1
|
Cuevas RA, Wong R, Joolharzadeh P, Moorhead WJ, Chu CC, Callahan J, Crane A, Boufford CK, Parise AM, Parwal A, Behzadi P, St Hilaire C. Ecto-5'-nucleotidase (Nt5e/CD73)-mediated adenosine signaling attenuates TGFβ-2 induced elastin and cellular contraction. Am J Physiol Cell Physiol 2023; 324:C327-C338. [PMID: 36503240 PMCID: PMC9902218 DOI: 10.1152/ajpcell.00054.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 11/21/2022] [Accepted: 12/05/2022] [Indexed: 12/15/2022]
Abstract
Arterial calcification due to deficiency of CD73 (ACDC) is a rare genetic disease caused by a loss-of-function mutation in the NT5E gene encoding the ecto-5'-nucleotidase (cluster of differentiation 73, CD73) enzyme. Patients with ACDC develop vessel arteriomegaly, tortuosity, and vascular calcification in their lower extremity arteries. Histological analysis shows that patients with ACDC vessels exhibit fragmented elastin fibers similar to that seen in aneurysmal-like pathologies. It is known that alterations in transforming growth factor β (TGFβ) pathway signaling contribute to this elastin phenotype in several connective tissue diseases, as TGFβ regulates extracellular matrix (ECM) remodeling. Our study investigates whether CD73-derived adenosine modifies TGFβ signaling in vascular smooth muscle cells (SMCs). We show that Nt5e-/- SMCs have elevated contractile markers and elastin gene expression compared with Nt5e+/+ SMCs. Ecto-5'-nucleotidase (Nt5e)-deficient SMCs exhibit increased TGFβ-2 and activation of small mothers against decapentaplegic (SMAD) signaling, elevated elastin transcript and protein, and potentiate SMC contraction. These effects were diminished when the A2b adenosine receptor was activated. Our results identify a novel link between adenosine and TGFβ signaling, where adenosine signaling via the A2b adenosine receptor attenuates TGFβ signaling to regulate SMC homeostasis. We discuss how disruption in adenosine signaling is implicated in ACDC vessel tortuosity and could potentially contribute to other aneurysmal pathogenesis.
Collapse
Affiliation(s)
- Rolando A Cuevas
- Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Ryan Wong
- Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Pouya Joolharzadeh
- Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - William J Moorhead
- Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Claire C Chu
- Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Jack Callahan
- Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Alex Crane
- Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Camille K Boufford
- Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Angelina M Parise
- Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Aneesha Parwal
- Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Parya Behzadi
- Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Cynthia St Hilaire
- Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
2
|
Adenosine Receptors Profile in Fibromuscular Dysplasia. Biomedicines 2022; 10:biomedicines10112831. [PMID: 36359350 PMCID: PMC9687922 DOI: 10.3390/biomedicines10112831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 10/19/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022] Open
Abstract
Fibromuscular dysplasia (FMD) is a non-inflammatory vascular disease that is characterized by unexplained systemic hypertension occurring in young people, associated with arterial stenosis, aneurysm rupture, intracranial/renal infarction, and stroke. Although the gold standard for the diagnosis remains catheter-angiography, biological markers would be helpful due to the delay from first symptom to diagnosis. Adenosine is an ATP derivative, that may be implicated in FMD pathophysiology. We hypothesized that changes in adenosine blood level (ABL) and production of adenosine receptors may be associated with FMD. Using peripheral blood mononuclear cells, we evaluated A1, A2A, and A2B receptor production by Western blot, in 67 patients (17 men and 50 women, mean (range) age 55 (29−77) years and 40 controls, 10 men and 30 women, mean (range) age 56 (37−70)). ABL was evaluated by liquid chromatography, mass spectrometry. ABL was significantly higher in patients vs. controls, mean (range): 1.7 (0.7−3) µmol/L vs. controls 0.6 (0.4−0.8) µmol/L (+180%) p < 0.001. While A1R and A2AR production did not differ in patients and controls, we found an over-production of A2BR in patients: 1.70 (0.90−2.40; arbitrary units) vs. controls = 1.03 (0.70−1.40), mean + 65% (p < 0.001). A2BR production with a cut off of 1.3 arbitrary units, gives a good sensitivity and specificity for the diagnosis. Production measurement of A2BR on monocytes and ABL could help in the diagnosis, especially in atypical or with poor symptoms.
