1
|
Vaiciuleviciute R, Bironaite D, Uzieliene I, Mobasheri A, Bernotiene E. Cardiovascular Drugs and Osteoarthritis: Effects of Targeting Ion Channels. Cells 2021; 10:cells10102572. [PMID: 34685552 PMCID: PMC8534048 DOI: 10.3390/cells10102572] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/21/2021] [Accepted: 09/23/2021] [Indexed: 12/24/2022] Open
Abstract
Osteoarthritis (OA) and cardiovascular diseases (CVD) share many similar features, including similar risk factors and molecular mechanisms. A great number of cardiovascular drugs act via different ion channels and change ion balance, thus modulating cell metabolism, osmotic responses, turnover of cartilage extracellular matrix and inflammation. These drugs are consumed by patients with CVD for many years; however, information about their effects on the joint tissues has not been fully clarified. Nevertheless, it is becoming increasingly likely that different cardiovascular drugs may have an impact on articular tissues in OA. Here, we discuss the potential effects of direct and indirect ion channel modulating drugs, including inhibitors of voltage gated calcium and sodium channels, hyperpolarization-activated cyclic nucleotide-gated channels, β-adrenoreceptor inhibitors and angiotensin-aldosterone system affecting drugs. The aim of this review was to summarize the information about activities of cardiovascular drugs on cartilage and subchondral bone and to discuss their possible consequences on the progression of OA, focusing on the modulation of ion channels in chondrocytes and other joint cells, pain control and regulation of inflammation. The implication of cardiovascular drug consumption in aetiopathogenesis of OA should be considered when prescribing ion channel modulators, particularly in long-term therapy protocols.
Collapse
Affiliation(s)
- Raminta Vaiciuleviciute
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, LT-08406 Vilnius, Lithuania; (R.V.); (D.B.); (I.U.); (A.M.)
| | - Daiva Bironaite
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, LT-08406 Vilnius, Lithuania; (R.V.); (D.B.); (I.U.); (A.M.)
| | - Ilona Uzieliene
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, LT-08406 Vilnius, Lithuania; (R.V.); (D.B.); (I.U.); (A.M.)
| | - Ali Mobasheri
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, LT-08406 Vilnius, Lithuania; (R.V.); (D.B.); (I.U.); (A.M.)
- Research Unit of Medical Imaging, Physics and Technology, Faculty of Medicine, University of Oulu, FI-90014 Oulu, Finland
- Departments of Orthopedics, Rheumatology and Clinical Immunology, University Medical Center Utrecht, 508 GA Utrecht, The Netherlands
- Department of Joint Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Eiva Bernotiene
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, LT-08406 Vilnius, Lithuania; (R.V.); (D.B.); (I.U.); (A.M.)
- Correspondence:
| |
Collapse
|
2
|
Zhou Y, Lv M, Li T, Zhang T, Duncan R, Wang L, Lu XL. Spontaneous calcium signaling of cartilage cells: from spatiotemporal features to biophysical modeling. FASEB J 2019; 33:4675-4687. [PMID: 30601690 DOI: 10.1096/fj.201801460r] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Intracellular calcium ([Ca2+]i) oscillation is a fundamental signaling response of cartilage cells under mechanical loading or osmotic stress. Chondrocytes are usually considered as nonexcitable cells with no spontaneous [Ca2+]i signaling. This study proved that chondrocytes can exhibit robust spontaneous [Ca2+]i signaling without explicit external stimuli. The intensity of [Ca2+]i peaks from individual chondrocytes maintain a consistent spatiotemporal pattern, acting as a unique "fingerprint" for each cell. Statistical analysis revealed lognormal distributions of the temporal parameters of [Ca2+]i peaks, as well as strong linear correlations between their means and sds. Based on these statistical findings, we hypothesized that the spontaneous [Ca2+]i peaks may result from an autocatalytic process and that [Ca2+]i oscillation is controlled by a threshold-regulating mechanism. To test these 2 mechanisms, we established a multistage biophysical model by assuming the spontaneous [Ca2+]i signaling of chondrocytes