1
|
Shah K, Kazi JU. Phosphorylation-Dependent Regulation of WNT/Beta-Catenin Signaling. Front Oncol 2022; 12:858782. [PMID: 35359365 PMCID: PMC8964056 DOI: 10.3389/fonc.2022.858782] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 02/16/2022] [Indexed: 01/11/2023] Open
Abstract
WNT/β-catenin signaling is a highly complex pathway that plays diverse roles in various cellular processes. While WNT ligands usually signal through their dedicated Frizzled receptors, the decision to signal in a β-catenin-dependent or -independent manner rests upon the type of co-receptors used. Canonical WNT signaling is β-catenin-dependent, whereas non-canonical WNT signaling is β-catenin-independent according to the classical definition. This still holds true, albeit with some added complexity, as both the pathways seem to cross-talk with intertwined networks that involve the use of different ligands, receptors, and co-receptors. β-catenin can be directly phosphorylated by various kinases governing its participation in either canonical or non-canonical pathways. Moreover, the co-activators that associate with β-catenin determine the output of the pathway in terms of induction of genes promoting proliferation or differentiation. In this review, we provide an overview of how protein phosphorylation controls WNT/β-catenin signaling, particularly in human cancer.
Collapse
Affiliation(s)
- Kinjal Shah
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden
- Lund Stem Cell Center, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Julhash U. Kazi
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden
- Lund Stem Cell Center, Department of Laboratory Medicine, Lund University, Lund, Sweden
- *Correspondence: Julhash U. Kazi,
| |
Collapse
|
2
|
Zhang Y, Yin Y, Liu S, Yang L, Sun C, An R. FK506 binding protein 10: a key actor of collagen crosslinking in clear cell renal cell carcinoma. Aging (Albany NY) 2021; 13:19475-19485. [PMID: 34388114 PMCID: PMC8386577 DOI: 10.18632/aging.203359] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 07/10/2021] [Indexed: 12/14/2022]
Abstract
Clear cell renal cell carcinoma (ccRCC) is the most common type of malignant tumor in the kidney. With numbers of patients whose physical condition or tumor stage not suitable for radical surgery, they only have a narrow choice of using VEGF/mTOR targeted drugs to control their tumors, but ccRCC often shows resistance to these drugs. Therefore, identifying a new therapeutic target is of urgent necessity. In this study, for the first time, we concluded from bioinformatics analyses and in vitro research that FK506 binding protein 10 (FKBP10), together with its molecular partner Lysyl hydroxylase 2 (LH2/PLOD2), participate in the process of type I collagen synthesis in ccRCC via regulating crosslinking of pro-collagen chains. Our findings may provide a potential therapeutic target to treat ccRCC in the future.
Collapse
Affiliation(s)
- Yubai Zhang
- Department of Urology Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China.,Department of Urology Surgery, The First Hospital of Harbin, Harbin, China
| | - Yue Yin
- Department of Oncology Radiotherapy, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Sijia Liu
- Department of Gynecological Radiotherapy, The Affiliated Tumor Hospital of Harbin Medical University, Harbin, China
| | - Lei Yang
- Department of Urology Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China.,Department of Urology Surgery, The First Hospital of Harbin, Harbin, China
| | - Changhua Sun
- Department of Urology Surgery, The First Hospital of Harbin, Harbin, China
| | - Ruihua An
- Department of Urology Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
3
|
Youssef I, Ricort JM. Deciphering the Role of Protein Kinase D1 (PKD1) in Cellular Proliferation. Mol Cancer Res 2019; 17:1961-1974. [PMID: 31311827 DOI: 10.1158/1541-7786.mcr-19-0125] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 06/05/2019] [Accepted: 07/11/2019] [Indexed: 11/16/2022]
Abstract
Protein kinase D1 (PKD1) is a serine/threonine kinase that belongs to the calcium/calmodulin-dependent kinase family, and is involved in multiple mechanisms implicated in tumor progression such as cell motility, invasion, proliferation, protein transport, and apoptosis. While it is expressed in most tissues in the normal state, PKD1 expression may increase or decrease during tumorigenesis, and its role in proliferation is context-dependent and poorly understood. In this review, we present and discuss the current landscape of studies investigating the role of PKD1 in the proliferation of both cancerous and normal cells. Indeed, as a potential therapeutic target, deciphering whether PKD1 exerts a pro- or antiproliferative effect, and under what conditions, is of paramount importance.
