCI, National Institutes of Health, Bethesda, MD, USA
| | - Chu-Xia Deng
- Faculty of Health Sciences, University of Macau, Macau SAR, China
| |
Collapse
|
14
|
Maruyama T, Jiang M, Abbott A, Yu HMI, Huang Q, Chrzanowska-Wodnicka M, Chen EI, Hsu W. Rap1b Is an Effector of Axin2 Regulating Crosstalk of Signaling Pathways During Skeletal Development. J Bone Miner Res 2017; 32:1816-1828. [PMID: 28520221 PMCID: PMC5555789 DOI: 10.1002/jbmr.3171] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 05/15/2017] [Accepted: 05/16/2017] [Indexed: 12/22/2022]
Abstract
Recent identification and isolation of suture stem cells capable of long-term self-renewal, clonal expanding, and differentiating demonstrate their essential role in calvarial bone development, homeostasis, and injury repair. These bona fide stem cells express a high level of Axin2 and are able to mediate bone regeneration and repair in a cell autonomous fashion. The importance of Axin2 is further demonstrated by its genetic inactivation in mice causing skeletal deformities resembling craniosynostosis in humans. The fate determination and subsequent differentiation of Axin2+ stem cells are highly orchestrated by a variety of evolutionary conserved signaling pathways including Wnt, FGF, and BMP. These signals are often antagonistic of each other and possess differential effects on osteogenic and chondrogenic cell types. However, the mechanisms underlying the interplay of these signaling transductions remain largely elusive. Here we identify Rap1b acting downstream of Axin2 as a signaling interrogator for FGF and BMP. Genetic analysis reveals that Rap1b is essential for development of craniofacial and body skeletons. Axin2 regulates Rap1b through modulation of canonical BMP signaling. The BMP-mediated activation of Rap1b promotes chondrogenic fate and chondrogenesis. Furthermore, by inhibiting MAPK signaling, Rap1b mediates the antagonizing effect of BMP on FGF to repress osteoblast differentiation. Disruption of Rap1b in mice not only enhances osteoblast differentiation but also impairs chondrocyte differentiation during intramembranous and endochondral ossifications, respectively, leading to severe defects in craniofacial and body skeletons. Our findings reveal a dual role of Rap1b in development of the skeletogenic cell types. Rap1b is critical for balancing the signaling effects of BMP and FGF during skeletal development and disease. © 2017 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Takamitsu Maruyama
- Department of Dentistry, University of Rochester Medical Center, Rochester, NY, USA.,Center for Oral Biology, University of Rochester Medical Center, Rochester, NY, USA
| | - Ming Jiang
- Center for Oral Biology, University of Rochester Medical Center, Rochester, NY, USA.,Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, USA
| | - Alycia Abbott
- Center for Oral Biology, University of Rochester Medical Center, Rochester, NY, USA
| | - H-M Ivy Yu
- Center for Oral Biology, University of Rochester Medical Center, Rochester, NY, USA
| | - Qirong Huang
- Center for Oral Biology, University of Rochester Medical Center, Rochester, NY, USA
| | | | - Emily I Chen
- Proteomics Shared Resource at the Herbert Irving Comprehensive Cancer Center and Department of Pharmacology, Columbia University, New York, NY, USA
| | - Wei Hsu
- Center for Oral Biology, University of Rochester Medical Center, Rochester, NY, USA.,Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, USA.,Stem Cell and Regenerative Medicine Institute, University of Rochester Medical Center, Rochester, NY, USA.,Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA
| |
Collapse
|
15
|
Fibroblast growth factor 2 supports osteoblastic niche cells during hematopoietic homeostasis recovery after bone marrow suppression. Cell Commun Signal 2017; 15:25. [PMID: 28662672 PMCID: PMC5492158 DOI: 10.1186/s12964-017-0181-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 06/16/2017] [Indexed: 11/30/2022] Open
Abstract
Background Hematopoietic stem cell (HSC) maintenance requires a specific microenvironment. HSC niches can be activated by tissue damaging chemotherapeutic drugs and various cell signaling molecules such as SDF-1 and FGF, which might also result in bone marrow stress. Recent research has insufficiently shown that endosteal osteolineage cells and other niche constituents recover after marrow injury. Methods We investigated the role of FGF2 in the osteoblastic niche cells during hematopoietic homeostasis recovery after bone marrow injury. Mice were treated with 5-fluorouracil (5FU) to eliminate actively cycling cells in the bone marrow. Primary osteoblasts were isolated and subjected to cell culture. Real-time PCR, western blot and immunohistochemical staining were performed to study niche-related genes, osteoblast markers, and FGF2 signaling. Proliferation rate were analyzed by marker gene Ki67 and colony formation assay. Also, osterix-positive osteoprogenitor cells were isolated by FACS from Osx-GFP-Cre mice after 5FU treatment, and subjected to RNA-sequencing and analyzed for Fgf receptors and niche markers. Results The endosteal osteolineage cells isolated from 5FU-treated mice showed increased expression of the niche-related genes Sdf-1, Jagged-1, Scf, N-cad, Angpt1 and Vcam-1 and the osteoblast marker genes Osx, Opn, Runx2, and Alp, indicating that BM stress upon 5FU treatment activated the osteoblastic niche. Endosteal osteoblast expanded from a single layer to several layers 3 and 6 days after 5FU treatment. During the early recovery phase in 5FU-activated osteoblastic niches increased FGF2 expression and activated its downstream pERK. FGF2 treatment resulted in increased proliferation rate and the expression of niche marker genes in 5FU-activated osteoblastic niche cells. RNA-seq analysis in Osterix-positive osteoprogenitor cells isolated from 5FU-treated Osx-GFP mice showed significantly increased expression of Fgf receptors Fgfr1, 2 and 3. Although osteoblastic niche cells were damaged by 5FU treatment in the beginning, the increased number of OB layers in the recovery phase may be derived from resident osteoprogenitor cells by FGF2 activation under stress. Conclusions Taken together, FGF2 signaling can regulate osteoblastic niche cells to support HSC homeostasis in response to bone marrow damage.
Collapse
|
16
|
Papy-Garcia D, Albanese P. Heparan sulfate proteoglycans as key regulators of the mesenchymal niche of hematopoietic stem cells. Glycoconj J 2017; 34:377-391. [PMID: 28577070 DOI: 10.1007/s10719-017-9773-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2016] [Revised: 05/01/2017] [Accepted: 05/04/2017] [Indexed: 12/21/2022]
Abstract
The complex microenvironment that surrounds hematopoietic stem cells (HSCs) in the bone marrow niche involves different coordinated signaling pathways. The stem cells establish permanent interactions with distinct cell types such as mesenchymal stromal cells, osteoblasts, osteoclasts or endothelial cells and with secreted regulators such as growth factors, cytokines, chemokines and their receptors. These interactions are mediated through adhesion to extracellular matrix compounds also. All these signaling pathways are important for stem cell fates such as self-renewal, proliferation or differentiation, homing and mobilization, as well as for remodeling of the niche. Among these complex molecular cues, this review focuses on heparan sulfate (HS) structures and functions and on the role of enzymes involved in their biosynthesis and turnover. HS associated to core protein, constitute the superfamily of heparan sulfate proteoglycans (HSPGs) present on the cell surface and in the extracellular matrix of all tissues. The key regulatory effects of major medullar HSPGs are described, focusing on their roles in the interactions between hematopoietic stem cells and their endosteal niche, and on their ability to interact with Heparin Binding Proteins (HBPs). Finally, according to the relevance of HS moieties effects on this complex medullar niche, we describe recent data that identify HS mimetics or sulfated HS signatures as new glycanic tools and targets, respectively, for hematopoietic and mesenchymal stem cell based therapeutic applications.