as a combination of deterministic and stochastic processes. The theoretical model successfully explained the lognormal distribution of the temporal parameters and the fingerprint feature of [Ca2+]i peaks. In addition, by using antagonists for 10 pathways, we revealed that the initiation of spontaneous [Ca2+]i peaks in chondrocytes requires the presence of extracellular Ca2+, and that the PLC-inositol 1,4,5-trisphosphate pathway, which controls the release of calcium from the endoplasmic reticulum, can affect the initiation of spontaneous [Ca2+]i peaks in chondrocytes. The purinoceptors and transient receptor potential vanilloid 4 channels on the plasma membrane also play key roles in the spontaneous [Ca2+]i signaling of chondrocytes. In contrast, blocking the T-type or L-type voltage-gated calcium channel promoted the spontaneous calcium signaling. This study represents a systematic effort to understand the features and initiation mechanisms of spontaneous [Ca2+]i signaling in chondrocytes, which are critical for chondrocyte mechanobiology.-Zhou, Y., Lv, M., Li, T., Zhang, T., Duncan, R., Wang, L., Lu, X. L. Spontaneous calcium signaling of cartilage cells: from spatiotemporal features to biophysical modeling.
Collapse
Affiliation(s)
- Yilu Zhou
- Department of Mechanical Engineering, University of Delaware, Newark, Delaware, USA
| | - Mengxi Lv
- Center for Bioinformatics and Computational Biology, University of Delaware, Newark, Delaware, USA
| | - Tong Li
- Department of Mechanical Engineering, University of Delaware, Newark, Delaware, USA.,Department of Engineering Mechanics, Dalian University of Technology, Dalian, China; and
| | - Tiange Zhang
- Department of Mechanical Engineering, University of Delaware, Newark, Delaware, USA
| | - Randall Duncan
- Department of Biological Sciences, University of Delaware, Newark, Delaware, USA
| | - Liyun Wang
- Department of Mechanical Engineering, University of Delaware, Newark, Delaware, USA
| | - X Lucas Lu
- Department of Mechanical Engineering, University of Delaware, Newark, Delaware, USA
| |
Collapse
|
3
|
Yamamura H, Suzuki Y, Imaizumi Y. Physiological and Pathological Functions of Cl - Channels in Chondrocytes. Biol Pharm Bull 2018; 41:1145-1151. [PMID: 30068862 DOI: 10.1248/bpb.b18-00152] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Articular chondrocytes are embedded in the cartilage of diarthrodial joints and responsible for the synthesis and secretion of extracellular matrix. The extracellular matrix mainly contains collagens and proteoglycans, and covers the articular cartilage to protect from mechanical and biochemical stresses. In mammalian chondrocytes, various types of ion channels have been identified: e.g., voltage-dependent K+ channels, Ca2+-activated K+ channels, ATP-sensitive K+ channels, two-pore domain K+ channels, voltage-dependent Ca2+ channels, store-operated Ca2+ channels, epithelial Na+ channels, acid-sensing ion channels, transient receptor potential channels, and mechanosensitive channels. These channels play important roles for the regulation of resting membrane potential, Ca2+ signaling, pH sensing, mechanotransduction, and cell proliferation in articular chondrocytes. In addition to these cation channels, Cl- channels are known to be expressed in mammalian chondrocytes: e.g., voltage-dependent Cl- channels, cystic fibrosis transmembrane conductance regulator channels, swelling-activated Cl- channels, and Ca2+-activated Cl- channels. Although these chondrocyte Cl- channels are thought to contribute to the regulation of resting membrane potential, Ca2+ signaling, cell volume, cell survival, and endochondral bone formation, the physiological functions have not been fully clarified. Osteoarthritis (OA) is caused by the degradation of articular cartilage, resulting in inflammation and pain in the joints. Therefore the pathophysiological roles of Cl- channels in OA chondrocytes are of considerable interest. Elucidating the physiological and pathological functions of chondrocyte Cl- channels will provide us a more comprehensive understanding of chondrocyte functions and may suggest novel molecular targets of drug development for OA.