Collapse
Affiliation(s)
- Ilige Youssef
- Centre National de la Recherche Scientifique, CNRS UMR_8113, Laboratoire de Biologie et Pharmacologie Appliquée, Cachan, France.,École Normale Supérieure Paris-Saclay, Université Paris-Saclay, Cachan, France
| | - Jean-Marc Ricort
- Centre National de la Recherche Scientifique, CNRS UMR_8113, Laboratoire de Biologie et Pharmacologie Appliquée, Cachan, France. .,École Normale Supérieure Paris-Saclay, Université Paris-Saclay, Cachan, France.,Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, USPC, Université Paris Descartes, Université Paris Diderot, Paris, France
| |
Collapse
|
4
|
Khan M, Muzumdar D, Shiras A. Attenuation of Tumor Suppressive Function of FBXO16 Ubiquitin Ligase Activates Wnt Signaling In Glioblastoma. Neoplasia 2018; 21:106-116. [PMID: 30530053 PMCID: PMC6288984 DOI: 10.1016/j.neo.2018.11.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 11/12/2018] [Accepted: 11/12/2018] [Indexed: 12/23/2022] Open
Abstract
Glioblastoma (GBM) is one of the most aggressive and lethal types of brain tumor. Despite the advancements in conventional or targeted therapies, median survival of GBM patients is less than 12 months. Amongst various signaling pathways aberrantly activated in glioma, active Wnt/β-catenin signaling pathway is one of the crucial oncogenic players. β-catenin, an important mediator of Wnt signaling pathway, gets phosphorylated by GSK3β complex. Phosphorylated β-catenin is specifically recognized by β-Trcp1, a F-box/WD40-repeat protein and with the help of Skp1 it plays a central role in recruiting phosphorylated β-catenin for degradation. In GBM, expression of β-TrCP1 and its affinity for β catenin is reported to be very low. Hence, we investigated whether any other members of the E3 ubiquitin ligase family could be involved in degradation of nuclear β-catenin. We here report that FBXO16, a component of SCF E3 ubiquitin ligase complex, is an interacting protein partner for β-catenin and mediates its degradation. Next, we show that FBXO16 functions as a tumor suppressor in GBM. Under normal growth conditions, FBXO16 proteasomally degrades β-catenin in a GSK-3β independent manner. Specifically, the C-terminal region of FBXO16 targets the nuclear β-catenin for degradation and inhibits TCF4/LEF1 dependent Wnt signaling pathway. The nuclear fraction of β-catenin undergoes K-48 linked poly-ubiquitination in presence of FBXO16. In summary, we show that due to low expression of FBXO16, the β-catenin is not targeted in glioma cells leading to its nuclear accumulation resulting in active Wnt signaling. Activated Wnt signaling potentiates the glioma cells toward a highly proliferative and malignant state.
Collapse
Affiliation(s)
- Mohsina Khan
- National Centre for Cell Science (NCCS), SP Pune University Campus, Ganeshkhind, Pune, 411007, India
| | - Dattatraya Muzumdar
- Department of Neurosurgery, King Edward Memorial Hospital, Parel, Mumbai 400 012. India
| | - Anjali Shiras
- National Centre for Cell Science (NCCS), SP Pune University Campus, Ganeshkhind, Pune, 411007, India.
