1
|
Gayan S, Teli A, Sonawane A, Dey T. Impact of Chemotherapeutic Stress Depends on The Nature of Breast Cancer Spheroid and Induce Behavioral Plasticity to Resistant Population. Adv Biol (Weinh) 2024; 8:e2300271. [PMID: 38063815 DOI: 10.1002/adbi.202300271] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 11/20/2023] [Indexed: 04/15/2024]
Abstract
Cellular or tumor dormancy, identified recently as one of the main reasons behind post-therapy recurrence, can be caused by diverse reasons. Chemotherapy has recently been recognized as one of such reasons. However, in-depth studies of chemotherapy-induced dormancy are lacking due to the absence of an in vitro human-relevant model tailor-made for such a scenario. This report utilized multicellular breast cancer spheroid to create a primary platform for establishing a chemotherapy-induced dormancy model. It is observed that extreme chemotherapeutic stress affects invasive and non-invasive spheroids differently. Non-invasive spheroids exhibit more resilience and maintain viability and migrational ability, while invasive spheroids display heightened susceptibility and improved tumorigenic capacity. Heterogenous spheroids exhibit increased tumorigenic capacity while show minimal survival ability. Further probing of chemotherapeutically dormant spheroids is needed to understand the molecular mechanism and identify dormancy-related markers to achieve therapeutic success in the future.
Collapse
Affiliation(s)
- Sukanya Gayan
- Department of Biotechnology (merged with Institute of Bioinformatics and Biotechnology), Savitribai Phule Pune University, Pune, 411007, India
| | - Abhishek Teli
- Department of Biotechnology (merged with Institute of Bioinformatics and Biotechnology), Savitribai Phule Pune University, Pune, 411007, India
| | - Akshay Sonawane
- Department of Biotechnology (merged with Institute of Bioinformatics and Biotechnology), Savitribai Phule Pune University, Pune, 411007, India
| | - Tuli Dey
- Department of Biotechnology (merged with Institute of Bioinformatics and Biotechnology), Savitribai Phule Pune University, Pune, 411007, India
| |
Collapse
|
2
|
Panzarini E, Vergallo C, Fanizzi FP, Mariano S, Tata AM, Dini L. The dialogue between died and viable cells: in vitro and in vivo bystander effects and 1H-NMR-based metabolic profiling of soluble factors. PURE APPL CHEM 2019. [DOI: 10.1515/pac-2018-1226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
The bystander effect (BE) is an important biological phenomenon that induces damages in distant and not directly affected by a chemical/physical stress cells. This effect, well known in ionizing radiation treatment, relies on reactive signals released by exposed cells and transmitted via cell–cell interaction or culture medium. In this study, cycloheximide (CHX)-induced apoptotic U937 cells and untreated THP-1 cells were chosen to investigate the chemical-induced BE. The effects of apoptotic U937 cells culture medium, Conditioned Medium (CM), on THP-1 cells were evaluated by morphological and immunohistochemical analysis performed by light microscopy; 1D 1H and 2D J-resolved (JRES) NMR metabolomic analysis has been used to characterize the molecules involved in the BE. In summary, this study indicates that: CM of CHX-treated U937 cells induces a time-dependent induction of toxicity, probably apoptotic cell death, and macrophagic differentiation in THP-1 cells; CM contains different metabolites respect fresh culture medium; CM recruits in vivo activated fibroblasts, endothelial cells, macrophages and mononuclear inflammatory cells in rat calf muscles. These data suggest that CHX exposed cells could cause BE through the release, during the apoptotic process, of soluble factors into the medium that could be exploited in anticancer protocols.
Collapse
Affiliation(s)
- Elisa Panzarini
- Department of Biological and Environmental Sciences and Technologies (Di.S.Te.B.A.) , University of Salento , Lecce , Italy
| | - Cristian Vergallo
- Department of Pharmacy , University of Chieti-Pescara “G. D’Annunzio” , Chieti , Italy
| | - Francesco Paolo Fanizzi
- Department of Biological and Environmental Sciences and Technologies (Di.S.Te.B.A.) , University of Salento , Lecce , Italy
| | - Stefania Mariano
- Department of Biological and Environmental Sciences and Technologies (Di.S.Te.B.A.) , University of Salento , Lecce , Italy
| | - Ada Maria Tata
- Department of Biology and Biotechnology “C. Darwin” , Sapienza University of Rome , Rome , Italy
| | - Luciana Dini
- Department of Biology and Biotechnology “C. Darwin” , Sapienza University of Rome , Rome , Italy
- CNR-Nanotec , Lecce , Italy
| |
Collapse
|
3
|
Chen XX, Leung GPH, Zhang ZJ, Xiao JB, Lao LX, Feng F, Mak JCW, Wang Y, Sze SCW, Zhang KYB. Proanthocyanidins from Uncaria rhynchophylla induced apoptosis in MDA-MB-231 breast cancer cells while enhancing cytotoxic effects of 5-fluorouracil. Food Chem Toxicol 2017; 107:248-260. [PMID: 28689063 DOI: 10.1016/j.fct.2017.07.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 06/29/2017] [Accepted: 07/04/2017] [Indexed: 02/08/2023]
|
4
|
Significance and nature of bystander responses induced by various agents. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2017; 773:104-121. [DOI: 10.1016/j.mrrev.2017.05.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 05/05/2017] [Indexed: 02/07/2023]
|
5
|
Singh S, Chouhan S, Mohammad N, Bhat MK. Resistin causes G1 arrest in colon cancer cells through upregulation of SOCS3. FEBS Lett 2017; 591:1371-1382. [PMID: 28417458 DOI: 10.1002/1873-3468.12655] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 03/17/2017] [Accepted: 04/10/2017] [Indexed: 12/18/2022]
Abstract
Resistin, a proinflammatory cytokine, is elevated in a number of pathological disorders, including cancer. The serum resistin level in colon cancer patients is elevated and correlates with tumor grade. However, the implications of increased resistin on colon cancer cells remain unclear. In the present study, we find that resistin binds to TLR4 on colon cancer cell membrane and initiates TLR4-MyD88-dependent activation of ERK. In addition, the upregulation of SOCS3 by ERK downregulates the JAK2/TAT3 pathway and causes the arrest of cells in G1 phase. Interestingly, we observe that resistin-exposed cells survive 5-fluorouracil treatment because of a decrease in drug uptake due to the arrest of cells in G1 phase.