Collapse
|
3
|
Moorhead WJ, Chu CC, Cuevas RA, Callahan J, Wong R, Regan C, Boufford CK, Sur S, Liu M, Gomez D, MacTaggart JN, Kamenskiy A, Boehm M, St Hilaire C. Dysregulation of FOXO1 (Forkhead Box O1 Protein) Drives Calcification in Arterial Calcification due to Deficiency of CD73 and Is Present in Peripheral Artery Disease. Arterioscler Thromb Vasc Biol 2020; 40:1680-1694. [PMID: 32375544 PMCID: PMC7310306 DOI: 10.1161/atvbaha.119.313765] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Supplemental Digital Content is available in the text. Objective: The recessive disease arterial calcification due to deficiency of CD73 (ACDC) presents with extensive nonatherosclerotic medial layer calcification in lower extremity arteries. Lack of CD73 induces a concomitant increase in TNAP (tissue nonspecific alkaline phosphatase; ALPL), a key enzyme in ectopic mineralization. Our aim was to investigate how loss of CD73 activity leads to increased ALPL expression and calcification in CD73-deficient patients and assess whether this mechanism may apply to peripheral artery disease calcification. Approach and Results: We previously developed a patient-specific disease model using ACDC primary dermal fibroblasts that recapitulates the calcification phenotype in vitro. We found that lack of CD73-mediated adenosine signaling reduced cAMP production and resulted in increased activation of AKT. The AKT/mTOR (mammalian target of rapamycin) axis blocks autophagy and inducing autophagy prevented calcification; however, we did not observe autophagy defects in ACDC cells. In silico analysis identified a putative FOXO1 (forkhead box O1 protein) binding site in the human ALPL promoter. Exogenous AMP induced FOXO1 nuclear localization in ACDC but not in control cells, and this was prevented with a cAMP analogue or activation of A2a/2b adenosine receptors. Inhibiting FOXO1 reduced ALPL expression and TNAP activity and prevented calcification. Mutating the FOXO1 binding site reduced ALPL promoter activation. Importantly, we provide evidence that non-ACDC calcified femoropopliteal arteries exhibit decreased CD73 and increased FOXO1 levels compared with control arteries. Conclusions: These data show that lack of CD73-mediated cAMP signaling promotes expression of the human ALPL gene via a FOXO1-dependent mechanism. Decreased CD73 and increased FOXO1 was also observed in more common peripheral artery disease calcification.
Collapse
Affiliation(s)
- William J Moorhead
- From the Department of Medicine, Division of Cardiology, University of Pittsburgh, PA (W.J.M., C.C.C., R.A.C., J.C., R.W., C.R., C.K.B., S.S., M.L., D.G., C.S.H.).,Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, PA (W.J.M., C.C.C., R.A.C., J.C., R.W., C.R., C.K.B., S.S., M.L., D.G., C.S.H.)
| | - Claire C Chu
- From the Department of Medicine, Division of Cardiology, University of Pittsburgh, PA (W.J.M., C.C.C., R.A.C., J.C., R.W., C.R., C.K.B., S.S., M.L., D.G., C.S.H.).,Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, PA (W.J.M., C.C.C., R.A.C., J.C., R.W., C.R., C.K.B., S.S., M.L., D.G., C.S.H.)
| | - Rolando A Cuevas
- From the Department of Medicine, Division of Cardiology, University of Pittsburgh, PA (W.J.M., C.C.C., R.A.C., J.C., R.W., C.R., C.K.B., S.S., M.L., D.G., C.S.H.).,Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, PA (W.J.M., C.C.C., R.A.C., J.C., R.W., C.R., C.K.B., S.S., M.L., D.G., C.S.H.)
| | - Jack Callahan
- From the Department of Medicine, Division of Cardiology, University of Pittsburgh, PA (W.J.M., C.C.C., R.A.C., J.C., R.W., C.R., C.K.B., S.S., M.L., D.G., C.S.H.).,Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, PA (W.J.M., C.C.C., R.A.C., J.C., R.W., C.R., C.K.B., S.S., M.L., D.G., C.S.H.)
| | - Ryan Wong
- From the Department of Medicine, Division of Cardiology, University of Pittsburgh, PA (W.J.M., C.C.C., R.A.C., J.C., R.W., C.R., C.K.B., S.S., M.L., D.G., C.S.H.).,Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, PA (W.J.M., C.C.C., R.A.C., J.C., R.W., C.R., C.K.B., S.S., M.L., D.G., C.S.H.)
| | - Cailyn Regan
- From the Department of Medicine, Division of Cardiology, University of Pittsburgh, PA (W.J.M., C.C.C., R.A.C., J.C., R.W., C.R., C.K.B., S.S., M.L., D.G., C.S.H.).,Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, PA (W.J.M., C.C.C., R.A.C., J.C., R.W., C.R., C.K.B., S.S., M.L., D.G., C.S.H.)
| | - Camille K Boufford
- From the Department of Medicine, Division of Cardiology, University of Pittsburgh, PA (W.J.M., C.C.C., R.A.C., J.C., R.W., C.R., C.K.B., S.S., M.L., D.G., C.S.H.).,Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, PA (W.J.M., C.C.C., R.A.C., J.C., R.W., C.R., C.K.B., S.S., M.L., D.G., C.S.H.)
