1
|
Wishart TFL, Lovicu FJ. Spatiotemporal Localisation of Heparan Sulphate Proteoglycans throughout Mouse Lens Morphogenesis. Cells 2023; 12:1364. [PMID: 37408198 DOI: 10.3390/cells12101364] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/05/2023] [Accepted: 05/09/2023] [Indexed: 07/07/2023] Open
Abstract
Heparan sulphate proteoglycans (HSPGs) consist of a core protein decorated with sulphated HS-glycosaminoglycan (GAG) chains. These negatively charged HS-GAG chains rely on the activity of PAPSS synthesising enzymes for their sulfation, which allows them to bind to and regulate the activity of many positively charged HS-binding proteins. HSPGs are found on the surfaces of cells and in the pericellular matrix, where they interact with various components of the cell microenvironment, including growth factors. By binding to and regulating ocular morphogens and growth factors, HSPGs are positioned to orchestrate growth factor-mediated signalling events that are essential for lens epithelial cell proliferation, migration, and lens fibre differentiation. Previous studies have shown that HS sulfation is essential for lens development. Moreover, each of the full-time HSPGs, differentiated by thirteen different core proteins, are differentially localised in a cell-type specific manner with regional differences in the postnatal rat lens. Here, the same thirteen HSPG-associated GAGs and core proteins as well as PAPSS2, are shown to be differentially regulated throughout murine lens development in a spatiotemporal manner. These findings suggest that HS-GAG sulfation is essential for growth factor-induced cellular processes during embryogenesis, and the unique and divergent localisation of different lens HSPG core proteins indicates that different HSPGs likely play specialized roles during lens induction and morphogenesis.
Collapse
Affiliation(s)
- Tayler F L Wishart
- Molecular and Cellular Biomedicine, School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Frank J Lovicu
- Molecular and Cellular Biomedicine, School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
- Save Sight Institute, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
2
|
Association of Sonic Hedgehog with the extracellular matrix requires its zinc-coordination center. BMC Mol Cell Biol 2021; 22:22. [PMID: 33863273 PMCID: PMC8052667 DOI: 10.1186/s12860-021-00359-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 03/09/2021] [Indexed: 02/08/2023] Open
Abstract
Background Sonic Hedgehog (Shh) has a catalytic cleft characteristic for zinc metallopeptidases and has significant sequence similarities with some bacterial peptidoglycan metallopeptidases defining a subgroup within the M15A family that, besides having the characteristic zinc coordination motif, can bind two calcium ions. Extracellular matrix (ECM) components in animals include heparan-sulfate proteoglycans, which are analogs of bacterial peptidoglycan and are involved in the extracellular distribution of Shh. Results We found that the zinc-coordination center of Shh is required for its association to the ECM as well as for non-cell autonomous signaling. Association with the ECM requires the presence of at least 0.1 μM zinc and is prevented by mutations affecting critical conserved catalytical residues. Consistent with the presence of a conserved calcium binding domain, we find that extracellular calcium inhibits ECM association of Shh. Conclusions Our results indicate that the putative intrinsic peptidase activity of Shh is required for non-cell autonomous signaling, possibly by enzymatically altering ECM characteristics. Supplementary Information The online version contains supplementary material available at 10.1186/s12860-021-00359-5.
Collapse
|
3
|
Derrick DJA, Wolton K, Currie RA, Tindall MJ. A mathematical model of the role of aggregation in sonic hedgehog signalling. PLoS Comput Biol 2021; 17:e1008562. [PMID: 33617524 PMCID: PMC7932509 DOI: 10.1371/journal.pcbi.1008562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 03/04/2021] [Accepted: 11/23/2020] [Indexed: 11/25/2022] Open
Abstract
Effective regulation of the sonic hedgehog (Shh) signalling pathway is essential for normal development in a wide variety of species. Correct Shh signalling requires the formation of Shh aggregates on the surface of producing cells. Shh aggregates subsequently diffuse away and are recognised in receiving cells located elsewhere in the developing embryo. Various mechanisms have been postulated regarding how these aggregates form and what their precise role is in the overall signalling process. To understand the role of these mechanisms in the overall signalling process, we formulate and analyse a mathematical model of Shh aggregation using nonlinear ordinary differential equations. We consider Shh aggregate formation to comprise of multimerisation, association with heparan sulfate proteoglycans (HSPG) and binding with lipoproteins. We show that the size distribution of the Shh aggregates formed on the producing cell surface resembles an exponential distribution, a result in agreement with experimental data. A detailed sensitivity analysis of our model reveals that this exponential distribution is robust to parameter changes, and subsequently, also to variations in the processes by which Shh is recruited by HSPGs and lipoproteins. The work demonstrates the time taken for different sized Shh aggregates to form and the important role this likely plays in Shh diffusion. The sonic hedgehog (Shh) pathway is vital for normal development in a wide variety of species and its activity is strictly regulated to ensure correct spatiotemporal patterning of numerous developing tissues. Shh signalling requires the formation of Shh aggregates, formed on producing cells via a range of different mechanisms, that then diffuse to receiving cells. We formulate and analyse a mathematical model of the most well described mechanisms, namely monomer multimerisation, and recruitment of Shh by heparan sulfate proteoglycans and lipoproteins. Our results illustrate a distribution of the size and quantities of aggregates formed by these mechanisms. We found that as a consequence of competition between the mechanisms for Shh monomers the shape distribution of Shh aggregates resembles an exponential distribution. We also found the distribution to be robust to both parameter changes and variations to the processes by which mechanisms recruit Shh. We report that our approach and subsequent results demonstrate that these mechanisms act in synergy allowing Shh to aggregate in various quantities with diverse diffusive abilities. We postulate that this regulation contributes significantly to aid precision in signalling for Shh in areas of development.