Collapse
|
6
|
Kumari R, Chouhan S, Singh S, Chhipa RR, Ajay AK, Bhat MK. Constitutively activated ERK sensitizes cancer cells to doxorubicin: Involvement of p53-EGFR-ERK pathway. J Biosci 2017; 42:31-41. [PMID: 28229963 DOI: 10.1007/s12038-017-9667-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The tumour suppressor gene p53 is mutated in approximately 50% of the human cancers. p53 is involved in genotoxic stress-induced cellular responses. The role of EGFR and ERK in DNA-damage-induced apoptosis is well known. We investigated the involvement of activation of ERK signalling as a consequence of non-functional p53, in sensitivity of cells to doxorubicin. We performed cell survival assays in cancer cell lines with varying p53 status: MCF-7 (wild-type p53, WTp53), MDA MB-468 (mutant p53, MUTp53), H1299 (absence of p53, NULLp53) and an isogenic cell line MCF-7As (WTp53 abrogated). Our results indicate that enhanced chemosensitivity of cells lacking wild-type p53 function is because of elevated levels of EGFR which activates ERK. Additionally, we noted that independent of p53 status, pERK contributes to doxorubicin-induced cell death.
Collapse
Affiliation(s)
- Ratna Kumari
- National Centre for Cell Science, Savitribai Phule Pune University Campus, Ganeshkhind, Pune 411 007, India
| | | | | | | | | | | |
Collapse
|
7
|
Patel MS, Shah HS, Shrivastava N. c-Myc-Dependent Cell Competition in Human Cancer Cells. J Cell Biochem 2017; 118:1782-1791. [DOI: 10.1002/jcb.25846] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 12/15/2016] [Indexed: 12/15/2022]
Affiliation(s)
- Manish S. Patel
- Department of Biotechnology; National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad; Thaltej Ahmedabad 380054 Gujarat India
| | - Heta S. Shah
- Department of Biotechnology; National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad; Thaltej Ahmedabad 380054 Gujarat India
| | - Neeta Shrivastava
- Department of Biotechnology; National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad; Thaltej Ahmedabad 380054 Gujarat India
- Department of Pharmacognosy and Phytochemistry; B. V. Patel Pharmaceutical Education and Research Development (PERD) Centre; Thaltej Ahmedabad 380054 Gujarat India
| |
Collapse
|
8
|
Singh SV, Ajay AK, Mohammad N, Malvi P, Chaube B, Meena AS, Bhat MK. Proteasomal inhibition sensitizes cervical cancer cells to mitomycin C-induced bystander effect: the role of tumor microenvironment. Cell Death Dis 2015; 6:e1934. [PMID: 26492368 PMCID: PMC4632313 DOI: 10.1038/cddis.2015.292] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2015] [Revised: 08/28/2015] [Accepted: 09/01/2015] [Indexed: 11/23/2022]
Abstract
Inaccessibility of drugs to poorly vascularized strata of tumor is one of the limiting factors in cancer therapy. With the advent of bystander effect (BE), it is possible to perpetuate the cellular damage from drug-exposed cells to the unexposed ones. However, the role of infiltrating tumor-associated macrophages (TAMs), an integral part of the tumor microenvironment, in further intensifying BE remains obscure. In the present study, we evaluated the effect of mitomycin C (MMC), a chemotherapeutic drug, to induce BE in cervical carcinoma. By using cervical cancer cells and differentiated macrophages, we demonstrate that MMC induces the expression of FasL via upregulation of PPARγ in both cell types (effector cells) in vitro, but it failed to induce bystander killing in cervical cancer cells. This effect was primarily owing to the proteasomal degradation of death receptors in the cervical cancer cells. Pre-treatment of cervical cancer cells with MG132, a proteasomal inhibitor, facilitates MMC-mediated bystander killing in co-culture and condition medium transfer experiments. In NOD/SCID mice bearing xenografted HeLa tumors administered with the combination of MMC and MG132, tumor progression was significantly reduced in comparison with those treated with either agent alone. FasL expression was increased in TAMs, and the enhanced level of Fas was observed in these tumor sections, thereby causing increased apoptosis. These findings suggest that restoration of death receptor-mediated apoptotic pathway in tumor cells with concomitant activation of TAMs could effectively restrict tumor growth.