Collapse
Affiliation(s)
- Hisao Yamamura
- Department of Molecular & Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University
| | - Yoshiaki Suzuki
- Department of Molecular & Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University
| | - Yuji Imaizumi
- Department of Molecular & Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University
| |
Collapse
|
4
|
Ye Z, Lu H, Liu P. Association between essential hypertension and bone mineral density: a systematic review and meta-analysis. Oncotarget 2017; 8:68916-68927. [PMID: 28978167 PMCID: PMC5620307 DOI: 10.18632/oncotarget.20325] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Accepted: 08/06/2017] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND We conducted this systematic review and meta-analysis to evaluate the association between essential hypertension (EH) and bone mineral density (BMD). RESULTS 17 articles were included in our meta-analysis, with a total of 39,491 patients. Of these, 13,375 were patients with EH and 26,116 were patients without EH. Meta-analysis results showed that EH can reduce the BMD of the lumbar spine (95% CI: -0.08∼0.01, P=0.006), femoral neck (95% CI: -0.09∼-0.02, p = 0.001), ward's triangle (95% CI: -0.45∼-0.25, p=0.000), femoral intertrochanteric (95% CI: -0.90∼-0.64, p = 0.000), calcaneus (95% CI: -0.31∼-0.18, p = 0.000) and distal forearm (95% CI: -0.09∼-0.03, p = 0.000), but EH cannot reduce the BMD of the femur rotor (95% CI: -0.07∼0.24, p = 0.273). Subgroup analysis showed that EH can reduce the BMD of the lumbar spine (95% CI: -0.11∼-0.03, p = 0.000) and femoral neck (95% CI: -0.11∼-0.07, p = 0.000) in Asian populations. In non-Asian populations, EH can reduce the BMD of the femoral neck (95% CI: 0.04∼0.19, p = 0.002), but cannot reduce the BMD of the lumbar spine (95% CI: -0.04∼0.11, p = 0.346). MATERIALS AND METHODS We conducted a systematic review of the published literature on the association of EH and BMD by searching the Cochrane Library, PubMed, EMBASE, CBM, CNKI and VIP databases inception to October 2016. Stata 11.0 software was used for data analysis. CONCLUSIONS Our meta-analysis suggests that EH can reduce the BMD of the human body, and for different parts of the bone, the degree of reduction is different. In addition, for different regions and populations, the reduction level of BMD is inconsistent.
Collapse
Affiliation(s)
- Ziliang Ye
- Guangxi Medical University, Nanning, Guangxi 530021, China
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Haili Lu
- Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Peng Liu
- Department of Anatomy, Guangxi Medical University, Nanning, Guangxi 530021, China
| |
Collapse
|
5
|
Abstract
Chondrocytes, the single cell type in adult articular cartilage, have conventionally been considered to be non-excitable cells. However, recent evidence suggests that their resting membrane potential (RMP) is less negative than that of excitable cells, and they are fully equipped with channels that control ion, water and osmolyte movement across the chondrocyte membrane. Amongst calcium-specific ion channels, members of the voltage-dependent calcium channel (VDCC) family are expressed in chondrocytes where they are functionally active. L-type VDCC inhibitors such as nifedipine and verapamil have contributed to our understanding of the roles of these ion channels in chondrogenesis, chondrocyte signalling and mechanotransduction. In this narrative review, we discuss published data indicating that VDCC function is vital for chondrocyte health, especially in regulating proliferation and maturation. We also highlight the fact that activation of VDCC function appears to accompany various inflammatory aspects of osteoarthritis (OA) and, based on in vitro data, the application of nifedipine and/or verapamil may be a promising approach for ameliorating OA severity. However, very few studies on clinical outcomes are available regarding the influence of calcium antagonists, which are used primarily for treating cardiovascular conditions in OA patients. This review is intended to stimulate further research on the chondrocyte 'channelome', contribute to the development of novel therapeutic strategies and facilitate the retargeting and repositioning of existing pharmacological agents currently used for other comorbidities for the treatment of OA.
