1
|
Fu Y, Li G, Fu X, Xing S, Zhao ZJ. RNA-Seq Analysis Reveals Altered Expression of Cell Adhesion-Related Genes Following PZR Knockout in Lung Cancer Cells. Appl Biochem Biotechnol 2024; 196:2122-2136. [PMID: 37470934 DOI: 10.1007/s12010-023-04664-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/04/2023] [Indexed: 07/21/2023]
Abstract
Protein zero related (PZR) serves as a substrate and anchor protein for SHP-2, the product of the proto-oncogene PTPN11 that is frequently mutated in cancers. The expression level of PZR is elevated in various cancers, which is correlated with an unfavorable prognosis. The role of PZR in lung cancer is not fully studied. To investigate how PZR affects signaling pathways involved in LUAD development, we utilized the CRISPR technology to knock out PZR expression in SPC-A1 lung adenocarcinoma cells and then conducted RNA sequencing to profile the transcriptome. Our results showed that 226 genes exhibited differential expressions in PZR-knockout SPC-A1 cells vs wild-type cells. Many of the genes encode proteins involved in cell adhesion, migration, actin cytoskeleton organization, and regulation of cell shape. Furthermore, our experimental data showed that PZR-knockout SPC-A1 cells displayed faster attachment to tissue culture dishes and slower detachment from the dishes upon EDTA treatment. The data suggest an important role of PZR in cell-matrix interaction and may provide new insights into the signaling events that regulate cancer development.
Collapse
Affiliation(s)
- Ying Fu
- Edmond H. Fischer Signal Transduction Laboratory, School of Life Sciences, Jilin University, Changchun, China
| | - Guodong Li
- Department of Colorectal and Anal Surgery, the Second Hospital, Jilin University, Changchun, China
| | - Xueqi Fu
- Edmond H. Fischer Signal Transduction Laboratory, School of Life Sciences, Jilin University, Changchun, China
| | - Shu Xing
- Edmond H. Fischer Signal Transduction Laboratory, School of Life Sciences, Jilin University, Changchun, China.
| | - Zhizhuang Joe Zhao
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| |
Collapse
|
2
|
Deng R, Zhang L, Chen S, Li X, Xue B, Li H, Xu Y, Tian R, Liu Q, Wang L, Liu S, Yang D, Li P, Tang S, Zhu H. PZR suppresses innate immune response to RNA viral infection by inhibiting MAVS activation in interferon signaling mediated by RIG-I and MDA5. Antiviral Res 2024; 222:105797. [PMID: 38185222 DOI: 10.1016/j.antiviral.2024.105797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/03/2024] [Accepted: 01/04/2024] [Indexed: 01/09/2024]
Abstract
RNA viral infections seriously endanger human health. Src homology 2 (SH2) domain-containing protein tyrosine phosphatase 2 (SHP2) suppresses innate immunity against influenza A virus, and pharmacological inhibition of SHP2 provokes hepatic innate immunity. SHP2 binds and catalyzes tyrosyl dephosphorylation of protein zero-related (PZR), but the regulatory effect of PZR on innate immune response to viral infection is unclear. In this study, the transcription and protein level of PZR in host cells were found to be decreased with RNA viral infection, and high level of PZR was uncovered to inhibit interferon (IFN) signaling mediated by RIG-I and MDA5. Through localizing in mitochondria, PZR targeted and interacted with MAVS (also known as IPS-1/VISA/Cardif), suppressing the aggregation and activation of MAVS. Specifically, Y263 residue in ITIM is critical for PZR to exert immunosuppression under RNA viral infection. Moreover, the recruited SHP2 by PZR that modified with tyrosine phosphorylation under RNA viral infection might inhibit phosphorylation activation of MAVS. In conclusion, PZR and SHP2 suppress innate immune response to RNA viral infection through inhibiting MAVS activation. This study reveals the regulatory mechanism of PZR-SHP2-MAVS signal axis on IFN signaling mediated by RIG-I and MDA5, which may provide new sight for developing antiviral drugs.
Collapse
Affiliation(s)
- Rilin Deng
- Institute of Pathogen Biology and Immunology, College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, 410082, Hunan, China
| | - Lini Zhang
- Institute of Pathogen Biology and Immunology, College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, 410082, Hunan, China
| | - Shengwen Chen
- Institute of Pathogen Biology and Immunology, College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, 410082, Hunan, China
| | - Xinran Li
- Institute of Pathogen Biology and Immunology, College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, 410082, Hunan, China
| | - Binbin Xue
- Institute of Pathogen Biology and Immunology, College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, 410082, Hunan, China; Key Laboratory of Tropical Translational Medicine of Ministry of Education, Department of Pathogen Biology, School of Basic Medicine and Life Science, Department of Pathology and Hainan Province Clinical Medical Center of the First Affiliated Hospital, The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, 571199, Hainan, China
| | - Huiyi Li
- Institute of Pathogen Biology and Immunology, College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, 410082, Hunan, China; Key Laboratory of Tropical Translational Medicine of Ministry of Education, Department of Pathogen Biology, School of Basic Medicine and Life Science, Department of Pathology and Hainan Province Clinical Medical Center of the First Affiliated Hospital, The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, 571199, Hainan, China
| | - Yan Xu
- Institute of Pathogen Biology and Immunology, College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, 410082, Hunan, China
| | - Renyun Tian
- Institute of Pathogen Biology and Immunology, College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, 410082, Hunan, China
| | - Qian Liu
- Institute of Pathogen Biology and Immunology, College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, 410082, Hunan, China
| | - Luoling Wang
- Institute of Pathogen Biology and Immunology, College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, 410082, Hunan, China
| | - Shun Liu
- Institute of Pathogen Biology and Immunology, College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, 410082, Hunan, China
| | - Di Yang
- Institute of Pathogen Biology and Immunology, College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, 410082, Hunan, China
| | - Penghui Li
- Institute of Pathogen Biology and Immunology, College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, 410082, Hunan, China
| | - Songqing Tang
- Institute of Pathogen Biology and Immunology, College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, 410082, Hunan, China
| | - Haizhen Zhu
- Institute of Pathogen Biology and Immunology, College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, 410082, Hunan, China; Key Laboratory of Tropical Translational Medicine of Ministry of Education, Department of Pathogen Biology, School of Basic Medicine and Life Science, Department of Pathology and Hainan Province Clinical Medical Center of the First Affiliated Hospital, The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, 571199, Hainan, China.