Collapse
Affiliation(s)
- S V Singh
- National Centre for Cell Science, Savitribai Phule Pune University Campus, Ganeshkhind, Pune 411007, India
| | - A K Ajay
- National Centre for Cell Science, Savitribai Phule Pune University Campus, Ganeshkhind, Pune 411007, India
| | - N Mohammad
- National Centre for Cell Science, Savitribai Phule Pune University Campus, Ganeshkhind, Pune 411007, India
| | - P Malvi
- National Centre for Cell Science, Savitribai Phule Pune University Campus, Ganeshkhind, Pune 411007, India
| | - B Chaube
- National Centre for Cell Science, Savitribai Phule Pune University Campus, Ganeshkhind, Pune 411007, India
| | - A S Meena
- National Centre for Cell Science, Savitribai Phule Pune University Campus, Ganeshkhind, Pune 411007, India
| | - M K Bhat
- National Centre for Cell Science, Savitribai Phule Pune University Campus, Ganeshkhind, Pune 411007, India
| |
Collapse
|
9
|
Hu C, Chen Z, Zhao W, Wei L, Zheng Y, He C, Zeng Y, Yin B. Vesicular Stomatitis Virus G Glycoprotein and ATRA Enhanced Bystander Killing of Chemoresistant Leukemic Cells by Herpes Simplex Virus Thymidine Kinase/Ganciclovir. Biomol Ther (Seoul) 2014; 22:114-21. [PMID: 24753816 PMCID: PMC3975477 DOI: 10.4062/biomolther.2013.112] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Revised: 02/28/2014] [Accepted: 03/04/2014] [Indexed: 11/05/2022] Open
Abstract
Refractoriness of acute myeloid leukemia (AML) cells to chemotherapeutics represents a major clinical barrier. Suicide gene therapy for cancer has been attractive but with limited clinical efficacy. In this study, we investigated the potential application of herpes simplex virus thymidine kinase/ganciclovir (HSV-TK/GCV) based system to inhibit chemoresistant AML cells. We first generated Ara-C resistant K562 cells and doxorubicin-resistant THP-1 cells. We found that the HSV-TK/GCV anticancer system suppressed drug resistant leukemic cells in culture. Chemoresistant AML cell lines displayed similar sensitivity to HSV-TK/GCV. Moreover, HSV-TK/GCV killing of leukemic cells was augmented to a mild but significant extent by all-trans retinoic acid (ATRA) with concomitant upregulation of Connexin 43, a major component of gap junctions. Interestingly, HSV-TK/GCV killing was enhanced by expression of vesicular stomatitis virus G glycoprotein (VSV-G), a fusogenic membrane protein, which also increased leukemic cell fusion. Co-culture resistant cells expressing HSV-TK and cells stably transduced with VSV-G showed that expression of VSV-G could promote the bystander killing effect of HSV-TK/GCV. Furthermore, combination of HSV-TK/GCV with VSV-G plus ATRA produced more pronounced antileukemia effect. These results suggest that the HSV-TK/GCV system in combination with fusogenic membrane proteins and/or ATRA could provide a strategy to mitigate the chemoresistance of AML.
Collapse
Affiliation(s)
- Chenxi Hu
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, the First Affiliated Hospital, Soochow University, Suzhou, Jiangsu province, 215123, PR China
| | - Zheng Chen
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, the First Affiliated Hospital, Soochow University, Suzhou, Jiangsu province, 215123, PR China
| | - Wenjun Zhao
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, the First Affiliated Hospital, Soochow University, Suzhou, Jiangsu province, 215123, PR China
| | - Lirong Wei
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, the First Affiliated Hospital, Soochow University, Suzhou, Jiangsu province, 215123, PR China
| | - Yanwen Zheng
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, the First Affiliated Hospital, Soochow University, Suzhou, Jiangsu province, 215123, PR China
| | - Chao He
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, the First Affiliated Hospital, Soochow University, Suzhou, Jiangsu province, 215123, PR China
| | - Yan Zeng
- Department of Pharmacology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Bin Yin
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, the First Affiliated Hospital, Soochow University, Suzhou, Jiangsu province, 215123, PR China ; Thrombosis and Hemostasis Key Lab of the Ministry of Health, Soochow University, Suzhou, Jiangsu Province, 215006, PR China
| |
Collapse
|
10
|
Miyazaki M, Nishihara H, Terasaka S, Kobayashi H, Yamaguchi S, Ito T, Kamoshima Y, Fujimoto S, Kaneko S, Katoh M, Ishii N, Mohri H, Tanino M, Kimura T, Tanaka S. Immunohistochemical evaluation of O6-methylguanine DNA methyltransferase (MGMT) expression in 117 cases of glioblastoma. Neuropathology 2014; 34:268-76. [DOI: 10.1111/neup.12091] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2013] [Revised: 11/25/2013] [Accepted: 11/26/2013] [Indexed: 10/25/2022]
Affiliation(s)
- Masaya Miyazaki
- Department of Cancer Pathology; Hokkaido University Graduate School of Medicine; Sapporo Japan
| | - Hiroshi Nishihara
- Department of Translational Pathology; Hokkaido University Graduate School of Medicine; Sapporo Japan