Collapse
Affiliation(s)
- Daniel J. A. Derrick
- Department of Mathematics and Statistics, University of Reading, Whiteknights, Reading, United Kingdom
| | - Kathryn Wolton
- Syngenta, Jealott’s Hill International Research Centre, Bracknell, Berkshire, United Kingdom
| | - Richard A. Currie
- Syngenta, Jealott’s Hill International Research Centre, Bracknell, Berkshire, United Kingdom
| | - Marcus John Tindall
- Department of Mathematics and Statistics, University of Reading, Whiteknights, Reading, United Kingdom
- Institute of Cardiovascular and Metabolic Research, University of Reading, Whiteknights, Reading, United Kingdom
- * E-mail:
| |
Collapse
|
4
|
Macchi M, Magalon K, Zimmer C, Peeva E, El Waly B, Brousse B, Jaekel S, Grobe K, Kiefer F, Williams A, Cayre M, Durbec P. Mature oligodendrocytes bordering lesions limit demyelination and favor myelin repair via heparan sulfate production. eLife 2020; 9:51735. [PMID: 32515730 PMCID: PMC7308090 DOI: 10.7554/elife.51735] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 06/09/2020] [Indexed: 12/12/2022] Open
Abstract
Myelin destruction is followed by resident glia activation and mobilization of endogenous progenitors (OPC) which participate in myelin repair. Here we show that in response to demyelination, mature oligodendrocytes (OLG) bordering the lesion express Ndst1, a key enzyme for heparan sulfates (HS) synthesis. Ndst1+ OLG form a belt that demarcates lesioned from intact white matter. Mice with selective inactivation of Ndst1 in the OLG lineage display increased lesion size, sustained microglia and OPC reactivity. HS production around the lesion allows Sonic hedgehog (Shh) binding and favors the local enrichment of this morphogen involved in myelin regeneration. In MS patients, Ndst1 is also found overexpressed in oligodendroglia and the number of Ndst1-expressing oligodendroglia is inversely correlated with lesion size and positively correlated with remyelination potential. Our study suggests that mature OLG surrounding demyelinated lesions are not passive witnesses but contribute to protection and regeneration by producing HS.
Collapse
Affiliation(s)
| | | | | | - Elitsa Peeva
- MRC Centre for Regenerative Medicine, Multiple Sclerosis Society Centre for Translational Research, University of Edinburgh, Edinburgh, United Kingdom
| | | | | | - Sarah Jaekel
- MRC Centre for Regenerative Medicine, Multiple Sclerosis Society Centre for Translational Research, University of Edinburgh, Edinburgh, United Kingdom
| | - Kay Grobe
- Institute of Physiological Chemistry and Pathobiochemistry and Cells-in-Motion Cluster of Excellence (EXC1003-CiM), University of Münster, Münster, Germany
| | | | - Anna Williams
- MRC Centre for Regenerative Medicine, Multiple Sclerosis Society Centre for Translational Research, University of Edinburgh, Edinburgh, United Kingdom
| | - Myriam Cayre
- Aix Marseille Univ, CNRS, IBDM, Marseille, France
| | | |
Collapse
|
5
|
Roelink H. Sonic Hedgehog Is a Member of the Hh/DD-Peptidase Family That Spans the Eukaryotic and Bacterial Domains of Life. J Dev Biol 2018; 6:jdb6020012. [PMID: 29890674 PMCID: PMC6027127 DOI: 10.3390/jdb6020012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 06/01/2018] [Accepted: 06/07/2018] [Indexed: 11/16/2022] Open
Abstract
Sonic Hedgehog (Shh) coordinates Zn2+ in a manner that resembles that of peptidases. The ability of Shh to undergo autoproteolytic processing is impaired in mutants that affect the Zn2+ coordination, while mutating residues essential for catalytic activity results in more stable forms of Shh. The residues involved in Zn2+ coordination in Shh are found to be mutated in some individuals with the congenital birth defect holoprosencephaly, demonstrating their importance in development. Highly conserved Shh domains are found in parts of some bacterial proteins that are members of the larger family of DD-peptidases, supporting the notion that Shh acts as a peptidase. Whereas this Hh/DD-peptidase motif is present in Hedgehog (Hh) proteins of nearly all animals, it is not present in Drosophila Hh, indicating that Hh signaling in fruit flies is derived, and perhaps not a good model for vertebrate Shh signaling. A sequence analysis of Hh proteins and their possible evolutionary precursors suggests that the evolution of modern Hh might have involved horizontal transfer of a bacterial gene coding of a Hh/DD-peptidase into a Cnidarian ancestor, recombining to give rise to modern Hh.