Collapse
Affiliation(s)
- Dulce Papy-Garcia
- CRRET Laboratory, Université Paris Est, EA 4397 Université Paris Est Créteil, ERL CNRS 9215, F-94010, Créteil, France
| | - Patricia Albanese
- CRRET Laboratory, Université Paris Est, EA 4397 Université Paris Est Créteil, ERL CNRS 9215, F-94010, Créteil, France.
| |
Collapse
|
17
|
Abstract
Renal anomalies are common birth defects that may manifest as a wide spectrum of anomalies from hydronephrosis (dilation of the renal pelvis and calyces) to renal aplasia (complete absence of the kidney(s)). Aneuploidies and mosaicisms are the most common syndromes associated with CAKUT. Syndromes with single gene and renal developmental defects are less common but have facilitated insight into the mechanism of renal and other organ development. Analysis of underlying genetic mutations with transgenic and mutant mice has also led to advances in our understanding of mechanisms of renal development.
Collapse
|
18
|
Flaherty K, Singh N, Richtsmeier JT. Understanding craniosynostosis as a growth disorder. WILEY INTERDISCIPLINARY REVIEWS. DEVELOPMENTAL BIOLOGY 2016; 5:429-59. [PMID: 27002187 PMCID: PMC4911263 DOI: 10.1002/wdev.227] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 12/06/2015] [Accepted: 12/24/2015] [Indexed: 12/15/2022]
Abstract
Craniosynostosis is a condition of complex etiology that always involves the premature fusion of one or multiple cranial sutures and includes various anomalies of the soft and hard tissues of the head. Steady progress in the field has resulted in identifying gene mutations that recurrently cause craniosynostosis. There are now scores of mutations on many genes causally related to craniosynostosis syndromes, though the genetic basis for the majority of nonsyndromic cases is unknown. Identification of these genetic mutations has allowed significant progress in understanding the intrinsic properties of cranial sutures, including mechanisms responsible for normal suture patency and for pathogenesis of premature suture closure. An understanding of morphogenesis of cranial vault sutures is critical to understanding the pathophysiology of craniosynostosis conditions, but the field is now poised to recognize the repeated changes in additional skeletal and soft tissues of the head that typically accompany premature suture closure. We review the research that has brought an understanding of premature suture closure within our reach. We then enumerate the less well-studied, but equally challenging, nonsutural phenotypes of craniosynostosis conditions that are well characterized in available mouse models. We consider craniosynostosis as a complex growth disorder of multiple tissues of the developing head, whose growth is also targeted by identified mutations in ways that are poorly understood. Knowledge gained from studies of humans and mouse models for these conditions underscores the diverse, associated developmental anomalies of the head that contribute to the complex phenotypes of craniosynostosis conditions presenting novel challenges for future research. WIREs Dev Biol 2016, 5:429-459. doi: 10.1002/wdev.227 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Kevin Flaherty
- Department of Anthropology, Pennsylvania State University,
University Park, PA 16802
| | - Nandini Singh
- Department of Anthropology, Pennsylvania State University,
University Park, PA 16802
| | - Joan T. Richtsmeier
- Department of Anthropology, Pennsylvania State University,
University Park, PA 16802
| |
Collapse
|
19
|
Weekes D, Kashima TG, Zandueta C, Perurena N, Thomas DP, Sunters A, Vuillier C, Bozec A, El-Emir E, Miletich I, Patiño-Garcia A, Lecanda F, Grigoriadis AE. Regulation of osteosarcoma cell lung metastasis by the c-Fos/AP-1 target FGFR1. Oncogene 2016; 35:2852-61. [PMID: 26387545 PMCID: PMC4688957 DOI: 10.1038/onc.2015.344] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2015] [Revised: 07/05/2015] [Accepted: 07/24/2015] [Indexed: 12/13/2022]
Abstract
Osteosarcoma is the most common primary malignancy of the skeleton and is prevalent in children and adolescents. Survival rates are poor and have remained stagnant owing to chemoresistance and the high propensity to form lung metastases. In this study, we used in vivo transgenic models of c-fos oncogene-induced osteosarcoma and chondrosarcoma in addition to c-Fos-inducible systems in vitro to investigate downstream signalling pathways that regulate osteosarcoma growth and metastasis. Fgfr1 (fibroblast growth factor receptor 1) was identified as a novel c-Fos/activator protein-1(AP-1)-regulated gene. Induction of c-Fos in vitro in osteoblasts and chondroblasts caused an increase in Fgfr1 RNA and FGFR1 protein expression levels that resulted in increased and sustained activation of mitogen-activated protein kinases (MAPKs), morphological transformation and increased anchorage-independent growth in response to FGF2 ligand treatment. High levels of FGFR1 protein and activated pFRS2α signalling were observed in murine and human osteosarcomas. Pharmacological inhibition of FGFR1 signalling blocked MAPK activation and colony growth of osteosarcoma cells in vitro. Orthotopic injection in vivo of FGFR1-silenced osteosarcoma cells caused a marked twofold to fivefold decrease in spontaneous lung metastases. Similarly, inhibition of FGFR signalling in vivo with the small-molecule inhibitor AZD4547 markedly reduced the number and size of metastatic nodules. Thus deregulated FGFR signalling has an important role in osteoblast transformation and osteosarcoma formation and regulates the development of lung metastases. Our findings support the development of anti-FGFR inhibitors as potential antimetastatic therapy.
Collapse
Affiliation(s)
- Daniel Weekes
- Department of Craniofacial Development and Stem Cell Biology, King’s College London, UK
| | - Takeshi G Kashima
- Department of Craniofacial Development and Stem Cell Biology, King’s College London, UK
| | - Carolina Zandueta
- Division of Oncology, Adhesion and Metastasis Laboratory, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
| | - Naiara Perurena
- Division of Oncology, Adhesion and Metastasis Laboratory, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
| | - David P Thomas
- Department of Craniofacial Development and Stem Cell Biology, King’s College London, UK
| | - Andrew Sunters
- Department of Craniofacial Development and Stem Cell Biology, King’s College London, UK
| | - Céline Vuillier
- Department of Craniofacial Development and Stem Cell Biology, King’s College London, UK
| | - Aline Bozec
- Department of Rheumatology and Immunology, Universitätsklinikum Erlangen, Germany
| | - Ethaar El-Emir
- Department of Craniofacial Development and Stem Cell Biology, King’s College London, UK
| | - Isabelle Miletich
- Department of Craniofacial Development and Stem Cell Biology, King’s College London, UK
| | - Ana Patiño-Garcia
- Laboratory of Pediatrics, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
| | - Fernando Lecanda
- Division of Oncology, Adhesion and Metastasis Laboratory, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
| | | |
Collapse
|
20
|
Rottgers SA, Gallo P, Gilbert J, Macisaac Z, Cray J, Smith DM, Mooney MP, Losee J, Kathju S, Cooper G. Application of Laser Capture Microdissection to Craniofacial Biology: Characterization of Anatomically Relevant Gene Expression in Normal and Craniosynostotic Rabbit Sutures. Cleft Palate Craniofac J 2016; 54:109-118. [PMID: 26954032 DOI: 10.1597/15-114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
OBJECTIVE Fusion of the cranial sutures is thought to depend on signaling among perisutural tissues. Mapping regional variations in gene expression would improve current models of craniosynostosis. Laser capture microdissection (LCM) isolates discrete cell populations for gene expression analysis. LCM has rarely been used in the study of mineralized tissue. This study sought to evaluate the potential use of LCM for mapping of regional gene expression within the cranial suture. DESIGN Coronal sutures were isolated from 10-day-old wild-type and craniosynostotic (CS) New Zealand White rabbits, and LCM was used to isolate RNA from the sutural ligament (SL), osteogenic fronts (OF), dura mater, and periosteum. Relative expression levels for Fibroblast Growth Factor 2 (FGF2), Fibroblast Growth Factor Receptor 2 (FGFR2), Transforming Growth Factor Beta 2 (TGFβ-2), Transforming Growth Factor Beta 3 (TGFβ-3), Bone Morphogenetic Protein 2 (BMP-2), Bone Morphogenetic Protein 4 (BMP-4), and Noggin were determined using quantitative real-time PCR. RESULTS A fivefold increase in TGFβ2 expression was detected in the CS SL relative to wild type, whereas 152-fold less TGFβ-3 was detected within the OF of CS animals. Noggin expression was increased by 10-fold within the CS SL, but reduced by 13-fold within the CS dura. Reduced expression of FGF2 was observed within the CS SL and dura, whereas increased expression of FGFR2 was observed within the CS SL. Reduced expression of BMP-2 was observed in the CS periosteum, and elevated expression of BMP-4 was observed in the CS SL and dura. CONCLUSIONS LCM provides an effective tool for measuring regional variations in cranial suture gene expression. More precise measurements of regional gene expression with LCM may facilitate efforts to correlate gene expression with suture morphogenesis and pathophysiology.