| |
Collapse
|
3
|
Hu W, Jing Y, Yu Q, Huang N. Differential gene screening and bioinformatics analysis of epidermal stem cells and dermal fibroblasts during skin aging. Sci Rep 2022; 12:12019. [PMID: 35835980 PMCID: PMC9283434 DOI: 10.1038/s41598-022-16314-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 07/07/2022] [Indexed: 11/11/2022] Open
Abstract
To explore the differentially expressed genes (DEGs) and potential therapeutic targets of skin aging in GEO database by bioinformatics methods. Dermal fibroblasts and skin aging related data sets GSE110978 and GSE117763 were downloaded from GEO database, and epidermal stem cells and skin aging related data sets GSE137176 were downloaded. GEO2R was used to screen DEGs of candidate samples from the three microarrays, GO function analysis and KEGG pathway analysis were performed. Protein interaction network was constructed using String database, and hub gene was obtained by Cytoscape. NetworkAnalys was used to analyze the coregulatory network of DEGs and MicroRNA (miRNA), interaction with TF, and protein-chemical interactions of DEGs. Finally, DSigDB was used to determine candidate drugs for DEGs. Six DEGs were obtained. It mainly involves the cytological processes such as response to metal ion, and is enriched in mineral absorption and other signal pathways. Ten genes were screened by PPI analysis. Gene-miRNA coregulatory network found that Peg3 and mmu-miR-1931 in DEGs were related to each other, and Cybrd1 was related to mmu-miR-290a-5p and mmu-miR-3082-5p. TF-gene interactions found that the transcription factor UBTF co-regulated two genes, Arhgap24 and Mpzl1. Protein-chemical Interactions analysis and identification of candidate drugs show results for candidate drugs. Try to explore the mechanism of hub gene action in skin aging progression, and to discover the key signaling pathways leading to skin aging, which may be a high risk of skin aging.
Collapse
Affiliation(s)
- Weisheng Hu
- The Second Affiliated Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou, 350003, China
| | - Yuan Jing
- College of Acupuncture, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
| | - Qingqian Yu
- College of Traditional Chinese Medicine, Beijing University of Traditional Chinese Medicine, Beijing, 100105, China
| | - Ning Huang
- Key Laboratory of Dermatology in Integrated Traditional Chinese and Western Medicine, The Second Affiliated Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou, 350003, China.
| |
Collapse
|
4
|
Yi JS, Perla S, Enyenihi L, Bennett AM. Tyrosyl phosphorylation of PZR promotes hypertrophic cardiomyopathy in PTPN11-associated Noonan syndrome with multiple lentigines. JCI Insight 2020; 5:137753. [PMID: 32584792 PMCID: PMC7455087 DOI: 10.1172/jci.insight.137753] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 06/18/2020] [Indexed: 02/05/2023] Open
Abstract
Noonan syndrome with multiple lentigines (NSML) is a rare autosomal dominant disorder that presents with cardio-cutaneous-craniofacial defects. Hypertrophic cardiomyopathy (HCM) represents the major life-threatening presentation in NSML. Mutations in the PTPN11 gene that encodes for the protein tyrosine phosphatase (PTP), SHP2, represents the predominant cause of HCM in NSML. NSML-associated PTPN11 mutations render SHP2 catalytically inactive with an "open" conformation. NSML-associated PTPN11 mutations cause hypertyrosyl phosphorylation of the transmembrane glycoprotein, protein zero-related (PZR), resulting in increased SHP2 binding. Here we show that NSML mice harboring a tyrosyl phosphorylation-defective mutant of PZR (NSML/PZRY242F) that is defective for SHP2 binding fail to develop HCM. Enhanced AKT/S6 kinase signaling in heart lysates of NSML mice was reversed in NSML/PZRY242F mice, demonstrating that PZR/SHP2 interactions promote aberrant AKT/S6 kinase activity in NSML. Enhanced PZR tyrosyl phosphorylation in the hearts of NSML mice was found to drive myocardial fibrosis by engaging an Src/NF-κB pathway, resulting in increased activation of IL-6. Increased expression of IL-6 in the hearts of NSML mice was reversed in NSML/PZRY242F mice, and PZRY242F mutant fibroblasts were defective for IL-6 secretion and STAT3-mediated fibrogenesis. These results demonstrate that NSML-associated PTPN11 mutations that induce PZR hypertyrosyl phosphorylation trigger pathophysiological signaling that promotes HCM and cardiac fibrosis.