| | - Swastika Sur
- From the Department of Medicine, Division of Cardiology, University of Pittsburgh, PA (W.J.M., C.C.C., R.A.C., J.C., R.W., C.R., C.K.B., S.S., M.L., D.G., C.S.H.).,Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, PA (W.J.M., C.C.C., R.A.C., J.C., R.W., C.R., C.K.B., S.S., M.L., D.G., C.S.H.)
| | - Mingjun Liu
- From the Department of Medicine, Division of Cardiology, University of Pittsburgh, PA (W.J.M., C.C.C., R.A.C., J.C., R.W., C.R., C.K.B., S.S., M.L., D.G., C.S.H.).,Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, PA (W.J.M., C.C.C., R.A.C., J.C., R.W., C.R., C.K.B., S.S., M.L., D.G., C.S.H.)
| | - Delphine Gomez
- From the Department of Medicine, Division of Cardiology, University of Pittsburgh, PA (W.J.M., C.C.C., R.A.C., J.C., R.W., C.R., C.K.B., S.S., M.L., D.G., C.S.H.).,Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, PA (W.J.M., C.C.C., R.A.C., J.C., R.W., C.R., C.K.B., S.S., M.L., D.G., C.S.H.)
| | - Jason N MacTaggart
- Department of Surgery, University of Nebraska Medical Center, Omaha (J.N.M.)
| | | | - Manfred Boehm
- Laboratory of Cardiovascular Regenerative Medicine, National Heart, Lung, and Blood Institute, Bethesda, MD (M.B.)
| | - Cynthia St Hilaire
- From the Department of Medicine, Division of Cardiology, University of Pittsburgh, PA (W.J.M., C.C.C., R.A.C., J.C., R.W., C.R., C.K.B., S.S., M.L., D.G., C.S.H.).,Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, PA (W.J.M., C.C.C., R.A.C., J.C., R.W., C.R., C.K.B., S.S., M.L., D.G., C.S.H.).,Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, PA (C.S.H.)
| |
Collapse
|
4
|
Huin V, Dhaenens CM, Homa M, Carvalho K, Buée L, Sablonnière B. Neurogenetics of the Human Adenosine Receptor Genes: Genetic Structures and Involvement in Brain Diseases. J Caffeine Adenosine Res 2019. [DOI: 10.1089/caff.2019.0011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Vincent Huin
- University of Lille, INSERM, CHU Lille, UMR-S 1172-JPArc–Centre de Recherche Jean-Pierre AUBERT Neurosciences et Cancer, Lille, France
- CHU Lille, Institut de Biochimie et Biologie moléculaire, Centre de Biologie Pathologie et Génétique, Lille, France
| | - Claire-Marie Dhaenens
- University of Lille, INSERM, CHU Lille, UMR-S 1172-JPArc–Centre de Recherche Jean-Pierre AUBERT Neurosciences et Cancer, Lille, France
- CHU Lille, Institut de Biochimie et Biologie moléculaire, Centre de Biologie Pathologie et Génétique, Lille, France
| | - Mégane Homa
- University of Lille, INSERM, CHU Lille, UMR-S 1172-JPArc–Centre de Recherche Jean-Pierre AUBERT Neurosciences et Cancer, Lille, France
| | - Kévin Carvalho
- University of Lille, INSERM, CHU Lille, UMR-S 1172-JPArc–Centre de Recherche Jean-Pierre AUBERT Neurosciences et Cancer, Lille, France
| | - Luc Buée
- University of Lille, INSERM, CHU Lille, UMR-S 1172-JPArc–Centre de Recherche Jean-Pierre AUBERT Neurosciences et Cancer, Lille, France
| | - Bernard Sablonnière
- University of Lille, INSERM, CHU Lille, UMR-S 1172-JPArc–Centre de Recherche Jean-Pierre AUBERT Neurosciences et Cancer, Lille, France
- CHU Lille, Institut de Biochimie et Biologie moléculaire, Centre de Biologie Pathologie et Génétique, Lille, France
| |
Collapse
|
5
|
Alencar AKN, Montes GC, Barreiro EJ, Sudo RT, Zapata-Sudo G. Adenosine Receptors As Drug Targets for Treatment of Pulmonary Arterial Hypertension. Front Pharmacol 2017; 8:858. [PMID: 29255415 PMCID: PMC5722832 DOI: 10.3389/fphar.2017.00858] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 11/09/2017] [Indexed: 01/05/2023] Open
Abstract
Pulmonary arterial hypertension (PAH) is a clinical condition characterized by pulmonary arterial remodeling and vasoconstriction, which promote chronic vessel obstruction and elevation of pulmonary vascular resistance. Long-term right ventricular (RV) overload leads to RV dysfunction and failure, which are the main determinants of life expectancy in PAH subjects. Therapeutic options for PAH remain limited, despite the introduction of prostacyclin analogs, endothelin receptor antagonists, phosphodiesterase type 5 inhibitors, and soluble guanylyl cyclase stimulators within the last 15 years. Through addressing the pulmonary endothelial and smooth muscle cell dysfunctions associated with PAH, these interventions delay disease progression but do not offer a cure. Emerging approaches to improve treatment efficacy have focused on beneficial actions to both the pulmonary vasculature and myocardium, and several new targets have been