Collapse
|
6
|
Cav3.2 T-type calcium channel is required for the NFAT-dependent Sox9 expression in tracheal cartilage. Proc Natl Acad Sci U S A 2014; 111:E1990-8. [PMID: 24778262 DOI: 10.1073/pnas.1323112111] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Intracellular Ca(2+) transient is crucial in initiating the differentiation of mesenchymal cells into chondrocytes, but whether voltage-gated Ca(2+) channels are involved remains uncertain. Here, we show that the T-type voltage-gated Ca(2+) channel Cav3.2 is essential for tracheal chondrogenesis. Mice lacking this channel (Cav3.2(-/-)) show congenital tracheal stenosis because of incomplete formation of cartilaginous tracheal support. Conversely, Cav3.2 overexpression in ATDC5 cells enhances chondrogenesis, which could be blunted by both blocking T-type Ca(2+) channels and inhibiting calcineurin and suggests that Cav3.2 is responsible for Ca(2+) influx during chondrogenesis. Finally, the expression of sex determination region of Y chromosome (SRY)-related high-mobility group-Box gene 9 (Sox9), one of the earliest markers of committed chondrogenic cells, is reduced in Cav3.2(-/-) tracheas. Mechanistically, Ca(2+) influx via Cav3.2 activates the calcineurin/nuclear factor of the activated T-cell (NFAT) signaling pathway, and a previously unidentified NFAT binding site is identified within the mouse Sox9 promoter using a luciferase reporter assay and gel shift and ChIP studies. Our findings define a previously unidentified mechanism that Ca(2+) influx via the Cav3.2 T-type Ca(2+) channel regulates Sox9 expression through the calcineurin/NFAT signaling pathway during tracheal chondrogenesis.
Collapse
|
7
|
Lieben L, Carmeliet G. The Involvement of TRP Channels in Bone Homeostasis. Front Endocrinol (Lausanne) 2012; 3:99. [PMID: 22934090 PMCID: PMC3422722 DOI: 10.3389/fendo.2012.00099] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Accepted: 07/31/2012] [Indexed: 12/11/2022] Open
Abstract
Calcium and bone homeostasis are intimately related. On the one hand, bone relies on a sufficient supply of calcium to maintain its structural and mechanical properties and thus largely depends on calcium absorption in the intestine and calcium reabsorption in the kidney. On the other hand, bone serves as a calcium reserve from which calcium is mobilized to maintain normal calcium levels in blood. A negative external calcium balance will therefore at all times impair skeletal integrity. In addition to the external calcium balance, skeletal homeostasis also depends on the proper differentiation and functioning of bone cells, which relies for a large part on intracellular Ca(2+) signaling. Members of the transient receptor potential (TRP) family of ion channels affect skeletal homeostasis by mediating processes involved in the extracellular as well as intracellular Ca(2+) balance, including intestinal calcium absorption (TRPV6), renal calcium reabsorption (TRPV5), and differentiation of osteoclasts (TRPV1, TRPV2, TRPV4, TRPV5), chondrocytes (TRPV4), and possibly osteoblasts (TRPV1). In this review, we will give a brief overview of the systemic calcium homeostasis and the intracellular Ca(2+) signaling in bone cells with special focus on the TRP channels involved in these processes.