- Laboratory of Oncology; Hokuto Hospital; Obihiro Japan
| | - Shunsuke Terasaka
- Department of Neurosurgery; Hokkaido University Graduate School of Medicine; Sapporo Japan
| | - Hiroyuki Kobayashi
- Department of Neurosurgery; Hokkaido University Graduate School of Medicine; Sapporo Japan
| | - Shigeru Yamaguchi
- Department of Neurosurgery; Hokkaido University Graduate School of Medicine; Sapporo Japan
| | - Tamio Ito
- Nakamura Memorial Hospital; Sapporo Japan
| | | | | | | | | | | | - Hiromi Mohri
- Laboratory of Oncology; Hokuto Hospital; Obihiro Japan
| | - Mishie Tanino
- Department of Cancer Pathology; Hokkaido University Graduate School of Medicine; Sapporo Japan
| | - Taichi Kimura
- Department of Cancer Pathology; Hokkaido University Graduate School of Medicine; Sapporo Japan
| | - Shinya Tanaka
- Department of Cancer Pathology; Hokkaido University Graduate School of Medicine; Sapporo Japan
- Department of Translational Pathology; Hokkaido University Graduate School of Medicine; Sapporo Japan
| |
Collapse
|
11
|
Bhola NE, Balko JM, Dugger TC, Kuba MG, Sánchez V, Sanders M, Stanford J, Cook RS, Arteaga CL. TGF-β inhibition enhances chemotherapy action against triple-negative breast cancer. J Clin Invest 2013; 123:1348-58. [PMID: 23391723 DOI: 10.1172/jci65416] [Citation(s) in RCA: 446] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Accepted: 12/13/2012] [Indexed: 12/20/2022] Open
Abstract
After an initial response to chemotherapy, many patients with triple-negative breast cancer (TNBC) have recurrence of drug-resistant metastatic disease. Studies with TNBC cells suggest that chemotherapy-resistant populations of cancer stem-like cells (CSCs) with self-renewing and tumor-initiating capacities are responsible for these relapses. TGF-β has been shown to increase stem-like properties in human breast cancer cells. We analyzed RNA expression in matched pairs of primary breast cancer biopsies before and after chemotherapy. Biopsies after chemotherapy displayed increased RNA transcripts of genes associated with CSCs and TGF-β signaling. In TNBC cell lines and mouse xenografts, the chemotherapeutic drug paclitaxel increased autocrine TGF-β signaling and IL-8 expression and enriched for CSCs, as indicated by mammosphere formation and CSC markers. The TGF-β type I receptor kinase inhibitor LY2157299, a neutralizing TGF-β type II receptor antibody, and SMAD4 siRNA all blocked paclitaxel-induced IL8 transcription and CSC expansion. Moreover, treatment of TNBC xenografts with LY2157299 prevented reestablishment of tumors after paclitaxel treatment. These data suggest that chemotherapy-induced TGF-β signaling enhances tumor recurrence through IL-8-dependent expansion of CSCs and that TGF-β pathway inhibitors prevent the development of drug-resistant CSCs. These findings support testing a combination of TGF-β inhibitors and anticancer chemotherapy in patients with TNBC.
Collapse
Affiliation(s)
- Neil E Bhola
- Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, Tennessee, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Inhibition of GSH synthesis potentiates temozolomide-induced bystander effect in glioblastoma. Cancer Lett 2012; 331:68-75. [PMID: 23246370 DOI: 10.1016/j.canlet.2012.12.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Revised: 12/04/2012] [Accepted: 12/04/2012] [Indexed: 11/23/2022]
Abstract
Glioblastoma multiforme (GBM) is one of the most aggressive human tumors with poor prognosis. Current standard treatment includes chemotherapy using DNA alkylating agent temozolomide (TMZ) concomitant with surgical resection and/or irradiation. However, GBM patients exhibit various levels of the elevated expression of DNA repair enzyme, due to MGMT causing resistance to TMZ. Determination of the MGMT-positive population of primary tumor is important to evaluate the therapeutic efficacy of TMZ. Here we generated TMZ-resistant GBM cells by introducing MGMT into TMZ-sensitive GBM cell line KMG4, and established a model to assess the TMZ-induced bystander effect on TMZ-resistant cells. By mixing TMZ-resistant and -sensitive cells, GBM tumors with MGMT positivity as 50%, 10%, and 1% were generated in vivo. We could not observe any bystander effect of TMZ-induced cell death in tumor with 50% MGMT positivity. Although the bystander effect was observed within 20 days in the case of tumor with 1% MGMT positivity, final tumor size at day 28 was the same as control without sensitive cells. This bystander effect was observed in vitro using conditioned medium of TMZ-damaged GBM cells, and PCR array analysis indicated that the conditioned medium stimulated stress and toxicity pathway and upregulated anti-oxidants genes expression such as catalase and SOD2 in TMZ-resistant cells. In addition, the reduction of the activity of anti-stress mechanism by using inhibitor of GSH synthesis potentiated TMZ-induced bystander effect. These results suggest that GSH inhibitor might be one of the candidates for combination therapy with TMZ for TMZ-resistant GBM patients.