Collapse
|
21
|
The Development of the Calvarial Bones and Sutures and the Pathophysiology of Craniosynostosis. Curr Top Dev Biol 2015; 115:131-56. [PMID: 26589924 DOI: 10.1016/bs.ctdb.2015.07.004] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The skull vault is a complex, exquisitely patterned structure that plays a variety of key roles in vertebrate life, ranging from the acquisition of food to the support of the sense organs for hearing, smell, sight, and taste. During its development, it must meet the dual challenges of protecting the brain and accommodating its growth. The bones and sutures of the skull vault are derived from cranial neural crest and head mesoderm. The frontal and parietal bones develop from osteogenic rudiments in the supraorbital ridge. The coronal suture develops from a group of Shh-responsive cells in the head mesoderm that are collocated, with the osteogenic precursors, in the supraorbital ridge. The osteogenic rudiments and the prospective coronal suture expand apically by cell migration. A number of congenital disorders affect the skull vault. Prominent among these is craniosynostosis, the fusion of the bones at the sutures. Analysis of the pathophysiology underling craniosynostosis has identified a variety of cellular mechanisms, mediated by a range of signaling pathways and effector transcription factors. These cellular mechanisms include loss of boundary integrity, altered sutural cell specification in embryos, and loss of a suture stem cell population in adults. Future work making use of genome-wide transcriptomic approaches will address the deep structure of regulatory interactions and cellular processes that unify these seemingly diverse mechanisms.
Collapse
|
22
|
Abstract
Fibroblast growth factor (FGF) signaling pathways are essential regulators of vertebrate skeletal development. FGF signaling regulates development of the limb bud and formation of the mesenchymal condensation and has key roles in regulating chondrogenesis, osteogenesis, and bone and mineral homeostasis. This review updates our review on FGFs in skeletal development published in Genes & Development in 2002, examines progress made on understanding the functions of the FGF signaling pathway during critical stages of skeletogenesis, and explores the mechanisms by which mutations in FGF signaling molecules cause skeletal malformations in humans. Links between FGF signaling pathways and other interacting pathways that are critical for skeletal development and could be exploited to treat genetic diseases and repair bone are also explored.
Collapse
Affiliation(s)
- David M Ornitz
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Pierre J Marie
- UMR-1132, Institut National de la Santé et de la Recherche Médicale, Hopital Lariboisiere, 75475 Paris Cedex 10, France; Université Paris Diderot, Sorbonne Paris Cité, 75475 Paris Cedex 10, France
| |
Collapse
|
23
|
Sun Y, Wang C, Hao Z, Dai J, Chen D, Xu Z, Shi D, Mao P, Teng H, Gao X, Hu Z, Shen H, Jiang Q. A common variant of ubiquinol-cytochrome c reductase complex is associated with DDH. PLoS One 2015; 10:e0120212. [PMID: 25848760 PMCID: PMC4388640 DOI: 10.1371/journal.pone.0120212] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 01/20/2015] [Indexed: 12/18/2022] Open
Abstract
Purpose Genetic basis of Developmental dysplasia of the hip (DDH) remains largely unknown. To find new susceptibility genes for DDH, we carried out a genome-wide association study (GWAS) for DDH. Methods We enrolled 386 radiology confirmed DDH patients and 558 healthy controls (Set A) to conduct a genome-wide association study (GWAS). Quality-control was conducted at both the sample and single nucleotide polymorphism (SNP) levels. We then conducted a subsequent case-control study to replicate the association between a promising loci, rs6060373 in UQCC gene and DDH in an independent set of 755 cases and 944 controls (set B). Results In the DDH GWAS discovering stage, 51 SNPs showed significance of less than 10-4, and another 577 SNPs showed significance of less than 10-3. In UQCC, all the 12 genotyped SNPs showed as promising risk loci. Genotyping of rs6060373 in set A showed the minor allele A as a promising risk allele (p = 4.82*10-7). In set A, the odds ratio of allele A was 1.77. Genotyping of rs6060373 in Set B produced another significant result (p = 0.0338) with an odds ratio of 1.18 for risk allele A. Combining set A and set B, we identified a total p value of 3.63*10-6 with the odds ratio of 1.35 (1.19–1.53) for allele A. Conclusion Our study demonstrates common variants of UQCC, specifically rs6060373, are associated with DDH in Han Chinese population.
Collapse
Affiliation(s)
- Ye Sun
- The Center of Diagnosis and Treatment for Joint Disease, Drum Tower Hospital Affiliated to Medical School of Nanjing University, Nanjing, Jiangsu 210008, China
- Laboratory for Bone and Joint Diseases, Model Animal Research Center, Nanjing University, Nanjing, Jiangsu 210061, China
| | - Cheng Wang
- MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing, Jiangsu 210061, China
| | - Zheng Hao
- The Center of Diagnosis and Treatment for Joint Disease, Drum Tower Hospital Affiliated to Medical School of Nanjing University, Nanjing, Jiangsu 210008, China
| | - Jin Dai
- The Center of Diagnosis and Treatment for Joint Disease, Drum Tower Hospital Affiliated to Medical School of Nanjing University, Nanjing, Jiangsu 210008, China
- Laboratory for Bone and Joint Diseases, Model Animal Research Center, Nanjing University, Nanjing, Jiangsu 210061, China
| | - Dongyang Chen
- The Center of Diagnosis and Treatment for Joint Disease, Drum Tower Hospital Affiliated to Medical School of Nanjing University, Nanjing, Jiangsu 210008, China
| | - Zhihong Xu
- The Center of Diagnosis and Treatment for Joint Disease, Drum Tower Hospital Affiliated to Medical School of Nanjing University, Nanjing, Jiangsu 210008, China
| | - Dongquan Shi
- The Center of Diagnosis and Treatment for Joint Disease, Drum Tower Hospital Affiliated to Medical School of Nanjing University, Nanjing, Jiangsu 210008, China
- Laboratory for Bone and Joint Diseases, Model Animal Research Center, Nanjing University, Nanjing, Jiangsu 210061, China
| | - Ping Mao
- The Center of Diagnosis and Treatment for Joint Disease, Drum Tower Hospital Affiliated to Medical School of Nanjing University, Nanjing, Jiangsu 210008, China
| | - Huajian Teng
- Laboratory for Bone and Joint Diseases, Model Animal Research Center, Nanjing University, Nanjing, Jiangsu 210061, China
| | - Xiang Gao
- MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing, Jiangsu 210061, China
| | - Zhibin Hu
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Hongbing Shen
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Qing Jiang
- The Center of Diagnosis and Treatment for Joint Disease, Drum Tower Hospital Affiliated to Medical School of Nanjing University, Nanjing, Jiangsu 210008, China
- Laboratory for Bone and Joint Diseases, Model Animal Research Center, Nanjing University, Nanjing, Jiangsu 210061, China
- * E-mail:
| |
Collapse
|
24
|
Marie PJ. Osteoblast dysfunctions in bone diseases: from cellular and molecular mechanisms to therapeutic strategies. Cell Mol Life Sci 2015; 72:1347-61. [PMID: 25487608 PMCID: PMC11113967 DOI: 10.1007/s00018-014-1801-2] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 11/13/2014] [Accepted: 12/01/2014] [Indexed: 12/27/2022]
Abstract
Several metabolic, genetic and oncogenic bone diseases are characterized by defective or excessive bone formation. These abnormalities are caused by dysfunctions in the commitment, differentiation or survival of cells of the osteoblast lineage. During the recent years, significant advances have been made in our understanding of the cellular and molecular mechanisms underlying the osteoblast dysfunctions in osteoporosis, skeletal dysplasias and primary bone tumors. This led to suggest novel therapeutic approaches to correct these abnormalities such as the modulation of WNT signaling, the pharmacological modulation of proteasome-mediated protein degradation, the induction of osteoprogenitor cell differentiation, the repression of cancer cell proliferation and the manipulation of epigenetic mechanisms. This article reviews our current understanding of the major cellular and molecular mechanisms inducing osteoblastic cell abnormalities in age-related bone loss, genetic skeletal dysplasias and primary bone tumors, and discusses emerging therapeutic strategies to counteract the osteoblast abnormalities in these disorders of bone formation.