Collapse
Affiliation(s)
- Jae-Sung Yi
- Department of Pharmacology, Yale School of Medicine, Yale University, New Haven, Connecticut, USA
| | - Sravan Perla
- Department of Pharmacology, Yale School of Medicine, Yale University, New Haven, Connecticut, USA
| | - Liz Enyenihi
- Department of Chemistry, Emory University, Atlanta, Georgia, USA
| | - Anton M. Bennett
- Department of Pharmacology, Yale School of Medicine, Yale University, New Haven, Connecticut, USA
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Department of Comparative Medicine, Yale School of Medicine, Yale University, New Haven, Connecticut, USA
| |
Collapse
|
5
|
P 0-Related Protein Accelerates Human Mesenchymal Stromal Cell Migration by Modulating VLA-5 Interactions with Fibronectin. Cells 2020; 9:cells9051100. [PMID: 32365526 PMCID: PMC7290418 DOI: 10.3390/cells9051100] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 04/16/2020] [Accepted: 04/24/2020] [Indexed: 12/22/2022] Open
Abstract
P0-related protein (PZR), a Noonan and LEOPARD syndrome target, is a member of the transmembrane Immunoglobulin superfamily. Its cytoplasmic tail contains two immune-receptor tyrosine-based inhibitory motifs (ITIMs), implicated in adhesion-dependent signaling and regulating cell adhesion and motility. PZR promotes cell migration on the extracellular matrix (ECM) molecule, fibronectin, by interacting with SHP-2 (Src homology-2 domain-containing protein tyrosine phosphatase-2), a molecule essential for skeletal development and often mutated in Noonan and LEOPARD syndrome patients sharing overlapping musculoskeletal abnormalities and cardiac defects. To further explore the role of PZR, we assessed the expression of PZR and its ITIM-less isoform, PZRb, in human bone marrow mesenchymal stromal cells (hBM MSC), and its ability to facilitate adhesion to and spreading and migration on various ECM molecules. Furthermore, using siRNA knockdown, confocal microscopy, and immunoprecipitation assays, we assessed PZR and PZRb interactions with β1 integrins. PZR was the predominant isoform in hBM MSC. Migrating hBM MSCs interacted most effectively with fibronectin and required the association of PZR, but not PZRb, with the integrin, VLA-5(α5β1), leading to modulation of focal adhesion kinase phosphorylation and vinculin levels. This raises the possibility that dysregulation of PZR function may modify hBM MSC migratory behavior, potentially contributing to skeletal abnormalities.
Collapse
|
6
|
Liu X, Huang J, Liu L, Liu R. MPZL1 is highly expressed in advanced gallbladder carcinoma and promotes the aggressive behavior of human gallbladder carcinoma GBC‑SD cells. Mol Med Rep 2019; 20:2725-2733. [PMID: 31322261 PMCID: PMC6691252 DOI: 10.3892/mmr.2019.10506] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 05/09/2019] [Indexed: 01/17/2023] Open
Abstract
Myelin protein 0‑like 1 (MPZL1) has been reported to have a role in hepatocellular carcinoma. However, to the best of our knowledge, there have been no studies on the function and molecular mechanism of MPZL1 gene in gallbladder carcinoma. The present study confirmed that MPZL1 was upregulated in four gallbladder carcinoma tissues according to the mRNA microarray analysis. The results of the immunohistochemical analysis of tissues from 82 patients with gallbladder carcinoma demonstrated that patients with advanced tumor stages (both T and N stage) had higher positive expression of MPZL1. Moreover, a total of 20 cases of gallbladder carcinoma and matched paired paracarcinoma tissues along with 20 samples of healthy gallbladder tissue from patients with cholecystitis were analyzed using reverse transcription‑quantitative PCR and western blotting. The results demonstrated that the expression of MPZL1 in gallbladder carcinoma tissues was significantly higher than that of paired paracarcinoma tissues and randomly matched normal gallbladder epithelial tissues. According to the Tumor‑Node‑Metastasis classification, the expression level of MPZL1 protein in stage IV gallbladder carcinoma was significantly higher than that in stage III gallbladder carcinoma. The enhanced expression of MPZL1 gene appeared to improve the migration ability of GBC‑SD cells. Conversely, GBC‑SD cells that transfected with MPZL1 siRNA exhibited decreased migration ability. The results of proliferation experiments showed that the knockdown of MPZL1 siRNA caused impairments in GBC‑SD cell proliferation. On the contrary, the overexpression of MPZL1 increased the proliferation ability of GBC‑SD cells. The results of flow cytometry analyses indicated that the upregulation of MPZL1 had an anti‑apoptotic effect on GBC‑SD cells. In conclusion, the present study showed that the expression and protein levels of MPZL1 were significantly higher in gallbladder carcinoma tissues, especially in patients diagnosed with advanced tumor stages. Overexpression of MPZL1 may have promoted the invasion, metastasis, proliferation and survival of GBC‑SD cells.