Collapse
Affiliation(s)
- Henk Roelink
- Department of Molecular and Cell Biology, University of California, 16 Barker Hall, 3204, Berkeley, CA 94720, USA.
| |
Collapse
|
6
|
Abstract
The eye lens grows by systematic proliferation of its epithelial cells and their differentiation into fibre cells. The anterior aqueous humour regulates lens epithelial cell proliferation whereas posteriorly, the vitreous stimulates lens fibre differentiation. Vitreous-derived members of the fibroblast growth factor (FGF) family induce fibre differentiation, with added support for FGFs as putative regulators of aqueous-induced lens cell proliferation. To further characterize this, given FGFs' known affinity for proteoglycans, we compared the effect of proteoglycan sulphation in growth factor- and aqueous-induced lens cell proliferation. Disruption of proteoglycan sulphation in lens cells specifically impacted on aqueous- and FGF-induced MAPK/ERK1/2-signalling, but not on that induced by other mitogens such as PDGF; however, cell proliferation was reduced in all treatment groups, regardless of the mitogen. Overall, by disrupting proteoglycan activity, we further highlight the significant role of FGFs in aqueous-induced ERK1/2 phosphorylation leading to lens cell proliferation.
Collapse
Affiliation(s)
- Laxmi Iyengar
- a Save Sight Institute and Discipline of Anatomy and Histology, Bosch Institute, University of Sydney , Sydney , Australia
| | - Frank J Lovicu
- a Save Sight Institute and Discipline of Anatomy and Histology, Bosch Institute, University of Sydney , Sydney , Australia
| |
Collapse
|
7
|
Kiecker C. The chick embryo as a model for the effects of prenatal exposure to alcohol on craniofacial development. Dev Biol 2016; 415:314-325. [PMID: 26777098 DOI: 10.1016/j.ydbio.2016.01.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 10/28/2015] [Accepted: 01/13/2016] [Indexed: 12/15/2022]
Abstract
Prenatal exposure to ethanol results in fetal alcohol spectrum disorder (FASD), a syndrome characterised by a broad range of clinical manifestations including craniofacial dysmorphologies and neurological defects. The characterisation of the mechanisms by which ethanol exerts its teratogenic effects is difficult due to the pleiotropic nature of its actions. Different experimental model systems have been employed to investigate the aetiology of FASD. Here, I will review studies using these different model organisms that have helped to elucidate how ethanol causes the craniofacial abnormalities characteristic of FASD. In these studies, ethanol was found to impair the prechordal plate-an important embryonic signalling centre-during gastrulation and to negatively affect the induction, migration and survival of the neural crest, a cell population that generates the cartilage and most of the bones of the skull. At the cellular level, ethanol appears to inhibit Sonic hedgehog signalling, alter levels of retionoic acid activity, trigger a Ca(2+)-CamKII-dependent pathway that antagonises WNT signalling, affect cytoskeletal dynamics and increase oxidative stress. Embryos of the domestic chick Gallus gallus domesticus have played a central role in developing a working model for the effects of ethanol on craniofacial development because they are easily accessible and because key steps in craniofacial development are particularly well established in the avian embryo. I will finish this review by highlighting some potential future avenues of fetal alcohol research.