Collapse
Affiliation(s)
- Pierre J Marie
- INSERM UMR-1132, Hôpital Lariboisière, 2 rue Ambroise Paré, 75475, Paris Cedex 10, France,
| |
Collapse
|
25
|
Xie Y, Zhou S, Chen H, Du X, Chen L. Recent research on the growth plate: Advances in fibroblast growth factor signaling in growth plate development and disorders. J Mol Endocrinol 2014; 53:T11-34. [PMID: 25114206 DOI: 10.1530/jme-14-0012] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Skeletons are formed through two distinct developmental actions, intramembranous ossification and endochondral ossification. During embryonic development, most bone is formed by endochondral ossification. The growth plate is the developmental center for endochondral ossification. Multiple signaling pathways participate in the regulation of endochondral ossification. Fibroblast growth factor (FGF)/FGF receptor (FGFR) signaling has been found to play a vital role in the development and maintenance of growth plates. Missense mutations in FGFs and FGFRs can cause multiple genetic skeletal diseases with disordered endochondral ossification. Clarifying the molecular mechanisms of FGFs/FGFRs signaling in skeletal development and genetic skeletal diseases will have implications for the development of therapies for FGF-signaling-related skeletal dysplasias and growth plate injuries. In this review, we summarize the recent advances in elucidating the role of FGFs/FGFRs signaling in growth plate development, genetic skeletal disorders, and the promising therapies for those genetic skeletal diseases resulting from FGFs/FGFRs dysfunction. Finally, we also examine the potential important research in this field in the future.
Collapse
Affiliation(s)
- Yangli Xie
- Department of Rehabilitation MedicineCenter of Bone Metabolism and Repair, Trauma Center, State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Siru Zhou
- Department of Rehabilitation MedicineCenter of Bone Metabolism and Repair, Trauma Center, State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Hangang Chen
- Department of Rehabilitation MedicineCenter of Bone Metabolism and Repair, Trauma Center, State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Xiaolan Du
- Department of Rehabilitation MedicineCenter of Bone Metabolism and Repair, Trauma Center, State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Lin Chen
- Department of Rehabilitation MedicineCenter of Bone Metabolism and Repair, Trauma Center, State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| |
Collapse
|
26
|
Su N, Jin M, Chen L. Role of FGF/FGFR signaling in skeletal development and homeostasis: learning from mouse models. Bone Res 2014; 2:14003. [PMID: 26273516 PMCID: PMC4472122 DOI: 10.1038/boneres.2014.3] [Citation(s) in RCA: 207] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2013] [Revised: 11/29/2013] [Accepted: 12/03/2013] [Indexed: 01/06/2023] Open
Abstract
Fibroblast growth factor (FGF)/fibroblast growth factor receptor (FGFR) signaling plays essential roles in bone development and diseases. Missense mutations in FGFs and FGFRs in humans can cause various congenital bone diseases, including chondrodysplasia syndromes, craniosynostosis syndromes and syndromes with dysregulated phosphate metabolism. FGF/FGFR signaling is also an important pathway involved in the maintenance of adult bone homeostasis. Multiple kinds of mouse models, mimicking human skeleton diseases caused by missense mutations in FGFs and FGFRs, have been established by knock-in/out and transgenic technologies. These genetically modified mice provide good models for studying the role of FGF/FGFR signaling in skeleton development and homeostasis. In this review, we summarize the mouse models of FGF signaling-related skeleton diseases and recent progresses regarding the molecular mechanisms, underlying the role of FGFs/FGFRs in the regulation of bone development and homeostasis. This review also provides a perspective view on future works to explore the roles of FGF signaling in skeletal development and homeostasis.
Collapse
Affiliation(s)
- Nan Su
- Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Institute of Surgery Research, Daping Hospital, Third Military Medical University , Chongqing, 400042, China
| | - Min Jin
- Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Institute of Surgery Research, Daping Hospital, Third Military Medical University , Chongqing, 400042, China
| | - Lin Chen
- Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Institute of Surgery Research, Daping Hospital, Third Military Medical University , Chongqing, 400042, China
| |
Collapse
|
27
|
Niger C, Luciotti MA, Buo AM, Hebert C, Ma V, Stains JP. The regulation of runt-related transcription factor 2 by fibroblast growth factor-2 and connexin43 requires the inositol polyphosphate/protein kinase Cδ cascade. J Bone Miner Res 2013; 28:1468-77. [PMID: 23322705 PMCID: PMC3657330 DOI: 10.1002/jbmr.1867] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Revised: 12/07/2012] [Accepted: 12/31/2012] [Indexed: 11/11/2022]
Abstract
Connexin43 (Cx43) plays a critical role in osteoblast function and bone mass accrual, yet the identity of the second messengers communicated by Cx43 gap junctions, the targets of these second messengers and how they regulate osteoblast function remain largely unknown. We have shown that alterations of Cx43 expression in osteoblasts can impact the responsiveness to fibroblast growth factor-2 (FGF2), by modulating the transcriptional activity of runt-related transcription factor 2 (Runx2). In this study, we examined the contribution of the phospholipase Cγ1/inositol polyphosphate/protein kinase C delta (PKCδ) cascade to the Cx43-dependent transcriptional response of MC3T3 osteoblasts to FGF2. Knockdown of expression and/or inhibition of function of phospholipase Cγ1, inositol polyphosphate multikinase, which generates inositol 1,3,4,5-tetrakisphosphate (InsP₄) and InsP₅, and inositol hexakisphosphate kinase 1/2, which generates inositol pyrophosphates, prevented the ability of Cx43 to potentiate FGF2-induced signaling through Runx2. Conversely, overexpression of phospholipase Cγ1 and inositol hexakisphosphate kinase 1/2 enhanced FGF2 activation of Runx2 and the effect of Cx43 overexpression on this response. Disruption of these pathways blocked the nuclear accumulation of PKCδ and the FGF2-dependent interaction of PKCδ and Runx2, reducing Runx2 transcriptional activity. These data reveal that FGF2-signaling involves the inositol polyphosphate cascade, including inositol hexakisphosphate kinase (IP6K), and demonstrate that IP6K regulates Runx2 and osteoblast gene expression. Additionally, these data implicate the water-soluble inositol polyphosphates as mediators of the Cx43-dependent amplification of the osteoblast response to FGF2, and suggest that these low molecular weight second messengers may be biologically relevant mediators of osteoblast function that are communicated by Cx43-gap junctions.
Collapse
Affiliation(s)
- Corinne Niger
- Department of Orthopaedics, University of Maryland, School of Medicine, Baltimore, MD, USA
| | | | | | | | | | | |
Collapse
|
28
|
Gorugantula LM, Rees T, Plemons J, Chen HS, Cheng YSL. Salivary basic fibroblast growth factor in patients with oral squamous cell carcinoma or oral lichen planus. Oral Surg Oral Med Oral Pathol Oral Radiol 2013; 114:215-22. [PMID: 22769407 DOI: 10.1016/j.oooo.2012.03.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Revised: 03/10/2012] [Accepted: 03/27/2012] [Indexed: 12/31/2022]
Abstract
OBJECTIVE The objective of this study was to gather preliminary data concerning the feasibility of using salivary basic fibroblast growth factor (bFGF) for detecting development of oral squamous cell carcinoma (OSCC) in patients with oral lichen planus (OLP), and in patients with OSCC whose disease was in remission. STUDY DESIGN Saliva samples were collected from 5 patient groups: patients with newly diagnosed OSCC, patients with OSCC whose disease was in remission, patients with OLP in disease-active state, patients with OLP in disease-inactive state, and healthy controls. Salivary bFGF levels were determined by enzyme-linked immunosorbent assay, and data were analyzed using the Mann-Whitney U test. RESULTS Salivary bFGF levels were significantly elevated in patients with newly diagnosed OSCC compared with patients with OSCC in remission, patients with disease-active OLP, and healthy controls. No significant difference was found between patients with newly diagnosed OSCC and patients with disease-inactive OLP. CONCLUSIONS Our results suggested that salivary bFGF might be a potential biomarker for detecting OSCC development in patients with OSCC in remission, but not in patients with OLP.