Collapse
|
13
|
The serum miR-21 level serves as a predictor for the chemosensitivity of advanced pancreatic cancer, and miR-21 expression confers chemoresistance by targeting FasL. Mol Oncol 2012. [PMID: 23177026 DOI: 10.1016/j.molonc.2012.10.011] [Citation(s) in RCA: 156] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
miR-21 expression in cancer tissue has been reported to be associated with the clinical outcome and activity of gemcitabine in pancreatic cancer. However, resection is possible in only a minority of patients due to the advanced stages often present at the time of diagnosis, and safely obtaining sufficient quantities of pancreatic tumor tissue for molecular analysis is difficult at the unresectable stages. In this study, we investigated whether the serum level of miR-21 could be used as a predictor of chemosensitivity. We tested the levels of serum miR-21 in a cohort of 177 cases of advanced pancreatic cancer who received gemcitabine-based palliative chemotherapy. We found that a high level of miR-21 in the serum was significantly correlated with a shortened time-to-progression (TTP) and a lower overall survival (OS). The serum miR-21 level was an independent prognostic factor for both the TTP and the OS (HR 1.920; 95% CI, 1.274-2.903, p = 0.002 for TTP and HR 1.705; 95% CI, 1.147-2.535, p = 0.008 for OS). The results from a functional study showed that gemcitabine exposure down-regulated miR-21 expression and up-regulated FasL expression. The increased FasL expression following gemcitabine treatment induced cancer cell apoptosis, whereas the ectopic expression of miR-21 partially protected the cancer cells from gemcitabine-induced apoptosis. Additionally, we confirmed that FasL was a direct target of miR-21. Therefore, the serum level of miR-21 may serve as a predictor of chemosensitivity in advanced pancreatic cancer. Additionally, we identified a new mechanism of chemoresistance mediated by the effects of miR-21 on the FasL/Fas pathway.
Collapse
|
14
|
Rios-Mondragon I, Wang X, Gerdes HH. Spatio-temporal analysis of tamoxifen-induced bystander effects in breast cancer cells using microfluidics. BIOMICROFLUIDICS 2012; 6:24128-241289. [PMID: 23750189 PMCID: PMC3382340 DOI: 10.1063/1.4726349] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2012] [Accepted: 05/21/2012] [Indexed: 06/01/2023]
Abstract
The bystander effect in cancer therapy is the inhibition or killing of tumor cells that are adjacent to those directly affected by the agent used for treatment. In the case of chemotherapy, little is known as to how much and by which mechanisms bystander effects contribute to the elimination of tumor cells. This is mainly due to the difficulty to distinguish between targeted and bystander cells since both are exposed to the pharmaceutical compound. We here studied the interaction of tamoxifen-treated human breast cancer MCF-7 cells with their neighboring counterparts by exploiting laminar flow patterning in a microfluidic chip to ensure selective drug delivery. The spatio-temporal evolution of the bystander response in non-targeted cells was analyzed by measuring the mitochondrial membrane potential under conditions of free diffusion. Our data show that the bystander response is detectable as early as 1 hour after drug treatment and reached effective distances of at least 2.8 mm. Furthermore, the bystander effect was merely dependent on diffusible factors rather than cell contact-dependent signaling. Taken together, our study illustrates that this microfluidic approach is a promising tool for screening and optimization of putative chemotherapeutic drugs to maximize the bystander response in cancer therapy.
Collapse
Affiliation(s)
- Ivan Rios-Mondragon
- Department of Biomedicine, University of Bergen, Jonas Lies vei 91, N-5009 Bergen, Norway
| | | | | |
Collapse
|
15
|
Andre B, Duterme C, Van Moer K, Mertens-Strijthagen J, Jadot M, Flamion B. Hyal2 is a glycosylphosphatidylinositol-anchored, lipid raft-associated hyaluronidase. Biochem Biophys Res Commun 2011; 411:175-9. [PMID: 21740893 DOI: 10.1016/j.bbrc.2011.06.125] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Accepted: 06/18/2011] [Indexed: 12/11/2022]
Abstract
The rapid turnover rate of hyaluronan (HA), the major unbranched glycosaminoglycan of the extracellular matrix, is dependent on hyaluronidases. One of them, hyaluronidase-2 (Hyal2), degrades HA into smaller fragments endowed with specific biological activities such as inflammation and angiogenesis. Yet the cellular environment of Hyal2, a purported glycosylphosphatidylinositol (GPI)-anchored protein, remains uncertain. We have examined the membrane association of Hyal2 in MDA-MB231 cancer cells where it is highly expressed and in COS-7 cells transfected with native or fluorescent Hyal2 constructs. In both cell types, Hyal2 was strongly associated with cell membrane fractions from which it could be extracted using a Triton X-114 treatment (hydrophobic phase) but not an osmotic shock or an alkaline carbonate solution. Treatment of membrane preparations with phosphatidylinositol-specific phospholipase C released immunoreactive Hyal2 into the aqueous phase, confirming the protein is attached to the membrane through a functional GPI anchor. Hyal2 transfected in COS-7 cells was associated with detergent-resistant, cholesterol-rich membranes known as lipid rafts. The cellular immunofluorescent pattern of Hyal2 was conditioned by the presence of a GPI anchor. In summary, the strong membrane association of Hyal2 through its GPI anchor demonstrated in this study using biochemical methods suggests that the main activity of this enzyme is located at the level of the plasma membrane in close contact with the pericellular HA-rich glycocalyx, the extracellular matrix, or possibly endocytic vesicles.