investigated and validated in experimental PAH models. Herein, we review the effects of adenosine and adenosine receptors (A1, A2A, A2B, and A3) on the cardiovascular system, focusing on the A2A receptor as a pharmacological target. This receptor induces pulmonary vascular and heart protection in experimental models, specifically models of PAH. Targeting the A2A receptor could potentially serve as a novel and efficient approach for treating PAH and concomitant RV failure. A2A receptor activation induces pulmonary endothelial nitric oxide synthesis, smooth muscle cell hyperpolarization, and vasodilation, with important antiproliferative activities through the inhibition of collagen deposition and vessel wall remodeling in the pulmonary arterioles. The pleiotropic potential of A2A receptor activation is highlighted by its additional expression in the heart tissue, where it participates in the regulation of intracellular calcium handling and maintenance of heart chamber structure and function. In this way, the activation of A2A receptor could prevent the production of a hypertrophic and dysfunctional phenotype in animal models of cardiovascular diseases.
Collapse
Affiliation(s)
- Allan K N Alencar
- Programa de Pesquisa em Desenvolvimento de Fármacos, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Guilherme C Montes
- Programa de Pesquisa em Desenvolvimento de Fármacos, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Eliezer J Barreiro
- Programa de Pesquisa em Desenvolvimento de Fármacos, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Roberto T Sudo
- Programa de Pesquisa em Desenvolvimento de Fármacos, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Gisele Zapata-Sudo
- Programa de Pesquisa em Desenvolvimento de Fármacos, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
6
|
The Adenosinergic System as a Therapeutic Target in the Vasculature: New Ligands and Challenges. Molecules 2017; 22:molecules22050752. [PMID: 28481238 PMCID: PMC6154114 DOI: 10.3390/molecules22050752] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 04/24/2017] [Accepted: 05/02/2017] [Indexed: 12/20/2022] Open
Abstract
Adenosine is an adenine base purine with actions as a modulator of neurotransmission, smooth muscle contraction, and immune response in several systems of the human body, including the cardiovascular system. In the vasculature, four P1-receptors or adenosine receptors—A1, A2A, A2B and A3—have been identified. Adenosine receptors are membrane G-protein receptors that trigger their actions through several signaling pathways and present differential affinity requirements. Adenosine is an endogenous ligand whose extracellular levels can reach concentrations high enough to activate the adenosine receptors. This nucleoside is a product of enzymatic breakdown of extra and intracellular adenine nucleotides and also of S-adenosylhomocysteine. Adenosine availability is also dependent on the activity of nucleoside transporters (NTs). The interplay between NTs and adenosine receptors’ activities are debated and a particular attention is given to the paramount importance of the disruption of this interplay in vascular pathophysiology, namely in hypertension., The integration of important functional aspects of individual adenosine receptor pharmacology (such as in vasoconstriction/vasodilation) and morphological features (within the three vascular layers) in vessels will be discussed, hopefully clarifying the importance of adenosine receptors/NTs for modulating peripheral mesenteric vascular resistance. In recent years, an increase interest in purine physiology/pharmacology has led to the development of new ligands for adenosine receptors. Some of them have been patented as having promising therapeutic activities and some have been chosen to undergo on clinical trials. Increased levels of endogenous adenosine near a specific subtype can lead to its activation, constituting an indirect receptor targeting approach either by inhibition of NT or, alternatively, by increasing the activity of enzymes responsible for ATP breakdown. These findings highlight the putative role of adenosinergic players as attractive therapeutic targets for cardiovascular pathologies, namely hypertension, heart failure or stroke. Nevertheless, several aspects are still to be explored, creating new challenges to be addressed in future studies, particularly the development of strategies able to circumvent the predicted side effects of these therapies.