Collapse
Affiliation(s)
- Xiaolei Liu
- Department of Hepato‑Pancreato‑Biliary Surgical Oncology, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Jia Huang
- Department of General Surgery, China‑Japan Friendship Hospital, Beijing 100029, P.R. China
| | - Liguo Liu
- Department of General Surgery, China‑Japan Friendship Hospital, Beijing 100029, P.R. China
| | - Rong Liu
- Department of Hepato‑Pancreato‑Biliary Surgical Oncology, Chinese PLA General Hospital, Beijing 100853, P.R. China
| |
Collapse
|
7
|
Kadam L, Jain C, Kohan-Ghadr HR, Krawetz SA, Drewlo S, Armant DR. Endocervical trophoblast for interrogating the fetal genome and assessing pregnancy health at five weeks. Eur J Med Genet 2019; 62:103690. [PMID: 31226440 DOI: 10.1016/j.ejmg.2019.103690] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 06/01/2019] [Accepted: 06/05/2019] [Indexed: 02/09/2023]
Abstract
Prenatal testing for fetal genetic traits and risk of obstetrical complications is essential for maternal-fetal healthcare. The migration of extravillous trophoblast (EVT) cells from the placenta into the reproductive tract and accumulation in the cervix offers an exciting avenue for prenatal testing and monitoring placental function. These cells are obtained with a cervical cytobrush, a routine relatively safe clinical procedure during pregnancy, according to published studies and our own observations. Trophoblast retrieval and isolation from the cervix (TRIC) obtains hundreds of fetal cells with >90% purity as early as five weeks of gestation. TRIC can provide DNA for fetal genotyping by targeted next-generation sequencing with single-nucleotide resolution. Previously, we found that known protein biomarkers are dysregulated in EVT cells obtained by TRIC in the first trimester from women who miscarry or later develop intrauterine growth restriction or preeclampsia. We have now optimized methods to stabilize RNA during TRIC for subsequent isolation and analysis of trophoblast gene expression. Here, we report transcriptomics analysis demonstrating that the expression profile of TRIC-isolated trophoblast cells was distinct from that of maternal cervical cells and included genes associated with the EVT phenotype and invasion. Because EVT cells are responsible for remodeling the maternal arteries and their failure is associated with pregnancy disorders, their molecular profiles could reflect maternal risk, as well as mechanisms underlying these disorders. The use of TRIC to analyze EVT genomes, transcriptomes and proteomes during ongoing pregnancies could provide new tools for anticipating and managing both fetal genetic and maternal obstetric disorders.
Collapse
Affiliation(s)
- Leena Kadam
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, United States
| | - Chandni Jain
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, United States
| | - Hamid Reza Kohan-Ghadr
- Department of Obstetrics, Gynecology and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, MI, USA
| | - Stephen A Krawetz
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, United States; Centre for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, United States
| | - Sascha Drewlo
- Department of Obstetrics, Gynecology and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, MI, USA
| | - D Randall Armant
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, United States; Department of Anatomy and Cell Biology, Wayne State University, Detroit, MI, United States.
| |
Collapse
|
8
|
Tan D, Zhang W, Tao Y, Galiya Y, Wang M. PZR promotes metastasis of colorectal cancer through increasing FAK and Src phosphorylation. Acta Biochim Biophys Sin (Shanghai) 2019; 51:356-364. [PMID: 30877754 DOI: 10.1093/abbs/gmz019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 01/27/2019] [Indexed: 01/08/2023] Open
Abstract
Metastasis is the main cause of death in patients with colorectal cancer (CRC), but the molecular mechanism is not yet fully understood. Previous studies have shown that P zero-related protein (PZR), a member of the immunoglobulin family, can promote fibronectin-dependent migration of mouse embryonic fibroblasts as well as invasion and metastasis of hepatic carcinoma cells. However, the role of PZR in CRC remains unclear. In this study, we determined the ectopic expression of PZR in CRC tissues, and results showed that PZR expression was increased not only in tumors with higher pathological stage, but also in tumors with distant metastasis. Through PZR-knockdown and overexpression in CRC cell lines, we found that the expression of PZR had significant effect on the invasion and migration of CRC cells as well as the phosphorylation of pro-metastasis proteins including focal adhesion kinase (FAK) and Src. Taken together, this study indicates that PZR may promote the invasion and migration of CRC cells through increasing the phosphorylation of FAK and Src, which provides a new theoretical basis and a possible marker for the diagnosis or prognosis of CRC metastasis.
Collapse
Affiliation(s)
- Dan Tan
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of General Surgery, Ruijin Hospital Luwan Branch, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenpeng Zhang
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of General Surgery, Ruijin Hospital Luwan Branch, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu Tao
- The Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Jiao Tong University School of Medicine and Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yesseyeva Galiya
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mingliang Wang
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of General Surgery, Ruijin Hospital Luwan Branch, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
9
|
Yu T, Liang L, Zhao X, Yin Y. Structural and biochemical studies of the extracellular domain of Myelin protein zero-like protein 1. Biochem Biophys Res Commun 2018; 506:883-890. [PMID: 30392906 DOI: 10.1016/j.bbrc.2018.10.161] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 10/26/2018] [Indexed: 01/17/2023]
Abstract
Myelin protein zero-like protein 1 (MPZL1) is a member of the immunoglobulin superfamily, and is also a receptor of concanavalin A (ConA). MPZL1 is upregulated in hepatocellular carcinoma (HCC) and accelerates migration of HCC cells. However, function of MPZL1 as a receptor of ConA and its role in HCC development are largely unknown. To elucidate the functional basis, we have determined the crystal structure of the extracellular domain of MPZL1 at 2.7 Å resolution. Overall, it folds like a typical immunoglobulin variable-like domain that is much like MPZ. Unexpectedly, we found Asn50 is a unique glycosylation site and the glycosylation mediates its interaction with ConA. Furthermore, we also found that MPZL1 exists as a homodimer in the crystal, in which hydrogen bonds between Ser86 and Val145 play an important role. Our results demonstrate that glycosylation of Asn50 is essential for its function as a receptor of ConA. We propose that dimerization of MPZL1 participates in control of its signal transmission in cell adhesion.