Collapse
Affiliation(s)
- Liesbet Lieben
- Clinical and Experimental Endocrinology, Department of Clinical and Experimental Medicine, Katholieke Universiteit LeuvenLeuven, Belgium
| | - Geert Carmeliet
- Clinical and Experimental Endocrinology, Department of Clinical and Experimental Medicine, Katholieke Universiteit LeuvenLeuven, Belgium
- *Correspondence: Geert Carmeliet, Clinical and Experimental Endocrinology, Katholieke Universiteit Leuven, Herestraat 49, O & N1, bus 902, 3000 Leuven, Belgium. e-mail:
| |
Collapse
|
8
|
Barrett-Jolley R, Lewis R, Fallman R, Mobasheri A. The emerging chondrocyte channelome. Front Physiol 2010; 1:135. [PMID: 21423376 PMCID: PMC3059965 DOI: 10.3389/fphys.2010.00135] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2010] [Accepted: 09/09/2010] [Indexed: 11/18/2022] Open
Abstract
Chondrocytes are the resident cells of articular cartilage and are responsible for synthesizing a range of collagenous and non-collagenous extracellular matrix macromolecules. Whilst chondrocytes exist at low densities in the tissue (1-10% of the total tissue volume in mature cartilage) they are extremely active cells and are capable of responding to a range of mechanical and biochemical stimuli. These responses are necessary for the maintenance of viable cartilage and may be compromised in inflammatory diseases such as arthritis. Although chondrocytes are non-excitable cells their plasma membrane contains a rich complement of ion channels. This diverse channelome appears to be as complex as one might expect to find in excitable cells although, in the case of chondrocytes, their functions are far less well understood. The ion channels so far identified in chondrocytes include potassium channels (K(ATP), BK, K(v), and SK), sodium channels (epithelial sodium channels, voltage activated sodium channels), transient receptor potential calcium or non-selective cation channels and chloride channels. In this review we describe this emerging channelome and discuss the possible functions of a range of chondrocyte ion channels.
Collapse
Affiliation(s)
- Richard Barrett-Jolley
- Musculoskeletal Research Group, Department of Comparative Molecular Medicine, School of Veterinary Science, University of LiverpoolLiverpool, UK
| | - Rebecca Lewis
- Musculoskeletal Research Group, Department of Comparative Molecular Medicine, School of Veterinary Science, University of LiverpoolLiverpool, UK
| | - Rebecca Fallman
- Musculoskeletal Research Group, Department of Comparative Molecular Medicine, School of Veterinary Science, University of LiverpoolLiverpool, UK
| | - Ali Mobasheri
- Musculoskeletal Research Group, Division of Veterinary Medicine, School of Veterinary Medicine and Science, Faculty of Medicine and Health Sciences, University of NottinghamNottingham, Leicestershire, UK
| |
Collapse
|
9
|
Alam I, Carr LG, Liang T, Liu Y, Edenberg HJ, Econs MJ, Turner CH. Identification of genes influencing skeletal phenotypes in congenic P/NP rats. J Bone Miner Res 2010; 25:1314-25. [PMID: 20200994 PMCID: PMC3153136 DOI: 10.1002/jbmr.8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2009] [Revised: 10/28/2009] [Accepted: 12/15/2010] [Indexed: 01/09/2023]
Abstract
We previously showed that alcohol-preferring (P) rats have higher bone density than alcohol-nonpreferring (NP) rats. Genetic mapping in P and NP rats identified a major quantitative trait locus (QTL) between 4q22 and 4q34 for alcohol preference. At the same location, several QTLs linked to bone density and structure were detected in Fischer 344 (F344) and Lewis (LEW) rats, suggesting that bone mass and strength genes might cosegregate with genes that regulate alcohol preference. The aim of this study was to identify the genes segregating for skeletal phenotypes in congenic P and NP rats. Transfer of the NP chromosome 4 QTL into the P background (P.NP) significantly decreased areal bone mineral density (aBMD) and volumetric bone mineral density (vBMD) at several skeletal sites, whereas transfer of the P chromosome 4 QTL into the NP background (NP.P) significantly increased bone mineral content (BMC) and aBMD in the same skeletal sites. Microarray analysis from the femurs using Affymetrix Rat Genome arrays revealed 53 genes that were differentially expressed among the rat strains with a false discovery rate (FDR) of less than 10%. Nine candidate genes were found to be strongly correlated (r(2) > 0.50) with bone mass at multiple skeletal sites. The top three candidate genes, neuropeptide Y (Npy), alpha synuclein (Snca), and sepiapterin reductase (Spr), were confirmed using real-time quantitative PCR (qPCR). Ingenuity pathway analysis revealed relationships among the candidate genes related to bone metabolism involving beta-estradiol, interferon-gamma, and a voltage-gated calcium channel. We identified several candidate genes, including some novel genes on chromosome 4 segregating for skeletal phenotypes in reciprocal congenic P and NP rats.