Collapse
Affiliation(s)
- Clemens Kiecker
- MRC Centre for Developmental Neurobiology, 4th Floor, Hodgkin Building, Guy's Hospital Campus, King's College London, UK.
| |
Collapse
|
8
|
Ortmann C, Pickhinke U, Exner S, Ohlig S, Lawrence R, Jboor H, Dreier R, Grobe K. Sonic hedgehog processing and release are regulated by glypican heparan sulfate proteoglycans. J Cell Sci 2015; 128:2374-85. [PMID: 25967551 DOI: 10.1242/jcs.170670] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 05/05/2015] [Indexed: 12/21/2022] Open
Abstract
All Hedgehog morphogens are released from producing cells, despite being synthesized as N- and C-terminally lipidated molecules, a modification that firmly tethers them to the cell membrane. We have previously shown that proteolytic removal of both lipidated peptides, called shedding, releases bioactive Sonic hedgehog (Shh) morphogens from the surface of transfected Bosc23 cells. Using in vivo knockdown together with in vitro cell culture studies, we now show that glypican heparan sulfate proteoglycans regulate this process, through their heparan sulfate chains, in a cell autonomous manner. Heparan sulfate specifically modifies Shh processing at the cell surface, and purified glycosaminoglycans enhance the proteolytic removal of N- and C-terminal Shh peptides under cell-free conditions. The most likely explanation for these observations is direct Shh processing in the extracellular compartment, suggesting that heparan sulfate acts as a scaffold or activator for Shh ligands and the factors required for their turnover. We also show that purified heparan sulfate isolated from specific cell types and tissues mediates the release of bioactive Shh from pancreatic cancer cells, revealing a previously unknown regulatory role for these versatile molecules in a pathological context.
Collapse
Affiliation(s)
- Corinna Ortmann
- Institute for Physiological Chemistry and Pathobiochemistry, University of Münster, 48149 Münster, Germany
| | - Ute Pickhinke
- Institute for Physiological Chemistry and Pathobiochemistry, University of Münster, 48149 Münster, Germany
| | - Sebastian Exner
- Institute for Physiological Chemistry and Pathobiochemistry, University of Münster, 48149 Münster, Germany
| | - Stefanie Ohlig
- Institute for Physiological Chemistry and Pathobiochemistry, University of Münster, 48149 Münster, Germany
| | - Roger Lawrence
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Hamodah Jboor
- Institute for Physiological Chemistry and Pathobiochemistry, University of Münster, 48149 Münster, Germany
| | - Rita Dreier
- Institute for Physiological Chemistry and Pathobiochemistry, University of Münster, 48149 Münster, Germany Cells-in-Motion Cluster of Excellence (EXC1003-CiM), University of Münster, 48149 Münster, Germany
| | - Kay Grobe
- Institute for Physiological Chemistry and Pathobiochemistry, University of Münster, 48149 Münster, Germany Cells-in-Motion Cluster of Excellence (EXC1003-CiM), University of Münster, 48149 Münster, Germany
| |
Collapse
|
9
|
Al Oustah A, Danesin C, Khouri-Farah N, Farreny MA, Escalas N, Cochard P, Glise B, Soula C. Dynamics of sonic hedgehog signaling in the ventral spinal cord are controlled by intrinsic changes in source cells requiring sulfatase 1. Development 2014; 141:1392-403. [PMID: 24595292 DOI: 10.1242/dev.101717] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
In the ventral spinal cord, generation of neuronal and glial cell subtypes is controlled by Sonic hedgehog (Shh). This morphogen contributes to cell diversity by regulating spatial and temporal sequences of gene expression during development. Here, we report that establishing Shh source cells is not sufficient to induce the high-threshold response required to specify sequential generation of ventral interneurons and oligodendroglial cells at the right time and place in zebrafish. Instead, we show that Shh-producing cells must repeatedly upregulate the secreted enzyme Sulfatase1 (Sulf1) at two critical time points of development to reach their full inductive capacity. We provide evidence that Sulf1 triggers Shh signaling activity to establish and, later on, modify the spatial arrangement of gene expression in ventral neural progenitors. We further present arguments in favor of Sulf1 controlling Shh temporal activity by stimulating production of active forms of Shh from its source. Our work, by pointing out the key role of Sulf1 in regulating Shh-dependent neural cell diversity, highlights a novel level of regulation, which involves temporal evolution of Shh source properties.