Collapse
Affiliation(s)
- Tianshu Yu
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Ling Liang
- Department of Biophysics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China; Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Xuyang Zhao
- Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Yuxin Yin
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China; Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China; Department of Pathology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China.
| |
Collapse
|
10
|
An endogenous retroviral envelope syncytin and its cognate receptor identified in the viviparous placental Mabuya lizard. Proc Natl Acad Sci U S A 2017; 114:E10991-E11000. [PMID: 29162694 DOI: 10.1073/pnas.1714590114] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Syncytins are envelope genes from endogenous retroviruses that have been captured during evolution for a function in placentation. They have been found in all placental mammals in which they have been searched, including marsupials. Placental structures are not restricted to mammals but also emerged in some other vertebrates, most frequently in lizards, such as the viviparous Mabuya Scincidae. Here, we performed high-throughput RNA sequencing of a Mabuya placenta transcriptome and screened for the presence of retroviral env genes with a full-length ORF. We identified one such gene, which we named "syncytin-Mab1," that has all the characteristics expected for a syncytin gene. It encodes a membrane-bound envelope protein with fusogenic activity ex vivo, is expressed at the placental level as revealed by in situ hybridization and immunohistochemistry, and is conserved in all Mabuya species tested, spanning over 25 My of evolution. Its cognate receptor, required for its fusogenic activity, was searched for by a screening assay using the GeneBridge4 human/Chinese hamster radiation hybrid panel and found to be the MPZL1 gene, previously identified in mammals as a signal-transducing transmembrane protein involved in cell migration. Together, these results show that syncytin capture is not restricted to placental mammals, but can also take place in the rare nonmammalian vertebrates in which a viviparous placentotrophic mode of reproduction emerged. It suggests that similar molecular tools have been used for the convergent evolution of placentation in independently evolved and highly distant vertebrates.
Collapse
|
11
|
Beigbeder A, Chartier FJM, Bisson N. MPZL1 forms a signalling complex with GRB2 adaptor and PTPN11 phosphatase in HER2-positive breast cancer cells. Sci Rep 2017; 7:11514. [PMID: 28912526 PMCID: PMC5599542 DOI: 10.1038/s41598-017-11876-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 08/30/2017] [Indexed: 01/25/2023] Open
Abstract
HER2/ErbB2 is overexpressed in a significant fraction of breast tumours and is associated with a poor prognosis. The adaptor protein GRB2 interacts directly with activated HER2 and is sufficient to transmit oncogenic signals. However, the consequence of HER2 activation on global GRB2 signalling networks is poorly characterized. We performed GRB2 affinity purification combined with mass spectrometry analysis of associated proteins in a HER2+ breast cancer model to delineate GRB2-nucleated protein interaction networks. We report the identification of the transmembrane protein MPZL1 as a new GRB2-associated protein. Our data show that the PTPN11 tyrosine phosphatase acts as a scaffold to bridge the association between GRB2 and MPZL1 in a phosphotyrosine-dependent manner. We further demonstrate that the formation of this MPZL1-PTPN11-GRB2 complex is triggered by cell attachment to fibronectin. Thus, our data support the importance of this new signalling complex in the control of cell adhesion of HER2+ breast cancer cells, a key feature of the metastatic process.
Collapse
Affiliation(s)
- Alice Beigbeder
- Centre de recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Axe Oncologie, Québec, QC G1R 3S3, Canada
- Centre de recherche sur le cancer de l'Université Laval, Québec, QC G1R 3S3, Canada
- PROTEO-Quebec Network for Research on Protein Function, Engineering, and Applications, Québec, QC G1V 0A6, Canada
| | - François J M Chartier
- Centre de recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Axe Oncologie, Québec, QC G1R 3S3, Canada
- Centre de recherche sur le cancer de l'Université Laval, Québec, QC G1R 3S3, Canada
- PROTEO-Quebec Network for Research on Protein Function, Engineering, and Applications, Québec, QC G1V 0A6, Canada
| | - Nicolas Bisson
- Centre de recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Axe Oncologie, Québec, QC G1R 3S3, Canada.
- Centre de recherche sur le cancer de l'Université Laval, Québec, QC G1R 3S3, Canada.
- PROTEO-Quebec Network for Research on Protein Function, Engineering, and Applications, Québec, QC G1V 0A6, Canada.