Collapse
Affiliation(s)
- Lakshmi Mitreyi Gorugantula
- Department of Biomedical Sciences, Texas A&M Health Science Center-Baylor College of Dentistry, Dallas, Texas 75246, USA
| | | | | | | | | |
Collapse
|
29
|
Senarath-Yapa K, Li S, Meyer NP, Longaker MT, Quarto N. Integration of multiple signaling pathways determines differences in the osteogenic potential and tissue regeneration of neural crest-derived and mesoderm-derived calvarial bones. Int J Mol Sci 2013; 14:5978-97. [PMID: 23502464 PMCID: PMC3634461 DOI: 10.3390/ijms14035978] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Revised: 03/05/2013] [Accepted: 03/12/2013] [Indexed: 12/24/2022] Open
Abstract
The mammalian skull vault, a product of a unique and tightly regulated evolutionary process, in which components of disparate embryonic origin are integrated, is an elegant model with which to study osteoblast biology. Our laboratory has demonstrated that this distinct embryonic origin of frontal and parietal bones confer differences in embryonic and postnatal osteogenic potential and skeletal regenerative capacity, with frontal neural crest derived osteoblasts benefitting from greater osteogenic potential. We outline how this model has been used to elucidate some of the molecular mechanisms which underlie these differences and place these findings into the context of our current understanding of the key, highly conserved, pathways which govern the osteoblast lineage including FGF, BMP, Wnt and TGFβ signaling. Furthermore, we explore recent studies which have provided a tantalizing insight into way these pathways interact, with evidence accumulating for certain transcription factors, such as Runx2, acting as a nexus for cross-talk.
Collapse
Affiliation(s)
- Kshemendra Senarath-Yapa
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Stanford University, School of Medicine, Stanford, CA 94305, USA; E-Mails: (K.S.-Y.); (S.L.); (N.P.M.)
| | - Shuli Li
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Stanford University, School of Medicine, Stanford, CA 94305, USA; E-Mails: (K.S.-Y.); (S.L.); (N.P.M.)
| | - Nathaniel P. Meyer
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Stanford University, School of Medicine, Stanford, CA 94305, USA; E-Mails: (K.S.-Y.); (S.L.); (N.P.M.)
| | - Michael T. Longaker
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Stanford University, School of Medicine, Stanford, CA 94305, USA; E-Mails: (K.S.-Y.); (S.L.); (N.P.M.)
- Authors to whom correspondence should be addressed; E-Mails: (M.T.L.); (N.Q.); Tel.: +1-650-7361-704; Fax: +1-650-7361-705
| | - Natalina Quarto
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Stanford University, School of Medicine, Stanford, CA 94305, USA; E-Mails: (K.S.-Y.); (S.L.); (N.P.M.)
- Department of Advanced Biomedical Science, University of Studies of Naples Federico II, Naples 80131, Italy
- Authors to whom correspondence should be addressed; E-Mails: (M.T.L.); (N.Q.); Tel.: +1-650-7361-704; Fax: +1-650-7361-705
| |
Collapse
|
30
|
Chandra A, Aragon-Martin JA, Sharif S, Parulekar M, Child A, Arno G. Craniosynostosis with Ectopia Lentis and a Homozygous 20-base Deletion in ADAMTSL4. Ophthalmic Genet 2012; 34:78-82. [DOI: 10.3109/13816810.2012.710707] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
31
|
Basu-Roy U, Basilico C, Mansukhani A. Perspectives on cancer stem cells in osteosarcoma. Cancer Lett 2012; 338:158-67. [PMID: 22659734 DOI: 10.1016/j.canlet.2012.05.028] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Revised: 05/21/2012] [Accepted: 05/24/2012] [Indexed: 12/27/2022]
Abstract
Osteosarcoma is an aggressive pediatric tumor of growing bones that, despite surgery and chemotherapy, is prone to relapse. These mesenchymal tumors are derived from progenitor cells in the osteoblast lineage that have accumulated mutations to escape cell cycle checkpoints leading to excessive proliferation and defects in their ability to differentiate appropriately into mature bone-forming osteoblasts. Like other malignant tumors, osteosarcoma is often heterogeneous, consisting of phenotypically distinct cells with features of different stages of differentiation. The cancer stem cell hypothesis posits that tumors are maintained by stem cells and it is the incomplete eradication of a refractory population of tumor-initiating stem cells that accounts for drug resistance and tumor relapse. In this review we present our current knowledge about the biology of osteosarcoma stem cells from mouse and human tumors, highlighting new insights and unresolved issues in the identification of this elusive population. We focus on factors and pathways that are implicated in maintaining such cells, and differences from paradigms of epithelial cancers. Targeting of the cancer stem cells in osteosarcoma is a promising avenue to explore to develop new therapies for this devastating childhood cancer.
Collapse
Affiliation(s)
- Upal Basu-Roy
- Department of Microbiology, New York University School of Medicine, 550 First Avenue, New York, NY 10016, United States
| | | | | |
Collapse
|
32
|
Abstract
Fibroblast growth factors (FGFs) are important molecules that control bone formation. FGF act by activating FGF receptors (FGFRs) and downstream signaling pathways that control cells of the osteoblast lineage. Recent advances have been made in the identification of FGF/FGFR signaling pathways that control osteogenesis. Indeed, studies of mouse and human models provided novel insights into the signaling pathways that control bone formation. Genomic studies also highlighted the implication of molecular targets of FGF/FGFR signaling regulating osteoblastogenesis. Recent studies further revealed the important role of crosstalks between FGF/FGFR signaling and other signaling pathways in the regulation of osteogenesis. Finally, the importance of the mechanisms modulating FGFR degradation in the control of osteoblast differentiation has been recently revealed. This short review summarizes the recently described mechanisms underlying FGF/FGFR signaling that are involved in the control of osteoblastogenesis. This knowledge may have potential therapeutic implications in skeletal disorders characterized by abnormal bone formation.
Collapse
Affiliation(s)
- Pierre J Marie
- Laboratory of Osteoblast Biology and Pathology, INSERM UMR-606 and University Paris Diderot, Paris F-75475, France.
| | | | | |
Collapse
|
33
|
Marie PJ. Fibroblast growth factor signaling controlling bone formation: An update. Gene 2012; 498:1-4. [DOI: 10.1016/j.gene.2012.01.086] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Revised: 01/23/2012] [Accepted: 01/29/2012] [Indexed: 10/14/2022]
|
34
|
Niger C, Buo AM, Hebert C, Duggan BT, Williams MS, Stains JP. ERK acts in parallel to PKCδ to mediate the connexin43-dependent potentiation of Runx2 activity by FGF2 in MC3T3 osteoblasts. Am J Physiol Cell Physiol 2012; 302:C1035-44. [PMID: 22277757 DOI: 10.1152/ajpcell.00262.2011] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The gap junction protein, connexin43 (Cx43), plays an important role in skeletal biology. Previously, we have shown that Cx43 can enhance the signaling and transcriptional response to fibroblast growth factor 2 (FGF2) in osteoblasts by increasing protein kinase C-δ (PKCδ) activation to affect Runx2 activity. In the present study, we show by luciferase reporter assays that the ERK signaling cascade acts in parallel to PKCδ to modulate Runx2 activity downstream of the Cx43-dependent amplification of FGF2 signaling. The PKCδ-independent activation of ERK by FGF2 was confirmed by Western blotting, as was the Cx43-dependent enhancement of ERK activation. Consistent with our prior observations for PKCδ, flow cytometry analyses show that Cx43 overexpression enhances the percentage of phospho-ERK-positive cells in response to FGF2, supporting the notion that shared signals among gap junction-coupled cells result in the enhanced response to FGF2. Western blots and luciferase reporter assays performed on osteoblasts cultured under low-density and high-density conditions revealed that cell-cell contacts are required for Cx43 to amplify ERK activation and gene transcription. Similarly, inhibition of gap junctional communication with the channel blocker 18β-glycyrrhetinic acid attenuates the Cx43-dependent enhancement of Runx2-transcriptional activity. In total, these data underscore the importance of cell-cell communication and activation of the ERK and PKCδ pathways in the coordination of the osteoblast response to FGF2 among populations of osteoblasts.