Collapse
Affiliation(s)
- Imranul Alam
- Departments of Biomedical Engineering, Indiana University Purdue University Indianapolis (IUPUI)Indianapolis, IN, USA
| | - Lucinda G Carr
- Medicine, Indiana University Purdue University Indianapolis (IUPUI)Indianapolis, IN, USA
- Pharmacology, Indiana University Purdue University Indianapolis (IUPUI)Indianapolis, IN, USA
| | - Tiebing Liang
- Medicine, Indiana University Purdue University Indianapolis (IUPUI)Indianapolis, IN, USA
| | - Yunlong Liu
- Medicine, Indiana University Purdue University Indianapolis (IUPUI)Indianapolis, IN, USA
| | - Howard J Edenberg
- Biochemistry and Molecular Biology, Indiana University Purdue University Indianapolis (IUPUI)Indianapolis, IN, USA
| | - Michael J Econs
- Medicine, Indiana University Purdue University Indianapolis (IUPUI)Indianapolis, IN, USA
| | - Charles H Turner
- Departments of Biomedical Engineering, Indiana University Purdue University Indianapolis (IUPUI)Indianapolis, IN, USA
- Biomechanics and Biomaterials Research Center, Indiana University Purdue University Indianapolis (IUPUI)Indianapolis, IN, USA
| |
Collapse
|
10
|
Nakagawa K, Pérez EC, Oh J, Santos F, Geldyyev A, Gross ML, Schaefer F, Schmitt CP. Cinacalcet does not affect longitudinal growth but increases body weight gain in experimental uraemia. Nephrol Dial Transplant 2008; 23:2761-7. [PMID: 18408076 DOI: 10.1093/ndt/gfn143] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND Cinacalcet (CIN) efficiently suppresses parathyroid hormone (PTH) secretion by the activation of the calcium-sensing receptor (CaR). Epiphyseal chondrocytes also express the CaR and its activation promotes cell proliferation and differentiation in vitro. Hence, the impact of CIN on the growth plate function requires assessment before routine administration in children. METHODS We treated subtotally nephrectomized (SNX) and sham-operated, ad lib and pair-fed Sprague-Dawley rats with CIN (15 mg/kg day) or solvent (S) for 14 days p.o. and assessed whole body and tibia length gain, growth plate morphology, osseous front advance (OFA) (calcein staining) and chondrocyte proliferation rate [5-bromo-2'-deoxyuridine (BrdU) staining]. RESULTS Total body length gain did not differ after 7 and 14 days (SNX + CIN 2.9 +/- 0.6, SNX + S 3.0 +/- 0.7; sham + CIN 4.2 +/- 0.4, sham + S 4.5 +/- 0.4; sham pair-fed + CIN 3.3 +/- 0.5, sham pair-fed + S 3.5 +/- 0.6 cm/14 days; P = n.s.). Tibia length, the height of the total growth plate and the hypertrophic zone, OFA and chondrocyte proliferation rate were similar with CIN and S. Serum Ca(2+) declined with CIN treatment; PTH was 61% lower in CIN- compared to S-treated SNX (P < 0.05). Food intake was similar, whereas body weight gain (21.6 +/- 8.7 versus 12.7 +/- 11.2 g) and body weight gain per food intake (141 +/- 50 versus 77 +/- 70 g/kg) improved in CIN- versus S-treated SNX animals (P < 0.05). CONCLUSION CIN treatment does not impact on growth plate chondrocyte function in uraemic rats, but improves food efficiency and body weight gain.
Collapse
Affiliation(s)
- Kumiko Nakagawa
- Division of Pediatric Nephrology, University Hospital for Pediatric and Adolescent Medicine, Im Neuenheimer Feld 153, 69120 Heidelberg, Germany
| | | | | | | | | | | | | | | |
Collapse
|