- Department of Molecular Biology, Medical Biochemistry and Pathology, Université Laval, Québec, QC G1V 0A6, Canada.
| |
Collapse
|
12
|
Yi JS, Huang Y, Kwaczala AT, Kuo IY, Ehrlich BE, Campbell SG, Giordano FJ, Bennett AM. Low-dose dasatinib rescues cardiac function in Noonan syndrome. JCI Insight 2016; 1:e90220. [PMID: 27942593 DOI: 10.1172/jci.insight.90220] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Noonan syndrome (NS) is a common autosomal dominant disorder that presents with short stature, craniofacial dysmorphism, and cardiac abnormalities. Activating mutations in the PTPN11 gene encoding for the Src homology 2 (SH2) domain-containing protein tyrosine phosphatase-2 (SHP2) causes approximately 50% of NS cases. In contrast, NS with multiple lentigines (NSML) is caused by mutations that inactivate SHP2, but it exhibits some overlapping abnormalities with NS. Protein zero-related (PZR) is a SHP2-binding protein that is hyper-tyrosyl phosphorylated in the hearts of mice from NS and NSML, suggesting that PZR and the tyrosine kinase that catalyzes its phosphorylation represent common targets for these diseases. We show that the tyrosine kinase inhibitor, dasatinib, at doses orders of magnitude lower than that used for its anticancer activities inhibited PZR tyrosyl phosphorylation in the hearts of NS mice. Low-dose dasatinib treatment of NS mice markedly improved cardiomyocyte contractility and functionality. Remarkably, a low dose of dasatinib reversed the expression levels of molecular markers of cardiomyopathy and reduced cardiac fibrosis in NS and NSML mice. These results suggest that PZR/SHP2 signaling is a common target of both NS and NSML and that low-dose dasatinib may represent a unifying therapy for the treatment of PTPN11-related cardiomyopathies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Anton M Bennett
- Department of Pharmacology.,Program in Integrative Cell Signaling and Neurobiology of Metabolism, Yale School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
13
|
Olson CR, Hodges LK, Mello CV. Dynamic gene expression in the song system of zebra finches during the song learning period. Dev Neurobiol 2015; 75:1315-38. [PMID: 25787707 DOI: 10.1002/dneu.22286] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 03/09/2015] [Indexed: 01/03/2023]
Abstract
The brain circuitry that controls song learning and production undergoes marked changes in morphology and connectivity during the song learning period in juvenile zebra finches, in parallel to the acquisition, practice and refinement of song. Yet, the genetic programs and timing of regulatory change that establish the neuronal connectivity and plasticity during this critical learning period remain largely undetermined. To address this question, we used in situ hybridization to compare the expression patterns of a set of 30 known robust molecular markers of HVC and/or area X, major telencephalic song nuclei, between adult and juvenile male zebra finches at different ages during development (20, 35, 50 days post-hatch, dph). We found that several of the genes examined undergo substantial changes in expression within HVC or its surrounds, and/or in other song nuclei. They fit into broad patterns of regulation, including those whose expression within HVC during this period increases (COL12A1, COL 21A1, MPZL1, PVALB, and CXCR7) or decreases (e.g., KCNT2, SAP30L), as well as some that show decreased expression in the surrounding tissue with little change within song nuclei (e.g. SV2B, TAC1). These results reveal a broad range of molecular changes that occur in the song system in concert with the song learning period. Some of the genes and pathways identified are potential modulators of the developmental changes associated with the emergence of the adult properties of the song control system, and/or the acquisition of learned vocalizations in songbirds.
Collapse
Affiliation(s)
- Christopher R Olson
- Department of Behavioral Neuroscience, Oregon Health & Science University, 3181 SW Sam Jackson Park Road L470, Portland, Oregon, 97239-3098
| | - Lisa K Hodges
- Biology Department, Lewis and Clark College, 0615 S.W. Palatine Hill Road, Portland, Oregon 97219
| | - Claudio V Mello
- Department of Behavioral Neuroscience, Oregon Health & Science University, 3181 SW Sam Jackson Park Road L470, Portland, Oregon, 97239-3098
| |
Collapse
|
14
|
Lapin V, Shirdel EA, Wei X, Mason JM, Jurisica I, Mak TW. Kinome-wide screening of HER2+ breast cancer cells for molecules that mediate cell proliferation or sensitize cells to trastuzumab therapy. Oncogenesis 2014; 3:e133. [PMID: 25500906 PMCID: PMC4275559 DOI: 10.1038/oncsis.2014.45] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 08/19/2014] [Indexed: 01/18/2023] Open
Abstract
Understanding the signaling differences that distinguish human HER2-amplified (HER2-positive (HER2+)) breast cancers from other breast cancer subtypes may help to identify protein drug targets for the specific treatment of HER2+ breast cancers. We performed two kinome-wide small interfering RNA (siRNA) screens on five HER2+ breast cancer cell lines, seven breast cancer cell lines in which HER2 was not amplified and two normal breast cell lines. To pinpoint the main kinases driving HER2 signaling, we performed a comprehensive siRNA screen that identified loss of the HER2/HER3 heterodimer as having the most prominent inhibitory effect on the growth of HER2+ breast cancer cells. In a second siRNA screen focused on identifying genes that could sensitize HER2+ cells to trastuzumab treatment, we found that loss of signaling members downstream of phosphatidylinositol 3 kinase (PI3K) potentiated the growth inhibitory effects of trastuzumab. Loss of HER2 and HER3, as well as proteins involved in mitogenic and environmental stress pathways inhibited the proliferation of HER2+ cells only in the absence of trastuzumab, suggesting that these pathways are inhibited by trastuzumab treatment. Loss of essential G2/M cell cycle mediators or proteins involved in vesicle organization exerted inhibitory effects on HER2+ cell growth that were unaffected by trastuzumab. Furthermore, the use of a sensitization index (SI) identified targeting the PI3K pathway to sensitize to trastuzumab treatment. Antagonism using the SI identified MYO3A, MYO3B and MPZL1 as antagonizers to trastuzumab treatment among HER2+ cell lines. Our results suggest that the dimerization partners of HER2 are important for determining the activation of downstream proliferation pathways. Understanding the complex layers of signaling triggered downstream of HER2 homodimers and heterodimers will facilitate the selection of better targets for combination therapies intended to treat HER2+ breast cancers.