Collapse
Affiliation(s)
- Corinne Niger
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | | | | | | | | | | |
Collapse
|
35
|
Rahimov F, Jugessur A, Murray JC. Genetics of nonsyndromic orofacial clefts. Cleft Palate Craniofac J 2011; 49:73-91. [PMID: 21545302 DOI: 10.1597/10-178] [Citation(s) in RCA: 179] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
With an average worldwide prevalence of approximately 1.2/1000 live births, orofacial clefts are the most common craniofacial birth defects in humans. Like other complex disorders, these birth defects are thought to result from the complex interplay of multiple genes and environmental factors. Significant progress in the identification of underlying genes and pathways has benefited from large populations available for study, increased international collaboration, rapid advances in genotyping technology, and major improvements in analytic approaches. Here we review recent advances in genetic epidemiological approaches to complex traits and their applications to studies of nonsyndromic orofacial clefts. Our main aim is to bring together a discussion of new and previously identified candidate genes to create a more cohesive picture of interacting pathways that shape the human craniofacial region. In future directions, we highlight the need to search for copy number variants that affect gene dosage and rare variants that are possibly associated with a higher disease penetrance. In addition, sequencing of protein-coding regions in candidate genes and screening for genetic variation in noncoding regulatory elements will help advance this important area of research.
Collapse
Affiliation(s)
- Fedik Rahimov
- Interdisciplinary Ph.D. Program in Genetics, Department of Pediatrics, University of Iowa, Iowa City, Iowa, USA
| | | | | |
Collapse
|
36
|
Caverzasio J, Thouverey C. Activation of FGF receptors is a new mechanism by which strontium ranelate induces osteoblastic cell growth. Cell Physiol Biochem 2011; 27:243-50. [PMID: 21471713 DOI: 10.1159/000327950] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/31/2011] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND/AIMS Strontium ranelate (SrRan) is an anti-osteoporotic treatment that reduces the risk of vertebral and hip fractures. Recent in vitro studies suggest that the effect of strontium ranelate on osteoblastic cell growth likely involves two processes including activation of the calcium sensing receptor (CaSR) and a yet undefined mechanism. In the present study, we investigated the CaSR-independent molecular mechanism by which SrRan stimulates osteoblast growth. METHODS MC3T3-E1 and primary osteoblastic cells, specific inhibitors of receptor tyrosine kinases (RTK) and western blot analysis were used to characterize the CaSR-independent mechanism in osteoblastic cells. RESULTS A selective inhibitor of FGF receptor but not other RTK inhibitors markedly blunted cell growth induced by SrRan in osteoblastic cells. Associated with this observation, SrRan induced rapid activation of FGFR signaling pathways such as PLCγ, FRS2, Akt, ERK1,2 and p38. FGFR-dependent stimulation of osteogenic cell growth was also observed with other cations but not with neomycin, a selective CaSR agonist. Also, in cultured conditions used in this study, MC3T3-E1 cells and primary osteoblasts did not express the CaSR. CONCLUSION data presented in this study suggest that activation of FGFRs is a new potential mechanism by which strontium can stimulate osteoblastic cell growth. Activation of FGFR-dependent cell growth is also observed in response to other cations suggesting that activation of FGF receptors is a new cation sensing mechanism in osteoblasts.
Collapse
Affiliation(s)
- Joseph Caverzasio
- Service of Bone Diseases, Department of Rehabilitation and Geriatrics, University Hospital of Geneva, Geneva, Switzerland.
| | | |
Collapse
|
37
|
Melville H, Wang Y, Taub PJ, Jabs EW. Genetic basis of potential therapeutic strategies for craniosynostosis. Am J Med Genet A 2011; 152A:3007-15. [PMID: 21082653 DOI: 10.1002/ajmg.a.33703] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Craniosynostosis, the premature fusion of one or more cranial sutures, is a common malformation of the skull that can result in facial deformity and increased intracranial pressure. Syndromic craniosynostosis is present in ∼15% of craniosynostosis patients and often is clinically diagnosed by neurocranial phenotype as well as various other skeletal abnormalities. The most common genetic mutations identified in syndromic craniosynostosis involve the fibroblast growth factor receptor (FGFR) family with other mutations occurring in genes for transcription factors TWIST, MSX2, and GLI3, and other proteins EFNB1, RAB23, RECQL4, and POR, presumed to be involved either upstream or downstream of the FGFR signaling pathway. Both syndromic and nonsyndromic craniosynostosis patients require early diagnosis and intervention. The premature suture fusion can impose pressure on the growing brain and cause continued abnormal postnatal craniofacial development. Currently, treatment options for craniosynostosis are almost exclusively surgical. Serious complications can occur in infants requiring either open or endoscopic repair and therefore the development of nonsurgical techniques is highly desirable although arguably difficult to design and implement. Genetic studies of aberrant signaling caused by mutations underlying craniosynostosis in in vitro calvarial culture and in vivo animal model systems have provided promising targets in designing genetic and pharmacologic strategies for systemic or adjuvant nonsurgical treatment. Here we will review the current literature and provide insights to future possibilities and limitations of therapeutic applications.
Collapse
Affiliation(s)
- Heather Melville
- Department of Genetics and Genomic Sciences, Mount Sinai School of Medicine, New York, New York 10029, USA
| | | | | | | |
Collapse
|
38
|
Abstract
Fibroblast growth factors (FGFs) play important roles in the control of embryonic and postnatal skeletal development by activating signaling through FGF receptors (FGFRs). Germline gain-of-function mutations in FGFR constitutively activate FGFR signaling, causing chondrocyte and osteoblast dysfunctions that result in skeletal dysplasias. Crosstalk between the FGFR pathway and other signaling cascades controls skeletal precursor cell differentiation. Genetic analyses revealed that the interplay of WNT and FGFR1 determines the fate and differentiation of mesenchymal stem cells during mouse craniofacial skeletogenesis. Additionally, interactions between FGFR signaling and other receptor tyrosine kinase networks, such as those mediated by the epidermal growth factor receptor and platelet-derived growth factor receptor α, were associated with excessive osteoblast differentiation and bone formation in the human skeletal dysplasia called craniosynostosis, which is a disorder of skull development. We review the roles of FGFR signaling and its crosstalk with other pathways in controlling skeletal cell fate and discuss how this crosstalk could be pharmacologically targeted to correct the abnormal cell phenotype in skeletal dysplasias caused by aberrant FGFR signaling.