Collapse
Affiliation(s)
- Amir Al Oustah
- University of Toulouse, Center for Developmental Biology, UMR 5547 CNRS, 118 Route de Narbonne, 31062 Toulouse, France
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Escobedo N, Contreras O, Muñoz R, Farías M, Carrasco H, Hill C, Tran U, Pryor SE, Wessely O, Copp AJ, Larraín J. Syndecan 4 interacts genetically with Vangl2 to regulate neural tube closure and planar cell polarity. Development 2013; 140:3008-17. [PMID: 23760952 PMCID: PMC3699283 DOI: 10.1242/dev.091173] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Syndecan 4 (Sdc4) is a cell-surface heparan sulfate proteoglycan (HSPG) that regulates gastrulation, neural tube closure and directed neural crest migration in Xenopus development. To determine whether Sdc4 participates in Wnt/PCP signaling during mouse development, we evaluated a possible interaction between a null mutation of Sdc4 and the loop-tail allele of Vangl2. Sdc4 is expressed in multiple tissues, but particularly in the non-neural ectoderm, hindgut and otic vesicles. Sdc4;Vangl2Lp compound mutant mice have defective spinal neural tube closure, disrupted orientation of the stereocilia bundles in the cochlea and delayed wound healing, demonstrating a strong genetic interaction. In Xenopus, co-injection of suboptimal amounts of Sdc4 and Vangl2 morpholinos resulted in a significantly greater proportion of embryos with defective neural tube closure than each individual morpholino alone. To probe the mechanism of this interaction, we overexpressed or knocked down Vangl2 function in HEK293 cells. The Sdc4 and Vangl2 proteins colocalize, and Vangl2, particularly the Vangl2Lp mutant form, diminishes Sdc4 protein levels. Conversely, Vangl2 knockdown enhances Sdc4 protein levels. Overall HSPG steady-state levels were regulated by Vangl2, suggesting a molecular mechanism for the genetic interaction in which Vangl2Lp/+ enhances the Sdc4-null phenotype. This could be mediated via heparan sulfate residues, as Vangl2Lp/+ embryos fail to initiate neural tube closure and develop craniorachischisis (usually seen only in Vangl2Lp/Lp) when cultured in the presence of chlorate, a sulfation inhibitor. These results demonstrate that Sdc4 can participate in the Wnt/PCP pathway, unveiling its importance during neural tube closure in mammalian embryos.
Collapse
Affiliation(s)
- Noelia Escobedo
- Center for Aging and Regeneration, Millennium Nucleus in Regenerative Biology, Faculty of Biological Sciences, P. Universidad Católica de Chile, Alameda 340 Santiago, Chile
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Sulfatase 1 promotes the motor neuron-to-oligodendrocyte fate switch by activating Shh signaling in Olig2 progenitors of the embryonic ventral spinal cord. J Neurosci 2013; 32:18018-34. [PMID: 23238718 DOI: 10.1523/jneurosci.3553-12.2012] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In the developing ventral spinal cord, motor neurons (MNs) and oligodendrocyte precursor cells (OPCs) are sequentially generated from a common pool of neural progenitors included in the so-called pMN domain characterized by Olig2 expression. Here, we establish that the secreted Sulfatase 1 (Sulf1) is a major component of the mechanism that causes these progenitors to stop producing MNs and change their fate to generate OPCs. We show that specification of OPCs is severely affected in sulf1-deficient mouse embryos. This defect does not rely on abnormal patterning of the spinal cord or failure in maintenance of pMN progenitors at the onset of OPC specification. Instead, the efficiency of OPC induction is reduced, only few Olig2 progenitors are recruited to generate OPCs, meanwhile they continue to produce MNs beyond the normal timing of the neuroglial switch. Using the chicken embryo, we show that Sulf1 activity is required precisely at the stage of the MN-to-OPC fate switch. Finally, we bring arguments supporting the view that Sulf1 controls the level of Sonic Hedgehog (Shh) signaling activity, behaving as an enhancer rather than an obligatory component in the Shh pathway. Our study provides additional insights into the temporal control of Olig2 progenitor cell fate change by the identification of Sulf1 as an extracellular timing signal in the ventral spinal cord.
Collapse
|
12
|
Heparan sulfate proteoglycans as multifunctional cell regulators: cell surface receptors. Methods Mol Biol 2012; 836:239-55. [PMID: 22252639 DOI: 10.1007/978-1-61779-498-8_16] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Proteoglycans are macromolecules expressed on the cell surfaces and in the extracellular matrix of most animal tissues (Annu Rev Biochem 68:729-777, 1999; Int Rev Cell Mol Biol 276:105-159, 2009). Heparan sulfate proteoglycans (HSPGs) are essential for animal development and homeostasis, and are involved in various pathological processes. The functions of HSPGs are largely exerted through interaction of the heparan sulfate (HS) side chains with different types of ligands, including diverse molecules such as cytokines, enzymes, and pathogens. One of the important roles of cell surface HSPGs is to mediate cytokine-induced cell signaling through interaction with growth factors (GFs) and their cognate receptors. A selective dependence of GFs for different structural features of HS has been demonstrated by applying cell models that are mutated variously in HS structure due to deficiency in enzymes involved in the biosynthesis of HS chains.