Collapse
Affiliation(s)
- V Lapin
- 1] Campbell Family Institute for Breast Cancer Research, Toronto, Ontario, Canada [2] Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - E A Shirdel
- 1] Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada [2] Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - X Wei
- Campbell Family Institute for Breast Cancer Research, Toronto, Ontario, Canada
| | - J M Mason
- Campbell Family Institute for Breast Cancer Research, Toronto, Ontario, Canada
| | - I Jurisica
- 1] Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada [2] Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - T W Mak
- 1] Campbell Family Institute for Breast Cancer Research, Toronto, Ontario, Canada [2] Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
15
|
Lauriol J, Jaffré F, Kontaridis MI. The role of the protein tyrosine phosphatase SHP2 in cardiac development and disease. Semin Cell Dev Biol 2014; 37:73-81. [PMID: 25256404 DOI: 10.1016/j.semcdb.2014.09.013] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Revised: 09/09/2014] [Accepted: 09/15/2014] [Indexed: 02/06/2023]
Abstract
Congenital heart disease is the most common human developmental disorder, affecting ∼1:100 newborns, and is the primary cause of birth-defect related deaths worldwide. As a major regulator of receptor tyrosine kinase (RTK), cytokine and G-protein coupled receptor signaling, the non-receptor protein tyrosine phosphatase SHP2 plays a critical role in normal cardiac development and function. Indeed, SHP2 participates in a wide variety of cellular functions, including proliferation, survival, differentiation, migration, and cell-cell communication. Moreover, human activating and inactivating mutations of SHP2 are responsible for two related developmental disorders called Noonan and LEOPARD Syndromes, respectively, which are both characterized, in part, by congenital heart defects. Structural, enzymologic, biochemical, and SHP2 mouse model studies have together greatly enriched our knowledge of SHP2 and, as such, have also uncovered the diverse roles for SHP2 in cardiac development, including its contribution to progenitor cell specification, cardiac morphogenesis, and maturation of cardiac valves and myocardial chambers. By delineating the precise mechanisms by which SHP2 is involved in regulating these processes, we can begin to better understand the pathogenesis of cardiac disease and find more strategic and effective therapies for treatment of patients with congenital heart disorders.
Collapse
Affiliation(s)
- Jessica Lauriol
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, United States
| | - Fabrice Jaffré
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, United States
| | - Maria I Kontaridis
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, United States; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, United States.
| |
Collapse
|
16
|
PZR coordinates Shp2 Noonan and LEOPARD syndrome signaling in zebrafish and mice. Mol Cell Biol 2014; 34:2874-89. [PMID: 24865967 DOI: 10.1128/mcb.00135-14] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Noonan syndrome (NS) is an autosomal dominant disorder caused by activating mutations in the PTPN11 gene encoding Shp2, which manifests in congenital heart disease, short stature, and facial dysmorphia. The complexity of Shp2 signaling is exemplified by the observation that LEOPARD syndrome (LS) patients possess inactivating PTPN11 mutations yet exhibit similar symptoms to NS. Here, we identify "protein zero-related" (PZR), a transmembrane glycoprotein that interfaces with the extracellular matrix to promote cell migration, as a major hyper-tyrosyl-phosphorylated protein in mouse and zebrafish models of NS and LS. PZR hyper-tyrosyl phosphorylation is facilitated in a phosphatase-independent manner by enhanced Src recruitment to NS and LS Shp2. In zebrafish, PZR overexpression recapitulated NS and LS phenotypes. PZR was required for zebrafish gastrulation in a manner dependent upon PZR tyrosyl phosphorylation. Hence, we identify PZR as an NS and LS target. Enhanced PZR-mediated membrane recruitment of Shp2 serves as a common mechanism to direct overlapping pathophysiological characteristics of these PTPN11 mutations.
Collapse
|
17
|
Yeh YT, Dai HY, Chien CY. Amplification of MPZL1/PZR gene in hepatocellular carcinoma. Hepatobiliary Surg Nutr 2014; 3:87-90. [PMID: 24812600 DOI: 10.3978/j.issn.2304-3881.2014.02.06] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Accepted: 02/13/2014] [Indexed: 12/19/2022]
Abstract
Hepatocellular carcinoma (HCC) is the fifth leading cause of cancer mortality worldwide. It is noted that metastasis is a fundamental biological behavior of HCC and the main cause of treatment failure. The identification of somatic alterations and their specific inhibitors may contribute to reduce side effects and prolong patient survival in HCC. Chromosomal copy number alterations (CNAs) are important subclasses of somatic mutations and can be used as an effective method of identifying driver genes with causal roles in carcinogenesis. Jia et al. identified a novel recurrent focal amplicon, 1q24.1-24.2, targets the MPZL1 gene in HCC. They also found that MPZL1 may recruit the SHP-2 and subsequently activate/phosphorylate Src kinase at Tyr426, promoting phosphorylation of cortactin and migration of HCC cells. It is noted that phosphorylation of Tyr416 in the activation loop of the kinase domain up-regulates enzyme activity of Src. In addition, the active state of c-Src, p-Tyr416-c-Src, is an independent prognostic marker of poor patient survival in HCC. Therefore, c-Src signaling may be a druggable target and c-Src targeted therapy may improve patient outcome in this specific subtype of HCC patient with a gain of the recurrent focal amplicon, 1q24.1-24.2.