Collapse
Affiliation(s)
- Hichem Miraoui
- Laboratory of Osteoblast Biology and Pathology, INSERM UMR606 and University Paris Diderot, Paris 75475, Cedex 10, France
| | | |
Collapse
|
39
|
Miraoui H, Marie PJ. Pivotal role of Twist in skeletal biology and pathology. Gene 2010; 468:1-7. [DOI: 10.1016/j.gene.2010.07.013] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2010] [Revised: 07/28/2010] [Accepted: 07/31/2010] [Indexed: 01/05/2023]
|
40
|
Baldridge D, Shchelochkov O, Kelley, B, Lee B. Signaling Pathways in Human Skeletal Dysplasias. Annu Rev Genomics Hum Genet 2010; 11:189-217. [DOI: 10.1146/annurev-genom-082908-150158] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Dustin Baldridge
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030; , , ,
| | - Oleg Shchelochkov
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030; , , ,
- Department of Pediatrics, Division of Genetics, University of Iowa, Iowa City, Iowa 52242
| | - Brian Kelley,
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030; , , ,
- Howard Hughes Medical Institute, Houston, Texas 77009
| | - Brendan Lee
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030; , , ,
- Howard Hughes Medical Institute, Houston, Texas 77009
| |
Collapse
|
41
|
Trarbach EB, Abreu AP, Silveira LFG, Garmes HM, Baptista MTM, Teles MG, Costa EMF, Mohammadi M, Pitteloud N, Mendonca BB, Latronico AC. Nonsense mutations in FGF8 gene causing different degrees of human gonadotropin-releasing deficiency. J Clin Endocrinol Metab 2010; 95:3491-6. [PMID: 20463092 PMCID: PMC3213864 DOI: 10.1210/jc.2010-0176] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
CONTEXT FGFR1 mutations cause isolated hypogonadotropic hypogonadism (IHH) with or without olfactory abnormalities, Kallmann syndrome, and normosmic IHH respectively. Recently, missense mutations in FGF8, a key ligand for fibroblast growth factor receptor (FGFR) 1 in the ontogenesis of GnRH, were identified in IHH patients, thus establishing FGF8 as a novel locus for human GnRH deficiency. OBJECTIVE Our objective was to analyze the clinical, hormonal, and molecular findings of two familial IHH patients due to FGF8 gene mutations. METHODS AND PATIENTS The entire coding region of the FGF8 gene was amplified and sequenced in two well-phenotyped IHH probands and their relatives. RESULTS Two unique heterozygous nonsense mutations in FGF8 (p.R127X and p.R129X) were identified in two unrelated IHH probands, which were absent in 150 control individuals. These two mutations, mapped to the core domain of FGF8, impact all four human FGF8 isoforms, and lead to the deletion of a large portion of the protein, generating nonfunctional FGF8 ligands. The p.R127X mutation was identified in an 18-yr-old Kallmann syndrome female. Her four affected siblings with normosmic IHH or delayed puberty also carried the p.R127X mutation. Additional developmental anomalies, including cleft lip and palate and neurosensorial deafness, were also present in this family. The p.R129X mutation was identified in a 30-yr-old man with familial normosmic IHH and severe GnRH deficiency. CONCLUSIONS We identified the first nonsense mutations in the FGF8 gene in familial IHH with variable degrees of GnRH deficiency and olfactory phenotypes, confirming that loss-of-function mutations in FGF8 cause human GnRH deficiency.
Collapse
Affiliation(s)
- Ericka B Trarbach
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular/LIM42 da Disciplina de Endocrinologia do Hospital das Clinicas da Faculdade de Medicina da Universidade de São Paulo, 05403-900, São Paulo, Brasil.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Abstract
The Muenke syndrome (MS) is characterized by unicoronal or bicoronal craniosynostosis, midfacial hypoplasia, ocular hypertelorism, and a variety of minor abnormalities associated with a mutation in the fibroblast growth factor receptor 3 (FGFR3) gene. The birth prevalence is approximately one in 10,000 live births, accounting for 8-10% of patients with coronal synostosis. Although MS is a relatively common diagnosis in patients with craniosynostosis syndromes, with autosomal dominant inheritance, there has been no report of MS, in an affected Korean family with typical cephalo-facial morphology that has been confirmed by molecular studies. Here, we report a familial case of MS in a female patient with a Pro250Arg mutation in exon 7 (IgII-IGIII linker domain) of the FGFR3 gene. This patient had mild midfacial hypoplasia, hypertelorism, downslanting palpebral fissures, a beak shaped nose, plagio-brachycephaly, and mild neurodevelopmental delay. The same mutation was confirmed in the patient's mother, two of the mother's sisters and the maternal grandfather. The severity of the cephalo-facial anomalies was variable among these family members.
Collapse
Affiliation(s)
- Jae Eun Yu
- Department of Pediatrics, Ajou University School of Medicine, Suwon, Korea
| | - Dong Ha Park
- Department of Plastic and Reconstructive Surgery, Ajou University School of Medicine, Suwon, Korea
| | - Soo Han Yoon
- Department of Neurosurgery, Ajou University School of Medicine, Suwon, Korea
| |
Collapse
|
43
|
Maruyama T, Mirando AJ, Deng CX, Hsu W. The balance of WNT and FGF signaling influences mesenchymal stem cell fate during skeletal development. Sci Signal 2010; 3:ra40. [PMID: 20501936 DOI: 10.1126/scisignal.2000727] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Craniosynostosis, a developmental disorder resulting from premature closure of the gaps (sutures) between skull bones, can be caused by excessive intramembranous ossification, a type of bone formation that does not involve formation of a cartilage template (chondrogenesis). Here, we show that endochondral ossification, a type of bone formation that proceeds through a cartilage intermediate, caused by switching the fate of mesenchymal stem cells to chondrocytes, can also result in craniosynostosis. Simultaneous knockout of Axin2, a negative regulator of the WNT-beta-catenin pathway, and decreased activity of fibroblast growth factor (FGF) receptor 1 (FGFR1) in mice induced ectopic chondrogenesis, leading to abnormal suture morphogenesis and fusion. Genetic analyses revealed that activation of beta-catenin cooperated with FGFR1 to alter the lineage commitment of mesenchymal stem cells to differentiate into chondrocytes, from which cartilage is formed. We showed that the WNT-beta-catenin pathway directly controlled the stem cell population by regulating its renewal and proliferation, and indirectly modulated lineage specification by setting the balance of the FGF and bone morphogenetic protein pathways. This study identifies endochondral ossification as a mechanism of suture closure during development and implicates this process in craniosynostosis.
Collapse
Affiliation(s)
- Takamitsu Maruyama
- Department of Biomedical Genetics, Center for Oral Biology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | | | | | | |
Collapse
|
44
|
Basu-Roy U, Ambrosetti D, Favaro R, Nicolis SK, Mansukhani A, Basilico C. The transcription factor Sox2 is required for osteoblast self-renewal. Cell Death Differ 2010; 17:1345-53. [PMID: 20489730 PMCID: PMC2902624 DOI: 10.1038/cdd.2010.57] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The development and maintenance of most tissues and organs requires the presence of multipotent and unipotent stem cells that have the ability of self-renewal as well as of generating committed, further differentiated cell types. The transcription factor Sox2 is essential for embryonic development and maintains pluripotency and self-renewal in embryonic stem cells. It is expressed in immature osteoblasts/osteoprogenitors in vitro and in vivo and is induced by FGF signaling, which stimulates osteoblast proliferation and inhibits differentiation. Sox2 overexpression can by itself inhibit osteoblast differentiation. To elucidate its role in the osteoblastic lineage, we generated mice with an osteoblast-specific, Cre-mediated knockout of Sox2. These mice are small and osteopenic, and mosaic for Sox2 inactivation. However, culturing calvarial osteoblasts from the mutant mice for 2-3 passages failed to yield any Sox2 null cells. Inactivation of the Sox2 gene by Cre-mediated excision in cultured osteoblasts showed that Sox2 null cells could not survive repeated passage in culture, could not form colonies, and arrested their growth with a senescent phenotype. Additionally, expression of Sox2 specific shRNAs in independent osteoblastic cell lines suppressed their proliferative ability. Osteoblasts capable of forming “osteospheres” are greatly enriched in Sox2 expression. These data identify a novel role for Sox2 in the maintenance of self-renewal in the osteoblastic lineage.