Collapse
|
13
|
Yoshikawa T, Mizuno A, Yasumuro H, Inami W, Vergara MN, Del Rio-Tsonis K, Chiba C. MEK-ERK and heparin-susceptible signaling pathways are involved in cell-cycle entry of the wound edge retinal pigment epithelium cells in the adult newt. Pigment Cell Melanoma Res 2011; 25:66-82. [PMID: 22026648 DOI: 10.1111/j.1755-148x.2011.00935.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The onset mechanism of proliferation in mitotically quiescent retinal pigment epithelium (RPE) cells is still obscure in humans and newts, although it can be a clinical target for manipulating both retinal diseases and regeneration. To address this issue, we investigated factors or signaling pathways involved in the first cell-cycle entry of RPE cells upon retinal injury using a newt retina-less eye-cup culture system in which the cells around the wound edge of the RPE exclusively enter the cell cycle. We found that MEK-ERK signaling is necessary for their cell-cycle entry, and signaling pathways whose activities can be modulated by heparin, such as Wnt-, Shh-, and thrombin-mediated pathways, are capable of regulating the cell-cycle entry. Furthermore, we found that the cells inside the RPE have low proliferation competence even in the presence of serum, suggesting inversely that a loss of cell-to-cell contact would allow the cells to enter the cell cycle.
Collapse
Affiliation(s)
- Taro Yoshikawa
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Ibaraki, Japan
| | | | | | | | | | | | | |
Collapse
|
14
|
Buresh RA, Kuslak SL, Rusch MA, Vezina CM, Selleck SB, Marker PC. Sulfatase 1 is an inhibitor of ductal morphogenesis with sexually dimorphic expression in the urogenital sinus. Endocrinology 2010; 151:3420-31. [PMID: 20410206 PMCID: PMC2903932 DOI: 10.1210/en.2009-1359] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The prostate gland develops from the urogenital sinus in response to circulating androgens. Androgens initiate and stimulate branching morphogenesis in the urogenital sinus via unknown mediators. Heparan sulfate proteoglycans are important extracellular molecules that sequester many growth factors in the extracellular matrix and facilitate signaling by some growth factors as part of ternary complexes that include growth factors, receptors, and heparan sulfate chains. Several enzymes modify the chemical structure of heparan sulfate to further regulate its activity. An examination of these enzymes for sexually dimorphic expression in the urogenital sinus identified Sulfatase 1 (Sulf1) as an enzyme that was down-regulated in the male urogenital sinus coincident with the initiation of prostatic morphogenesis. Down-regulation of Sulf1 was accompanied by an increase in the most highly sulfated forms of heparan sulfate, and a similar increase was observed in female urogenital sinuses treated with testosterone. Inhibiting de novo sulfation of heparan sulfate blocked prostatic morphogenesis, supporting the importance of heparan sulfate modification for prostate development. To functionally test the specific role of Sulf1 during prostate development, Sulf1 was ectopically expressed in the urogenital sinus. It partially inhibited testosterone-stimulated ductal morphogenesis, and it reduced the activation of fibroblast growth factor receptors as well as the ERK1 and ERK2 MAPKs. These data identify sulfatase 1 as an inhibitor of prostatic branching morphogenesis and growth factor signaling that is down-regulated as part of the normal response to androgen action in the male urogenital sinus.
Collapse
Affiliation(s)
- Rita A Buresh
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Wisconsin, 777 Highland Avenue, Madison, Wisconsin 53705, USA
| | | | | | | | | | | |
Collapse
|
15
|
Jen YHL, Musacchio M, Lander AD. Glypican-1 controls brain size through regulation of fibroblast growth factor signaling in early neurogenesis. Neural Dev 2009; 4:33. [PMID: 19732411 PMCID: PMC2746204 DOI: 10.1186/1749-8104-4-33] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2009] [Accepted: 09/04/2009] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Cell surface heparan sulfate proteoglycans (HSPGs) act as co-receptors for multiple families of growth factors that regulate animal cell proliferation, differentiation and patterning. Elimination of heparan sulfate during brain development is known to produce severe structural abnormalities. Here we investigate the developmental role played by one particular HSPG, glypican-1 (Gpc1), which is especially abundant on neuronal cell membranes, and is the major HSPG of the adult rodent brain. RESULTS Mice with a null mutation in Gpc1 were generated and found to be viable and fertile. The major phenotype associated with Gpc1 loss is a highly significant reduction in brain size, with only subtle effects on brain patterning (confined to the anterior cerebellum). The brain size difference emerges very early during neurogenesis (between embryonic days 8.5 and 9.5), and remains roughly constant throughout development and adulthood. By examining markers of different signaling pathways, and the differentiation behaviors of cells in the early embryonic brain, we infer that Gpc1(-/-) phenotypes most likely result from a transient reduction in fibroblast growth factor (FGF) signaling. Through the analysis of compound mutants, we provide strong evidence that Fgf17 is the FGF family member through which Gpc1 controls brain size. CONCLUSION These data add to a growing literature that implicates the glypican family of HSPGs in organ size control. They also argue that, among heparan sulfate-dependent signaling molecules, FGFs are disproportionately sensitive to loss of HSPGs. Finally, because heterozygous Gpc1 mutant mice were found to have brain sizes half-way between homozygous and wild type, the data imply that endogenous HSPG levels quantitatively control growth factor signaling, a finding that is both novel and relevant to the general question of how the activities of co-receptors are exploited during development.