Collapse
Affiliation(s)
- Yao-Tsung Yeh
- 1 Department of Medical Laboratory Sciences and Biotechnology, Fooyin University, Kaohsiung, Taiwan ; 2 Department of Laboratory Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Hong-Ying Dai
- 1 Department of Medical Laboratory Sciences and Biotechnology, Fooyin University, Kaohsiung, Taiwan ; 2 Department of Laboratory Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Ching-Yen Chien
- 1 Department of Medical Laboratory Sciences and Biotechnology, Fooyin University, Kaohsiung, Taiwan ; 2 Department of Laboratory Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| |
Collapse
|
18
|
Jia D, Jing Y, Zhang Z, Liu L, Ding J, Zhao F, Ge C, Wang Q, Chen T, Yao M, Li J, Gu J, He X. Amplification of MPZL1/PZR promotes tumor cell migration through Src-mediated phosphorylation of cortactin in hepatocellular carcinoma. Cell Res 2013; 24:204-17. [PMID: 24296779 DOI: 10.1038/cr.2013.158] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Revised: 09/10/2013] [Accepted: 09/25/2013] [Indexed: 12/15/2022] Open
Abstract
We have previously identified 1 241 regions of somatic copy number alterations (CNAs) in hepatocellular carcinoma (HCC). In the present study, we found that a novel recurrent focal amplicon, 1q24.1-24.2, targets the MPZL1 gene in HCC. Notably, there is a positive correlation between the expression levels of MPZL1 and intrahepatic metastasis of the HCC specimens. MPZL1 can significantly enhance the migratory and metastatic potential of the HCC cells. Moreover, we found that one of the mechanisms by which MPZL1 promotes HCC cell migration is by inducing the phosphorylation and activation of the pro-metastatic protein, cortactin. Additionally, we found that Src kinase mediates the phosphorylation and activation of cortactin induced by MPZL1 overexpression. Taken together, these findings suggest that MPZL1 is a novel pro-metastatic gene targeted by a recurrent region of copy number amplification at 1q24.1-24.2 in HCC.
Collapse
Affiliation(s)
- Deshui Jia
- 1] State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200032, China [2] Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Ying Jing
- 1] State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200032, China [2] Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Zhenfeng Zhang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200032, China
| | - Li Liu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200032, China
| | - Jie Ding
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200032, China
| | - Fangyu Zhao
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200032, China
| | - Chao Ge
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200032, China
| | - Qifeng Wang
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Taoyang Chen
- Qidong Liver Cancer Institute, Qidong, Jiangsu 226200, China
| | - Ming Yao
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200032, China
| | - Jinjun Li
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200032, China
| | - Jianren Gu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200032, China
| | - Xianghuo He
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200032, China
| |
Collapse
|
19
|
Koirala S, Corfas G. Identification of novel glial genes by single-cell transcriptional profiling of Bergmann glial cells from mouse cerebellum. PLoS One 2010; 5:e9198. [PMID: 20169146 PMCID: PMC2820553 DOI: 10.1371/journal.pone.0009198] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2009] [Accepted: 01/22/2010] [Indexed: 01/15/2023] Open
Abstract
Bergmann glial cells play critical roles in the structure and function of the cerebellum. During development, their radial processes serve as guides for migrating granule neurons and their terminal endfeet tile to form the glia limitans. As the cerebellum matures, Bergmann glia perform important roles in synaptic transmission and synapse maintenance, while continuing to serve as essential structural elements. Despite growing evidence of the diverse functions of Bergmann glia, the molecular mechanisms that mediate these functions have remained largely unknown. As a step toward identifying the molecular repertoire underlying Bergmann glial function, here we examine global gene expression in individual Bergmann glia from developing (P6) and mature (P30) mouse cerebellum. When we select for developmentally regulated genes, we find that transcription factors and ribosomal genes are particularly enriched at P6 relative to P30; whereas synapse associated molecules are enriched at P30 relative to P6. We also analyze genes expressed at high levels at both ages. In all these categories, we find genes that were not previously known to be expressed in glial cells, and discuss novel functions some of these genes may potentially play in Bergmann glia. We also show that Bergmann glia, even in the adult, express a large set of genes thought to be specific to stem cells, suggesting that Bergmann glia may retain neural precursor potential as has been proposed. Finally, we highlight several genes that in the cerebellum are expressed in Bergmann glia but not astrocytes, and may therefore serve as new, specific markers for Bergmann glia.
Collapse
Affiliation(s)
- Samir Koirala
- F.M. Kirby Neurobiology Center, Children's Hospital Boston, Boston, Massachusetts, United States of America
- Department of Neurology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Gabriel Corfas
- F.M. Kirby Neurobiology Center, Children's Hospital Boston, Boston, Massachusetts, United States of America
- Department of Neurology, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Otolaryngology, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|