Collapse
Affiliation(s)
- U Basu-Roy
- Department of Microbiology, NYU School of Medicine, New York, NY, USA
| | | | | | | | | | | |
Collapse
|
45
|
Sierra OL, Towler DA. Runx2 trans-activation mediated by the MSX2-interacting nuclear target requires homeodomain interacting protein kinase-3. Mol Endocrinol 2010; 24:1478-97. [PMID: 20484411 DOI: 10.1210/me.2010-0029] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Runt-related transcription factor 2 (Runx2) and muscle segment homeobox homolog 2-interacting nuclear target (MINT) (Spen homolog) are transcriptional regulators critical for mammalian development. MINT enhances Runx2 activation of osteocalcin (OC) fibroblast growth factor (FGF) response element in an FGF2-dependent fashion in C3H10T1/2 cells. Although the MINT N-terminal RNA recognition motif domain contributes, the muscle segment homeobox homolog 2-interacting domain is sufficient for Runx2 activation. Intriguingly, Runx1 cannot replace Runx2 in this assay. To better understand this Runx2 signaling cascade, we performed structure-function analysis of the Runx2-MINT trans-activation relationship. Systematic truncation and domain swapping in Runx1:Runx2 chimeras identified that the unique Runx2 activation domain 3 (AD3), encompassed by residues 316-421, conveys MINT+FGF2 trans-activation in transfection assays. Ala mutagenesis of Runx2 Ser/Thr residues identified that S301 and T326 in AD3 are necessary for full MINT+FGF2 trans-activation. Conversely, phosphomimetic Asp substitution of these AD3 Ser/Thr residues enhanced activation by MINT. Adjacent Pro residues implicated regulation by a proline-directed protein kinase (PDPK). Systematic screening with PDPK inhibitors identified that the casein kinase-2/homeodomain-interacting protein kinase (HIPK)/dual specificity tyrosine phosphorylation regulated kinase inhibitor 2-dimethylamino-4,5,6,7-tetrabromo-1H-benzimidazole (DMAT), but not ERK, c-Jun N-terminal kinase, p38MAPK, or other casein kinase-2 inhibitors, abrogated Runx2-, MINT-, and FGF2-activation. Systematic small interfering RNA-mediated silencing of DMAT-inhibited PDPKs revealed that HIPK3 depletion reduced MINT+FGF2-dependent activation of Runx2. HIPK3 and Runx2 coprecipitate after in vitro transcription-translation, and recombinant HIPK3 recognizes Runx2 AD3 as kinase substrate. Furthermore, DMAT treatment and HIPK3 RNAi inhibited MINT+FGF2 activation of Runx2 AD3, and nuclear HIPK3 colocalized with MINT. HIPK3 antisense oligodeoxynucleotide selectively reduced Runx2 protein accumulation and OC gene expression in C3H10T1/2 cells. Thus, HIPK3 participates in MINT+FGF2 regulation of Runx2 AD3 activity and controls Runx2-dependent OC expression.
Collapse
Affiliation(s)
- Oscar L Sierra
- Washington University School of Medicine, Internal Medicine-Endocrinology/Metabolism, Campus Box 8301, 660 South Euclid Avenue, St. Louis, Missouri 63110, USA.
| | | |
Collapse
|
46
|
Lee KM, Santos-Ruiz L, Ferretti P. A single-point mutation in FGFR2 affects cell cycle and Tgfβ signalling in osteoblasts. Biochim Biophys Acta Mol Basis Dis 2010; 1802:347-55. [DOI: 10.1016/j.bbadis.2009.11.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2009] [Revised: 11/20/2009] [Accepted: 11/24/2009] [Indexed: 10/20/2022]
|
47
|
Analysis of a gain-of-function FGFR2 Crouzon mutation provides evidence of loss of function activity in the etiology of cleft palate. Proc Natl Acad Sci U S A 2010; 107:2515-20. [PMID: 20133659 DOI: 10.1073/pnas.0913985107] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cleft palate is a common birth defect in humans and is a common phenotype associated with syndromic mutations in fibroblast growth factor receptor 2 (Fgfr2). Cleft palate occurred in nearly all mice homozygous for the Crouzon syndrome mutation C342Y in the mesenchymal splice form of Fgfr2. Mutant embryos showed delayed palate elevation, stage-specific biphasic changes in palate mesenchymal proliferation, and reduced levels of mesenchymal glycosaminoglycans (GAGs). Reduced levels of feedback regulators of FGF signaling suggest that this gain-of-function mutation in FGFR2 ultimately resembles loss of FGF function in palate mesenchyme. Knowledge of how mesenchymal FGF signaling regulates palatal shelf development may ultimately lead to pharmacological approaches to reduce cleft palate incidence in genetically predisposed humans.
Collapse
|
48
|
Kuhn NZ, Tuan RS. Regulation of stemness and stem cell niche of mesenchymal stem cells: implications in tumorigenesis and metastasis. J Cell Physiol 2009; 222:268-77. [PMID: 19847802 DOI: 10.1002/jcp.21940] [Citation(s) in RCA: 184] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Human mesenchymal stem cells (MSCs) derived from adult tissues have been considered a candidate cell type for cell-based tissue engineering and regenerative medicine. These multipotent cells have the ability to differentiate along several mesenchymal lineages and possibly along non-mesenchymal lineages. MSCs possess considerable immunosuppressive properties that can influence the surrounding tissue positively during regeneration, but perhaps negatively towards the pathogenesis of cancer and metastasis. The balance between the naïve stem state and differentiation is highly dependent on the stem cell niche. Identification of stem cell niche components has helped to elucidate the mechanisms of stem cell maintenance and differentiation. Ultimately, the fate of stem cells is dictated by their microenvironment. In this review, we describe the identification and characterization of bone marrow-derived MSCs, the properties of the bone marrow stem cell niche, and the possibility and likelihood of MSC involvement in cancer progression and metastasis.
Collapse
Affiliation(s)
- Nastaran Z Kuhn
- Cartilage Biology and Orthopaedics Branch, National Institute of Arthritis, and Musculoskeletal and Skin Diseases, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland, USA
| | | |
Collapse
|
49
|
Fibroblast growth factor receptor 1 regulates the differentiation and activation of osteoclasts through Erk1/2 pathway. Biochem Biophys Res Commun 2009; 390:494-9. [DOI: 10.1016/j.bbrc.2009.09.123] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2009] [Accepted: 09/26/2009] [Indexed: 12/26/2022]
|
50
|
Teplyuk NM, Haupt LM, Ling L, Dombrowski C, Mun FK, Nathan SS, Lian JB, Stein JL, Stein GS, Cool SM, van Wijnen AJ. The osteogenic transcription factor Runx2 regulates components of the fibroblast growth factor/proteoglycan signaling axis in osteoblasts. J Cell Biochem 2009; 107:144-54. [PMID: 19259985 DOI: 10.1002/jcb.22108] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Heparan sulfate proteoglycans cooperate with basic fibroblast growth factor (bFGF/FGF2) signaling to control osteoblast growth and differentiation, as well as metabolic functions of osteoblasts. FGF2 signaling modulates the expression and activity of Runt-related transcription factor 2 (Runx2/Cbfa1), a key regulator of osteoblast proliferation and maturation. Here, we have characterized novel Runx2 target genes in osteoprogenitors under conditions that promote growth arrest while not yet permitting sustained phenotypic maturation. Runx2 enhances expression of genes related to proteoglycan-mediated signaling, including FGF receptors (e.g., FGFR2 and FGFR3) and proteoglycans (e.g., syndecans [Sdc1, Sdc2, Sdc3], glypicans [Gpc1], versican [Vcan]). Runx2 increases expression of the glycosyltransferase Exostosin-1 (Ext1) and heparanase, as well as alters the relative expression of N-linked sulfotransferases (Ndst1 = Ndst2 > Ndst3) and enzymes mediating O-linked sulfation of heparan sulfate (Hs2st > Hs6st) or chondroitin sulfate (Cs4st > Cs6st). Runx2 cooperates with FGF2 to induce expression of Sdc4 and the sulfatase Galns, but Runx2 and FGF2 suppress Gpc6, thus suggesting intricate Runx2 and FGF2 dependent changes in proteoglycan utilization. One functional consequence of Runx2 mediated modulations in proteoglycan-related gene expression is a change in the responsiveness of bone markers to FGF2 stimulation. Runx2 and FGF2 synergistically enhance osteopontin expression (>100 fold), while FGF2 blocks Runx2 induction of alkaline phosphatase. Our data suggest that Runx2 and the FGF/proteoglycan axis may form an extracellular matrix (ECM)-related regulatory feed-back loop that controls osteoblast proliferation and execution of the osteogenic program.
Collapse
Affiliation(s)
- Nadiya M Teplyuk
- Department of Cell Biology and Cancer Center, University of Massachusetts Medical School, Worcester, Massachusetts 01655-0105, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|