Collapse
|
7
|
Cohen HB, Ward A, Hamidzadeh K, Ravid K, Mosser DM. IFN-γ Prevents Adenosine Receptor (A2bR) Upregulation To Sustain the Macrophage Activation Response. THE JOURNAL OF IMMUNOLOGY 2015; 195:3828-37. [PMID: 26355158 DOI: 10.4049/jimmunol.1501139] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 08/04/2015] [Indexed: 12/23/2022]
Abstract
The priming of macrophages with IFN-γ prior to TLR stimulation results in enhanced and prolonged inflammatory cytokine production. In this study, we demonstrate that, following TLR stimulation, macrophages upregulate the adenosine 2b receptor (A2bR) to enhance their sensitivity to immunosuppressive extracellular adenosine. This upregulation of A2bR leads to the induction of macrophages with an immunoregulatory phenotype and the downregulation of inflammation. IFN-γ priming of macrophages selectively prevents the induction of the A2bR in macrophages to mitigate sensitivity to adenosine and to prevent this regulatory transition. IFN-γ-mediated A2bR blockade leads to a prolonged production of TNF-α and IL-12 in response to TLR ligation. The pharmacologic inhibition or the genetic deletion of the A2bR results in a hyperinflammatory response to TLR ligation, similar to IFN-γ treatment of macrophages. Conversely, the overexpression of A2bR on macrophages blunts the IFN-γ effects and promotes the development of immunoregulatory macrophages. Thus, we propose a novel mechanism whereby IFN-γ contributes to host defense by desensitizing macrophages to the immunoregulatory effects of adenosine. This mechanism overcomes the transient nature of TLR activation, and prolongs the antimicrobial state of the classically activated macrophage. This study may offer promising new targets to improve the clinical outcome of inflammatory diseases in which macrophage activation is dysregulated.
Collapse
Affiliation(s)
- Heather B Cohen
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742; Maryland Pathogen Research Institute, College Park, MD 20742; and
| | - Amanda Ward
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742; Maryland Pathogen Research Institute, College Park, MD 20742; and
| | - Kajal Hamidzadeh
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742; Maryland Pathogen Research Institute, College Park, MD 20742; and
| | - Katya Ravid
- School of Medicine, Boston University, Boston, MA 02118
| | - David M Mosser
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742; Maryland Pathogen Research Institute, College Park, MD 20742; and
| |
Collapse
|
8
|
Cardiovascular adenosine receptors: Expression, actions and interactions. Pharmacol Ther 2013; 140:92-111. [DOI: 10.1016/j.pharmthera.2013.06.002] [Citation(s) in RCA: 163] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Accepted: 05/28/2013] [Indexed: 12/26/2022]
|
9
|
Johnston-Cox HA, Koupenova M, Ravid K. A2 adenosine receptors and vascular pathologies. Arterioscler Thromb Vasc Biol 2012; 32:870-8. [PMID: 22423039 PMCID: PMC5755359 DOI: 10.1161/atvbaha.112.246181] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Accepted: 02/14/2012] [Indexed: 12/20/2022]
Abstract
Cardiovascular disease, a leading cause of death and morbidity, is regulated, among various factors, by inflammation. The level of the metabolite adenosine is augmented under stress, including inflammatory, hypoxic, or injurious events. Adenosine has been shown to affect various physiological and pathological processes, largely through 1 or more of its 4 types of receptors: the A1 and A3 adenylyl cyclase inhibitory receptors and the A2A and A2B adenylyl cyclase stimulatory receptors. This article focuses on reviewing common and distinct effects of the 2 A2-type adenosine receptors on vascular disease and the mechanisms involved. Understanding the pathogenesis of vascular disease mediated by these receptors is important to the development of therapeutics and to the prevention and management of disease.
Collapse
Affiliation(s)
- Hillary A. Johnston-Cox
- Departments of Medicine and Biochemistry, Whitaker Cardiovascular Institute, and Evans Center for Interdisciplinary Biomedical Research, Boston University School of Medicine, Boston, MA 02118
| | - Milka Koupenova
- Departments of Medicine and Biochemistry, Whitaker Cardiovascular Institute, and Evans Center for Interdisciplinary Biomedical Research, Boston University School of Medicine, Boston, MA 02118
| | - Katya Ravid
- Departments of Medicine and Biochemistry, Whitaker Cardiovascular Institute, and Evans Center for Interdisciplinary Biomedical Research, Boston University School of Medicine, Boston, MA 02118
| |
Collapse
|
10
|
Chen H, Koupenova M, Yang D, Sume SS, Trackman PC, Ravid K. Regulation of MMP-9 expression by the A2b adenosine receptor and its dependency on TNF-α signaling. Exp Hematol 2011; 39:525-30. [PMID: 21320567 DOI: 10.1016/j.exphem.2011.02.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2010] [Revised: 01/13/2011] [Accepted: 02/08/2011] [Indexed: 01/02/2023]
Abstract
OBJECTIVE Macrophage- and vascular-derived matrix metalloproteinase (MMP)-9 plays an important role in neointima formation after vascular injury. The A2b adenosine receptor (A2bAR) elevates cyclic adenosine monophosphate and suppresses tumor necrosis factor-α (TNF-α) levels at baseline and after vascular injury. Considering the influences of TNF-α on MMP-9 expression and activity, here we examined the effect of the A2bAR on the expression of MMP-9 and its potential dependency on TNF-α. MATERIALS AND METHODS We applied protein activity and mRNA analyses of MMP-9 in macrophages derived from A2bAR knockout (KO) and TNF-α receptor KO mice. We employed guidewire-induced femoral artery injuries on A2bAR KO and control mice and analyzed by immunohistochemistry MMP-9 expression in the neointima area. RESULTS MMP-9 activity is somewhat less in resident A2bAR KO macrophages compared with wild-type cells. However, MMP-9 is increased in activated macrophages from A2bAR KO when TNF-α is further elevated, or in wild-type cells after TNF-α treatment. In accordance, A2bAR activation downregulates MMP-9 expression in wild-type macrophages, which is ablated in TNF-α receptor KO cells. A greater vascular lesion after femoral artery injury in A2bAR KO mice is associated with elevated TNF-α levels and augmented MMP-9, compared to control mice. CONCLUSIONS Ablation of the A2bAR in activated macrophages increases MMP-9. A2bAR activation reduces MMP-9 expression, which depends on TNF-α and could contribute to the protective role of A2bAR in a vascular injury model.