Collapse
Affiliation(s)
- Yi-Huei Linda Jen
- Department of Developmental and Cell Biology, Developmental Biology Center and Center for Complex Biological Systems, University of California, Irvine, CA 92697-2300, USA.
| | | | | |
Collapse
|
16
|
|
17
|
Olivares GH, Carrasco H, Aroca F, Carvallo L, Segovia F, Larraín J. Syndecan-1 regulates BMP signaling and dorso-ventral patterning of the ectoderm during early Xenopus development. Dev Biol 2009; 329:338-49. [PMID: 19303002 DOI: 10.1016/j.ydbio.2009.03.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2008] [Revised: 03/06/2009] [Accepted: 03/06/2009] [Indexed: 10/21/2022]
Abstract
Extracellular regulation of growth factor signaling is a key event for embryonic patterning. Heparan sulfate proteoglycans (HSPG) are among the molecules that regulate this signaling during embryonic development. Here we study the function of syndecan1 (Syn1), a cell-surface HSPG expressed in the non-neural ectoderm during early development of Xenopus embryos. Overexpression of Xenopus Syn1 (xSyn1) mRNA is sufficient to reduce BMP signaling, induce chordin expression and rescue dorso-ventral patterning in ventralized embryos. Experiments using chordin morpholinos established that xSyn1 mRNA can inhibit BMP signaling in the absence of chordin. Knockdown of xSyn1 resulted in a reduction of BMP signaling and expansion of the neural plate with the concomitant reduction of the non-neural ectoderm. Overexpression of xSyn1 mRNA in xSyn1 morphant embryos resulted in a biphasic effect, with BMP being inhibited at high concentrations and activated at low concentrations of xSyn1. Interestingly, the function of xSyn1 on dorso-ventral patterning and BMP signaling is specific for this HSPG. In summary, we report that xSyn1 regulates dorso-ventral patterning of the ectoderm through modulation of BMP signaling.
Collapse
Affiliation(s)
- Gonzalo H Olivares
- Center for Aging and Regeneration, Center for Cell Regulation and Pathology, MIFAB, Faculty of Biological Sciences, P. Universidad Católica de Chile, Alameda 340, Santiago, Chile
| | | | | | | | | | | |
Collapse
|
18
|
A sonic hedgehog signaling domain in the arterial adventitia supports resident Sca1+ smooth muscle progenitor cells. Proc Natl Acad Sci U S A 2008; 105:9349-54. [PMID: 18591670 DOI: 10.1073/pnas.0711382105] [Citation(s) in RCA: 234] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We characterize a sonic hedgehog (Shh) signaling domain restricted to the adventitial layer of artery wall that supports resident Sca1-positive vascular progenitor cells (AdvSca1). Using patched-1 (Ptc1(lacZ)) and patched-2 (Ptc2(lacZ)) reporter mice, adventitial Shh signaling activity was first detected at embryonic day (E) 15.5, reached the highest levels between postnatal day 1 (P1) and P10, was diminished in adult vessels, and colocalized with a circumferential ring of Shh protein deposited between the media and adventitia. In Shh(-/-) mice, AdvSca1 cells normally found at the aortic root were either absent or greatly diminished in number. Using a Wnt1-cre lineage marker that identifies cells of neural crest origin, we found that neither the adventitia nor AdvSca1 cells were labeled in arteries composed of neural crest-derived smooth muscle cells (SMCs). Although AdvSca1 cells do not express SMC marker proteins in vivo, they do express transcription factors thought to be required for SMC differentiation, including serum response factor (SRF) and myocardin family members, and readily differentiate to SMC-like cells in vitro. However, AdvSca1 cells also express potent repressors of SRF-dependent transcription, including Klf4, Msx1, and FoxO4, which may be critical for maintenance of the SMC progenitor phenotype of AdvSca1 cells in vivo. We conclude that a restricted domain of Shh signaling is localized to the arterial adventitia and may play important roles in maintenance of resident vascular SMC progenitor cells in the artery wall.