Collapse
Affiliation(s)
- Benedicte Andre
- Molecular Physiology Research Unit, NARILIS, University of Namur, 61 rue de Bruxelles, 5000 Namur, Belgium.
| | | | | | | | | | | |
Collapse
|
16
|
Glorieux C, Dejeans N, Sid B, Beck R, Calderon PB, Verrax J. Catalase overexpression in mammary cancer cells leads to a less aggressive phenotype and an altered response to chemotherapy. Biochem Pharmacol 2011; 82:1384-90. [PMID: 21689642 DOI: 10.1016/j.bcp.2011.06.007] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Revised: 06/01/2011] [Accepted: 06/02/2011] [Indexed: 02/05/2023]
Abstract
Because reactive oxygen species (ROS) are naturally produced as a consequence of aerobic metabolism, cells have developed a sophisticated set of antioxidant molecules to prevent the toxic accumulation of these species. However, compared with normal cells, malignant cells often exhibit increased levels of intracellular ROS and altered levels of antioxidant molecules. The resulting endogenous oxidative stress favors tumor growth by promoting genetic instability, cell proliferation and angiogenesis. In this context, we assessed the influence of catalase overexpression on the sensitivity of breast cancer cells towards various anticancer treatments. Our data show that catalase overexpression in MCF-7 cells leads to a 7-fold increase in catalase activity but provokes a 40% decrease in the expression of both glutathione peroxidase and peroxiredoxin II. Interestingly, proliferation and migration capacities of MCF-7 cells were impaired by the overexpression of catalase, as compared to parental cells. Regarding their sensitivity to anticancer treatments, we observed that cells overexpressing catalase were more sensitive to paclitaxel, etoposide and arsenic trioxide. However, no effect was observed on the cytotoxic response to ionizing radiations, 5-fluorouracil, cisplatin or doxorubicin. Finally, we observed that catalase overexpression protects cancer cells against the pro-oxidant combination of ascorbate and menadione, suggesting that changes in the expression of antioxidant enzymes could be a mechanism of resistance of cancer cells towards redox-based chemotherapeutic drugs.
Collapse
Affiliation(s)
- Christophe Glorieux
- Université Catholique de Louvain, Louvain Drug Research Institute, Toxicology and Cancer Biology Research Group, Belgium
| | | | | | | | | | | |
Collapse
|
17
|
Thomas-Schoemann A, Lemare F, Mongaret C, Bermudez E, Chéreau C, Nicco C, Dauphin A, Weill B, Goldwasser F, Batteux F, Alexandre J. Bystander effect of vinorelbine alters antitumor immune response. Int J Cancer 2011; 129:1511-8. [DOI: 10.1002/ijc.25813] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2010] [Accepted: 11/09/2010] [Indexed: 11/06/2022]
|
18
|
He M, Zhao M, Shen B, Prise KM, Shao C. Radiation-induced intercellular signaling mediated by cytochrome-c via a p53-dependent pathway in hepatoma cells. Oncogene 2010; 30:1947-55. [PMID: 21132005 DOI: 10.1038/onc.2010.567] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The tumor suppressor p53 has a crucial role in cellular response to DNA damage caused by ionizing radiation, but it is still unclear whether p53 can modulate radiation-induced bystander effects (RIBE). In the present work, three different hepatoma cell lines, namely HepG2 (wild p53), PLC/PRF/5 (mutation p53) and Hep3B (p53 null), were irradiated with γ-rays and then co-cultured with normal Chang liver cell (wild p53) in order to elucidate the mechanisms of RIBE. Results showed that the radiosensitivity of HepG2 cells was higher than that of PLC/PRF/5 and Hep3B cells. Only irradiated HepG2 cells, rather than irradiated PLC/PRF/5 or Hep3B cells, could induce bystander effect of micronuclei (MN) formation in the neighboring Chang liver cells. When HepG2 cells were treated with 20 μM pifithrin-α, an inhibitor of p53 function, or 5 μM cyclosporin A (CsA), an inhibitor of cytochrome-c release from mitochondria, the MN induction in bystander Chang liver cells was diminished. In fact, it was found that after irradiation, cytochrome-c was released from mitochondria into the cytoplasm only in HepG2 cells in a p53-dependent manner, but not in PLC/PRF/5 and Hep3B cells. Interestingly, when 50 μg/ml exogenous cytochrome-c was added into cell co-culture medium, RIBE was significantly triggered by irradiated PLC/PRF/5 and Hep3B cells, which previously failed to provoke a bystander effect. In addition, this exogenous cytochrome-c also partly recovered the RIBE induced by irradiated HepG2 cells even with CsA treatment. Our results provide new evidence that the RIBE can be modulated by the p53 status of irradiated hepatoma cells and that a p53-dependent release of cytochrome-c may be involved in the RIBE.
Collapse
Affiliation(s)
- M He
- Institute of Radiation Medicine, Fudan University, Shanghai, China
| | | | | | | | | |
Collapse
|
19
|
Sharma A, Meena AS, Bhat MK. Hyperthermia-associated carboplatin resistance: differential role of p53, HSF1 and Hsp70 in hepatoma cells. Cancer Sci 2010; 101:1186-93. [PMID: 20180806 PMCID: PMC11159963 DOI: 10.1111/j.1349-7006.2010.01516.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Due to substantial technical improvements, clinical application of heat as a co-adjuvant in cancer treatment is acquiring new interest. The effect of hyperthermia on hepatoma cell lines Hep3B (p53 defective) and HepG2 (p53 wild type) when investigated led to an interesting observation that Hep3B cells are more susceptible to heat stress than HepG2 cells. In addition, heat-induced carboplatin resistance was observed in HepG2 cells only. To investigate the reasons, heat shock response was explored and it was observed that heat stress augmented heat shock protein 70 (Hsp70) expression levels in HepG2 and not in Hep3B cells. Furthermore, in HepG2 cells, induced Hsp70 is regulated by both p53 and heat shock transcription factor 1 (HSF1) wherein HSF1 levels are modulated by p53. The data implies that Hep3B are more susceptible to death upon heat stress than HepG2 cells because of non-induction of Hsp70. In addition, it was observed that inhibition of heat-induced p53/HSF1 diminishes Hsp70 levels, thereby restoring the sensitivity of heat-stressed HepG2 cells to carboplatin-triggered cell death. Collectively, the present study establishes interplay of p53, HSF1, and Hsp70 upon heat stress in HepG2 cells and also defines novel strategies to overcome constraints of utility of hyperthermia in cancer therapy through p53/HSF1-targeted therapeutic intervention.