Collapse
Affiliation(s)
- Hongjie Chen
- Departments of Medicine and Biochemistry, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA 02118, USA
| | | | | | | | | | | |
Collapse
|
11
|
Papetti M, Augenlicht LH. MYBL2, a link between proliferation and differentiation in maturing colon epithelial cells. J Cell Physiol 2011; 226:785-91. [PMID: 20857481 DOI: 10.1002/jcp.22399] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Multiple signals, controlling both proliferation and differentiation, must be integrated in the reprogramming of intestinal epithelial cells during maturation along the crypt-luminal axis. The v-myb family member Mybl2, a molecule implicated in the development and maintenance of the stem cell phenotype, has been suggested to play an important role in proliferation and differentiation of several cell types and is a gene we have found is commonly regulated in several systems of colon cell maturation both in vitro and in vivo. Here we show that siRNA silencing of Mybl2 in proliferating Caco-2 cells increases expression of the cell-cycle regulators cdk2, cyclin D2, and c-myc and decreases expression of cdc25B and cyclin B2 with a consequent 10% increase of cells in G2/M and a complementary 10% decrease in G1. Mybl2 occupies sequences upstream of transcriptional start sites of cyclin D2, c-myc, cyclin B2, and cdc25B and regulates reporter activity driven by upstream regions of cdk2, cyclin D2, and c-myc. These data suggest that Mybl2 plays a subtle but key role in linking specific aspects of cell-cycle progression with generation of signals for differentiation and may therefore be fundamental in commitment of intestinal epithelial cells to differentiation pathways during their maturation.
Collapse
Affiliation(s)
- Michael Papetti
- Department of Oncology, Albert Einstein Cancer Center, Montefiore Medical Center, Bronx, New York 10467, USA.
| | | |
Collapse
|
12
|
Kolachala VL, Wang L, Obertone TS, Prasad M, Yan Y, Dalmasso G, Gewirtz AT, Merlin D, Sitaraman SV. Adenosine 2B receptor expression is post-transcriptionally regulated by microRNA. J Biol Chem 2010; 285:18184-90. [PMID: 20388705 DOI: 10.1074/jbc.m109.066555] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
We have reported that epithelial adenosine 2B receptor (A(2B)AR) mRNA and protein are up-regulated in colitis, which we demonstrated to be regulated by tumor necrosis factor alpha (TNF-alpha). Here, we examined the mechanism that governs A(2B)AR expression during colitis. A 1.4-kb sequence of the A(2B)AR promoter was cloned into the pFRL7 luciferase vector. Anti-microRNA (miRNA) was custom-synthesized based on specific miRNA binding sites. The binding of miRNA to the 3'-untranslated region (UTR) of A(2B)AR mRNA was examined by cloning this 3'-UTR downstream of the luciferase gene in pMIR-REPORT. In T84 cells, TNF-alpha induced a 35-fold increase in A(2B)AR mRNA but did not increase promoter activity in luciferase assays. By nuclear run-on assay, no increase in A(2B)AR mRNA following TNF-alpha treatment was observed. Four putative miRNA target sites (miR27a, miR27b, miR128a, miR128b) in the 3'-UTR of the A(2B)AR mRNA were identified in T84 cells and mouse colon. Pretreatment of cells with TNF-alpha reduced the levels of miR27b and miR128a by 60%. Over expression of pre-miR27b and pre-miR128a reduced A(2B)AR levels by >60%. Blockade of miR27b increased A(2B)AR mRNA levels by 6-fold in vitro. miR27b levels declined significantly in colitis-affected tissue in mice in the presence of increased A(2B)AR mRNA. Collectively, these data demonstrate that TNF-alpha-induced A(2B)AR expression in colonic epithelial cells is post-transcriptionally regulated by miR27b and miR128a and show that miR27b influences A(2B)AR expression in murine colitis.