Collapse
|
19
|
Pallerla SR, Lawrence R, Lewejohann L, Pan Y, Fischer T, Schlomann U, Zhang X, Esko JD, Grobe K. Altered heparan sulfate structure in mice with deleted NDST3 gene function. J Biol Chem 2008; 283:16885-94. [PMID: 18385133 DOI: 10.1074/jbc.m709774200] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We report the generation and analysis of mutant mice bearing a targeted disruption of the heparan sulfate (HS)-modifying enzyme GlcNAc N-deacetylase/N-sulfotransferase 3 (NDST3). NDST3(-/-) mice develop normally, are fertile, and show only subtle hematological and behavioral abnormalities in agreement with only moderate HS undersulfation. Compound mutant mice made deficient in NDST2;NDST3 activities also develop normally, showing that both isoforms are not essential for development. In contrast, NDST1(-/-);NDST3(-/-) compound mutant embryos display developmental defects caused by severe HS undersulfation, demonstrating NDST3 contribution to HS synthesis in the absence of NDST1. Moreover, analysis of HS composition in dissected NDST3 mutant adult brain revealed regional changes in HS sulfation, indicating restricted NDST3 activity on nascent HS in defined wild-type tissues. Taken together, we show that NDST3 function is not essential for development or adult homeostasis despite contributing to HS synthesis in a region-specific manner and that the loss of NDST3 function is compensated for by the other NDST isoforms to a varying degree.
Collapse
Affiliation(s)
- Srinivas R Pallerla
- Department of General Zoology and Genetics, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Recent progress in the study of Hedgehog signaling. J Genet Genomics 2008; 35:129-37. [DOI: 10.1016/s1673-8527(08)60019-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2007] [Revised: 11/20/2007] [Accepted: 11/21/2007] [Indexed: 12/30/2022]
|
21
|
Abstract
Members of the Hedgehog (Hh) family of proteins are conserved morphogens that spread and modulate cell fates in target tissue. Mature Hh carries two lipid adducts, a palmitoyl group at the N terminus and cholesterol at the C terminus. Recent findings have addressed how these lipid modifications affect the function and transport of Hh in Drosophila. In contrast to the palmitoyl adduct, cholesterol appears not to be essential for signalling. However, the absence of the cholesterol adduct affects the spread of Hh within tissues. As we discuss here, the exact nature of this effect is controversial.
Collapse
Affiliation(s)
- Franz Wendler
- MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK
| | | | | |
Collapse
|
22
|
McLellan JS, Yao S, Zheng X, Geisbrecht BV, Ghirlando R, Beachy PA, Leahy DJ. Structure of a heparin-dependent complex of Hedgehog and Ihog. Proc Natl Acad Sci U S A 2006; 103:17208-13. [PMID: 17077139 PMCID: PMC1859911 DOI: 10.1073/pnas.0606738103] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Hedgehog (Hh) signaling molecules mediate key tissue-patterning events during animal development, and inappropriate activation of Hh signaling in adults has been associated with human cancers. Recently, a conserved family of type I integral membrane proteins required for normal response to the Hh signal was discovered. One member of this family, Ihog (interference hedgehog), functions upstream or at the level of Patched (Ptc), but how Ihog participates in Hh signaling remains unclear. Here, we show that heparin binding induces Ihog dimerization and is required to mediate high-affinity interactions between Ihog and Hh. We also present crystal structures of a Hh-binding fragment of Ihog, both alone and complexed with Hh. Heparin is not well ordered in these structures, but a basic cleft in the first FNIII domain of Ihog (IhogFn1) is shown by mutagenesis to mediate heparin binding. These results establish that Hh directly binds Ihog and provide the first demonstration of a specific role for heparin in Hh responsiveness.
Collapse
Affiliation(s)
| | - Shenqin Yao
- Molecular Biology and Genetics and
- the Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205; and
| | - Xiaoyan Zheng
- Molecular Biology and Genetics and
- the Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205; and
| | | | - Rodolfo Ghirlando
- the Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205; and
| | - Philip A. Beachy
- Molecular Biology and Genetics and
- the Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205; and
| | - Daniel J. Leahy
- Departments of *Biophysics and Biophysical Chemistry and
- To whom correspondence should be addressed at:
Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, MD 21205. E-mail:
| |
Collapse
|