Collapse
|
20
|
Ginestier C, Liu S, Diebel ME, Korkaya H, Luo M, Brown M, Wicinski J, Cabaud O, Charafe-Jauffret E, Birnbaum D, Guan JL, Dontu G, Wicha MS. CXCR1 blockade selectively targets human breast cancer stem cells in vitro and in xenografts. J Clin Invest 2010; 120:485-97. [PMID: 20051626 DOI: 10.1172/jci39397] [Citation(s) in RCA: 571] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2009] [Accepted: 11/11/2009] [Indexed: 12/14/2022] Open
Abstract
Recent evidence suggests that breast cancer and other solid tumors possess a rare population of cells capable of extensive self-renewal that contribute to metastasis and treatment resistance. We report here the development of a strategy to target these breast cancer stem cells (CSCs) through blockade of the IL-8 receptor CXCR1. CXCR1 blockade using either a CXCR1-specific blocking antibody or repertaxin, a small-molecule CXCR1 inhibitor, selectively depleted the CSC population in 2 human breast cancer cell lines in vitro. Furthermore, this was followed by the induction of massive apoptosis in the bulk tumor population via FASL/FAS signaling. The effects of CXCR1 blockade on CSC viability and on FASL production were mediated by the FAK/AKT/FOXO3A pathway. In addition, repertaxin was able to specifically target the CSC population in human breast cancer xenografts, retarding tumor growth and reducing metastasis. Our data therefore suggest that CXCR1 blockade may provide a novel means of targeting and eliminating breast CSCs.
Collapse
Affiliation(s)
- Christophe Ginestier
- University of Michigan Comprehensive Cancer Center, Department of Internal Medicine/Oncology, Ann Arbor, Michigan 48109-0015, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Kumari R, Sharma A, Ajay AK, Bhat MK. Mitomycin C induces bystander killing in homogeneous and heterogeneous hepatoma cellular models. Mol Cancer 2009; 8:87. [PMID: 19845939 PMCID: PMC2770032 DOI: 10.1186/1476-4598-8-87] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2009] [Accepted: 10/21/2009] [Indexed: 12/14/2022] Open
Abstract
Background Hepatocellular carcinoma (HCC) is one of the most common cancers worldwide that is particularly refractory to chemotherapy. Several studies have proposed combination chemotherapy regimen for HCC treatment. However, these therapies are not effective in regressing tumor and prolonging survival of patient's suffering from HCC. Therefore, the development of more effective therapeutic tools and new strategies for the treatment of HCC are urgently needed. Over the last decade much attention has been focused on "bystander effect" as a possible therapeutic strategy for the treatment of certain human tumors. Interest in this therapeutic approach originated from numerous reports describing the radiation induced bystander effect. However, the knowledge about chemotherapy induced bystander effect is still limited. Hence, chemotherapy induced bystander phenomenon in hepatoma cells was explored by utilizing Mitomycin C (MMC). Results MMC induced bystander killing was observed only in hepatoma cells and it did not occur in cervical cancer cells. MMC induced bystander killing was transferable via medium. It occurred in co-cultured cells indicating the involvement of secreted as well as membrane bound factors. FasL and TRAIL were detected in the conditioned medium from treated cells. In medium transfer experiment, pre-treatment with EDTA (a broad range protease inhibitor) diminished MMC induced bystander killing. Following drug exposure, expression of Fas and TRAIL receptors increased and treatment with neutralizing antibodies against FasL and TRAIL inhibited bystander killing. Conclusion Our results highlight the therapeutic importance of MMC in the treatment of HCC and implicate role of membrane bound and secreted forms of FasL and TRAIL in MMC induced bystander killing.
Collapse
Affiliation(s)
- Ratna Kumari
- National Centre for Cell Science, Ganeshkhind, Pune- 411 007, India.
| | | | | | | |
Collapse
|
22
|
Radiation and chemotherapy bystander effects induce early genomic instability events: telomere shortening and bridge formation coupled with mitochondrial dysfunction. Mutat Res 2009; 669:131-8. [PMID: 19540247 DOI: 10.1016/j.mrfmmm.2009.06.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2008] [Revised: 06/03/2009] [Accepted: 06/09/2009] [Indexed: 11/20/2022]
Abstract
The bridge breakage fusion cycle is a chromosomal instability mechanism responsible for genomic changes. Radiation bystander effects induce genomic instability; however, the mechanism driving this instability is unknown. We examined if radiation and chemotherapy bystander effects induce early genomic instability events such as telomere shortening and bridge formation using a human colon cancer explant model. We assessed telomere lengths, bridge formations, mitochondrial membrane potential and levels of reactive oxygen species in bystander cells exposed to medium from irradiated and chemotherapy-treated explant tissues. Bystander cells exposed to media from 2Gy, 5Gy, FOLFOX treated tumor and matching normal tissue showed a significant reduction in telomere lengths (all p values <0.018) and an increase in bridge formations (all p values <0.017) compared to bystander cells treated with media from unirradiated tissue (0Gy) at 24h. There was no significant difference between 2Gy and 5Gy treatments, or between effects elicited by tumor versus matched normal tissue. Bystander cells exposed to media from 2Gy irradiated tumor tissue showed significant depolarisation of the mitochondrial membrane potential (p=0.012) and an increase in reactive oxygen species levels. We also used bystander cells overexpressing a mitochondrial antioxidant manganese superoxide dismutase (MnSOD) to examine if this antioxidant could rescue the mitochondrial changes and subsequently influence nuclear instability events. In MnSOD cells, ROS levels were reduced (p=0.02) and mitochondrial membrane potential increased (p=0.04). These events were coupled with a decrease in percentage of cells with anaphase bridges and a decrease in the number of cells undergoing telomere length shortening (p values 0.01 and 0.028 respectively). We demonstrate that radiation and chemotherapy bystander responses induce early genomic instability coupled with defects in mitochondrial function. Restoring mitochondrial function through overexpression of MnSOD significantly rescues nuclear instability events; anaphase bridges and telomere length shortening.