Collapse
Affiliation(s)
- Vasantha L Kolachala
- Division of Digestive Diseases, Emory University School of Medicine, Atlanta, Georgia 30322, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Yang D, Chen H, Koupenova M, Carroll SH, Eliades A, Freedman JE, Toselli P, Ravid K. A new role for the A2b adenosine receptor in regulating platelet function. J Thromb Haemost 2010; 8:817-27. [PMID: 20102488 DOI: 10.1111/j.1538-7836.2010.03769.x] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Activation of platelets is a critical component of atherothrombosis and plays a central role in the progression of unstable cardiovascular syndromes. Adenosine, acting through adenosine receptors, increases intracellular cAMP levels and inhibits platelet aggregation. The A2a adenosine receptor has already been recognized as a mediator of adenosine-dependent effects on platelet aggregation, and here we present a new role for the A2b adenosine receptor (A2bAR) in this process. METHODS AND RESULTS As compared with platelets from wild-type controls, platelets derived from A2bAR knockout mice have significantly greater ADP receptor activation-induced aggregation. Although mouse megakaryocytes and platelets express low levels of the A2bAR transcript, this gene is highly upregulated following injury and systemic inflammation in vivo. Under these conditions, A2bAR-mediated inhibition of platelet aggregation significantly increases. Our studies also identify a novel mechanism by which the A2bAR could regulate platelet aggregation; namely, ablation of the A2bAR leads to upregulated expression of the P2Y1 ADP receptor, whereas A2bAR-mediated or direct elevation of cAMP has the opposite effect. Thus, the A2bAR regulates platelet function beyond mediating the immediate effect of adenosine on aggregation. CONCLUSIONS Taken together, these investigations show for the first time that the platelet A2bAR is upregulated under stress in vivo, plays a significant role in regulating ADP receptor expression, and inhibits agonist-induced platelet aggregation.
Collapse
MESH Headings
- Adenosine A2 Receptor Agonists
- Adenosine Diphosphate/blood
- Adenosine-5'-(N-ethylcarboxamide)/pharmacology
- Animals
- Blood Platelets/drug effects
- Blood Platelets/metabolism
- Cells, Cultured
- Cyclic AMP/blood
- Disease Models, Animal
- Femoral Artery/injuries
- Femoral Artery/metabolism
- Genotype
- Inflammation/chemically induced
- Inflammation/genetics
- Inflammation/metabolism
- Lipopolysaccharides
- Megakaryocytes/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Phenotype
- Platelet Aggregation/drug effects
- Platelet Aggregation/genetics
- RNA, Messenger/blood
- Receptor, Adenosine A2B/blood
- Receptor, Adenosine A2B/deficiency
- Receptor, Adenosine A2B/genetics
- Receptors, Purinergic P2/blood
- Receptors, Purinergic P2/genetics
- Receptors, Purinergic P2Y1
- Time Factors
- Up-Regulation
Collapse
Affiliation(s)
- D Yang
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Chen H, Yang D, Carroll SH, Eltzschig HK, Ravid K. Activation of the macrophage A2b adenosine receptor regulates tumor necrosis factor-alpha levels following vascular injury. Exp Hematol 2009; 37:533-8. [PMID: 19375644 DOI: 10.1016/j.exphem.2009.02.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2008] [Revised: 02/02/2009] [Accepted: 02/02/2009] [Indexed: 01/29/2023]
Abstract
OBJECTIVE The control of expression of tumor necrosis factor-alpha (TNF-alpha) impacts a variety of processes during a stress response. Macrophages are a major source of TNF-alpha, the level of which is known to be regulated by adenosine. Previous studies highlighted the role of the A2a adenosine receptor in this process, while the role of the A2b adenosine receptor (A2bAR) has not been clearly identified. Here, we examined the contribution of the A2bAR to TNF-alpha regulation by macrophages at baseline and under vascular stress. MATERIALS AND METHODS We employed a newer A2bAR-selective ligand, BAY 60-6583 in vitro and in vivo, and an A2bAR antagonist CVT-6883, as well as examined macrophages derived from control or A2bAR knockout mice. RESULTS We found that the expression of the A2bAR is upregulated in macrophages derived from wild-type mice subjected to arterial injury, and this receptor activity controls the level of TNF-alpha released from macrophages. CONCLUSION We identified a significant role for the A2bAR in the regulation of TNF-alpha, which would contribute to the anti-inflammatory actions of adenosine under vascular stress. This conclusion could focus attention on this receptor as a therapeutic target.
Collapse
Affiliation(s)
- Hongjie Chen
- Department of Biochemistry, Medicine and Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Mass., USA
| | | | | | | | | |
Collapse
|
15
|
St Hilaire C, Carroll SH, Chen H, Ravid K. Mechanisms of induction of adenosine receptor genes and its functional significance. J Cell Physiol 2008; 218:35-44. [PMID: 18767039 DOI: 10.1002/jcp.21579] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Adenosine is a metabolite generated and released from cells, particularly under injury or stress. It elicits protective or damaging responses via signaling through the adenosine receptors, including the adenylyl cyclase inhibitory A(1) and A(3), and the adenylyl cyclase stimulatory A(2A) and A(2B). Multiple adenosine receptor types, including stimulatory and inhibitory, can be found in the same cell, suggesting that a careful balance of adenosine receptor expression in a particular cell is necessary for a specific adenosine-induced response. This balance could be controlled by differential expression of the adenosine receptor genes under different stimuli. Here, we have reviewed an array of studies that have characterized basal or induced expression of the adenosine receptors and common as well as distinct mechanisms of effect, in hopes that ongoing studies on this topic will further elucidate detailed mechanisms of adenosine receptor regulation, leading to potential therapeutic applications.
Collapse
Affiliation(s)
- Cynthia St Hilaire
- Department of Biochemistry and Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | | | | | | |
Collapse
|
16
|
St Hilaire C, Koupenova M, Carroll SH, Smith BD, Ravid K. TNF-alpha upregulates the A2B adenosine receptor gene: The role of NAD(P)H oxidase 4. Biochem Biophys Res Commun 2008; 375:292-6. [PMID: 18647598 DOI: 10.1016/j.bbrc.2008.07.059] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2008] [Accepted: 07/15/2008] [Indexed: 12/11/2022]
Abstract
Proliferation of vascular smooth muscle cells (VSMC), oxidative stress, and elevated inflammatory cytokines are some of the components that contribute to plaque formation in the vasculature. The cytokine tumor necrosis factor-alpha (TNF-alpha) is released during vascular injury, and contributes to lesion formation also by affecting VSMC proliferation. Recently, an A(2B) adenosine receptor (A(2B)AR) knockout mouse illustrated that this receptor is a tissue protector, in that it inhibits VSMC proliferation and attenuates the inflammatory response following injury, including the release of TNF-alpha. Here, we show a regulatory loop by which TNF-alpha upregulates the A(2B)AR in VSMC in vitro and in vivo. The effect of this cytokine is mimicked by its known downstream target, NAD(P)H oxidase 4 (Nox4). Nox4 upregulates the A(2B)AR, and Nox inhibitors dampen the effect of TNF-alpha. Hence, our study is the first to show that signaling associated with Nox4 is also able to upregulate the tissue protecting A(2B)AR.
Collapse
Affiliation(s)
- Cynthia St Hilaire
- Department of Biochemistry, The Whitaker Cardiovascular Institute, Boston University School of Medicine, 715 Albany Street, Boston, MA 02118, USA
| | | | | | | | | |
Collapse
|
17
|
Xu Y, Ravid K, Smith BD. Major histocompatibility class II transactivator expression in smooth muscle cells from A2b adenosine receptor knock-out mice: cross-talk between the adenosine and interferon-gamma signaling. J Biol Chem 2008; 283:14213-20. [PMID: 18359773 DOI: 10.1074/jbc.m708657200] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Atherosclerosis characterized by sustained inflammation and aberrant extracellular matrix alterations. Our previous investigation has defined major histocompatibility class II transactivator (CIITA) as a key factor in mediating these two processes in smooth muscle cells. Here, we demonstrate that CIITA and major histocompatibility class II expression are elevated in interferon-gamma (IFN-gamma)-treated smooth muscle cells from A2b adenosine receptor (A2bAR(-/-)) knock-out mice, as compared with wild type cells. An A2-type adenosine receptor agonist suppresses these effects of IFN-gamma in wild type cells, which can be blocked by an A2bAR-specific antagonist. We further identify that increased cellular cAMP levels are responsible for the down-regulation of CIITA expression and, hence, reduced IFN-gamma response as evidenced by the following data: 1) direct activation of adenylyl cyclase activity is both necessary and sufficient to suppress the IFN-gamma response; 2) inhibition of phosphodiesterase activity attenuates IFN-gamma induced transcription events; and 3) direct treatment with cAMP analog abrogates CIITA activation and IFN-gamma response. Therefore, our data establish possible cross-talk between the adenosine signaling through cAMP and IFN-gamma during regulation of CIITA expression.
Collapse
Affiliation(s)
- Yong Xu
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA
| | | | | |
Collapse
|