Collapse
|
23
|
Accelerated senescence: an emerging role in tumor cell response to chemotherapy and radiation. Biochem Pharmacol 2008; 76:947-57. [PMID: 18657518 DOI: 10.1016/j.bcp.2008.06.024] [Citation(s) in RCA: 212] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2008] [Revised: 06/24/2008] [Accepted: 06/27/2008] [Indexed: 12/20/2022]
Abstract
Treatment of malignancies with chemotherapeutic drugs and/or radiotherapy is designed to eliminate the disease by depriving the tumor cell of its reproductive potential. Frequently, the desired effect of cell killing is achieved through the promotion of apoptosis; however, accumulating evidence suggests that apoptosis may not be the exclusive or even primary mechanism whereby tumor cells lose their self-renewal capacity after radiation or drug treatment, particularly in the case of solid tumors. While failure to undergo apoptosis in response to chemotherapeutic drugs or radiation may represent a mechanism of drug and radiation resistance, particularly in the case of leukemias and lymphomas, it is gradually being recognized that in the case of solid tumors, loss of reproductive capacity can occur through alternative pathways including reproductive cell death or mitotic catastrophe, through autophagic cell death, and as described below, through a terminally arrested state similar to replicative senescence. Studies building upon the phenomenon of replicative senescence in normal cells approaching the limit of their reproductive potential have identified a comparable senescence-like arrest as a component of the tumor cell response to chemotherapeutic drugs and radiation. This response, which has been termed "premature senescence", "senescence-like growth arrest", "stress-induced premature senescence", and "accelerated senescence", can also result from supraphysiological mitogenic signaling, sub-optimal culture conditions, and ectopic expression of oncogenes. Here, we will use the term "accelerated senescence" in our consideration of the morphological, biochemical, and molecular aspects of treatment-induced senescence, its relationship to classical replicative senescence, its prevalence in clinical specimens and the implications of accelerated senescence for the outcome of cancer therapy.
Collapse
|
24
|
Shao C, Folkard M, Held KD, Prise KM. Estrogen enhanced cell-cell signalling in breast cancer cells exposed to targeted irradiation. BMC Cancer 2008; 8:184. [PMID: 18590532 PMCID: PMC2443807 DOI: 10.1186/1471-2407-8-184] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2008] [Accepted: 06/30/2008] [Indexed: 12/11/2022] Open
Abstract
Background Radiation-induced bystander responses, where cells respond to their neighbours being irradiated are being extensively studied. Although evidence shows that bystander responses can be induced in many types of cells, it is not known whether there is a radiation-induced bystander effect in breast cancer cells, where the radiosensitivity may be dependent on the role of the cellular estrogen receptor (ER). This study investigated radiation-induced bystander responses in estrogen receptor-positive MCF-7 and estrogen receptor-negative MDA-MB-231 breast cancer cells. Methods The influence of estrogen and anti-estrogen treatments on the bystander response was determined by individually irradiating a fraction of cells within the population with a precise number of helium-3 using a charged particle microbeam. Damage was scored as chromosomal damage measured as micronucleus formation. Results A bystander response measured as increased yield of micronucleated cells was triggered in both MCF-7 and MDA-MB-231 cells. The contribution of the bystander response to total cell damage in MCF-7 cells was higher than that in MDA-MB-231 cells although the radiosensitivity of MDA-MB-231 was higher than MCF-7. Treatment of cells with 17β-estradiol (E2) increased the radiosensitivity and the bystander response in MCF-7 cells, and the effect was diminished by anti-estrogen tamoxifen (TAM). E2 also increased the level of intracellular reactive oxygen species (ROS) in MCF-7 cells in the absence of radiation. In contrast, E2 and TAM had no influence on the bystander response and ROS levels in MDA-MB-231 cells. Moreover, the treatment of MCF-7 cells with antioxidants eliminated both the E2-induced ROS increase and E2-enhanced bystander response triggered by the microbeam irradiation, which indicates that ROS are involved in the E2-enhanced bystander micronuclei formation after microbeam irradiation. Conclusion The observation of bystander responses in breast tumour cells may offer new potential targets for radiation-based therapies in the treatment of breast cancer.
Collapse
Affiliation(s)
- Chunlin Shao
- Institute of Radiation Medicine, Fudan University, No.2094 Xie-Tu Road, Shanghai 200032, PR China.
| | | | | | | |
Collapse
|