| |
Collapse
|
5
|
Lee J, Lee S, Synytsya A, Capek P, Lee CW, Choi JW, Cho S, Kim WJ, Park YI. Low Molecular Weight Mannogalactofucans Derived from Undaria pinnatifida Induce Apoptotic Death of Human Prostate Cancer Cells In Vitro and In Vivo. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2018; 20:813-828. [PMID: 30159630 DOI: 10.1007/s10126-018-9851-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 08/07/2018] [Indexed: 06/08/2023]
Abstract
Low molecular weight mannogalactofucans (LMMGFs) prepared by enzymatic degradation of high molecular weight Undaria galactofucan (MF) were evaluated for their anti-cancer effects against human prostate cancer. Correlation NMR and linkage analyses confirmed that LMMGFs consist mainly of α-fucose and β-galactose units: α-fucose units are 1,3-linked; β-galactose units are terminal, 1,3- and/or 1,6-linked; both sugars are partially sulphated, fucose at positions O-2 and/or O-4 and galactose at O-3. Mannose residue, as a minor sugar, presents as the 1,4-linked terminal units. LMMGFs more significantly induced cell cycle arrest at the G0/G1 phase and cell death via suppression of the Akt/GSK-3β/β-catenin pathway than MF in human PC-3 prostate cancer cells. LMMGFs upregulated mRNA expression of death receptor-5 (DR-5), the ratio of Bax to Bcl-2, the cleavage of caspases and PARP, the depolarisation of mitochondrial membrane potential, and ROS generation. LMMGFs (200-400 mg/kg) effectively reduced both tumour volume and size in a xenografted mouse model. These results demonstrated that LMMGFs attenuate the growth of human prostate cancer cells both in vitro and in vivo, suggesting that LMMGFs can be used as a potent functional ingredient in health-beneficial foods or as a therapeutic agent to prevent or treat androgen-independent human prostate cancer. Graphical Abstract.
Collapse
Affiliation(s)
- Jisun Lee
- Department of Biotechnology, The Catholic University of Korea, Bucheon, Gyeonggi-do, 14662, South Korea
| | - Seul Lee
- Department of Biotechnology, The Catholic University of Korea, Bucheon, Gyeonggi-do, 14662, South Korea
| | - Andriy Synytsya
- Department of Carbohydrate Chemistry and Technology, University of Chemical Technology in Prague, Technická 5, 166 28, Prague 6, Czech Republic
| | - Peter Capek
- Institute of Chemistry, Centre for Glycomics, Slovak Academy of Sciences, Dúbravská cesta 9, 845 38, Bratislava, Slovakia
| | - Chang Won Lee
- Department of Biotechnology, The Catholic University of Korea, Bucheon, Gyeonggi-do, 14662, South Korea
| | - Ji Won Choi
- Department of Biotechnology, The Catholic University of Korea, Bucheon, Gyeonggi-do, 14662, South Korea
| | - Sarang Cho
- Department of Biotechnology, The Catholic University of Korea, Bucheon, Gyeonggi-do, 14662, South Korea
| | - Woo Jung Kim
- Biocenter, Gyeonggido Business and Science Accelerator (GBSA), Suwon, Gyeonggi-do, 16229, South Korea
| | - Yong Il Park
- Department of Biotechnology, The Catholic University of Korea, Bucheon, Gyeonggi-do, 14662, South Korea.
| |
Collapse
|
6
|
Liu ZL, Wu J, Wang LX, Yang JF, Xiao GM, Sun HP, Chen YJ. Knockdown of Upregulated Gene 11 (URG11) Inhibits Proliferation, Invasion, and β-Catenin Expression in Non-Small Cell Lung Cancer Cells. Oncol Res 2017; 24:197-204. [PMID: 27458101 PMCID: PMC7838721 DOI: 10.3727/096504016x14648701447850] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Upregulated gene 11 (URG11), a new gene upregulated by hepatitis B virus X protein, was found to be involved in the development and progression of several tumors. However, the role of URG11 in human non-small cell lung cancer (NSCLC) has not yet been determined. Therefore, the aim of the present study was to explore the role of URG11 in human NSCLC. Our results found that URG11 was highly expressed in human NSCLC tissues compared with matched normal lung tissues, and higher levels were found in NSCLC cell lines in comparison to the normal lung cell line. Moreover, we also found that knockdown of URG11 significantly inhibited proliferation, migration/invasion of NSCLC cells, as well as suppressed tumor growth in vivo. Furthermore, knockdown of URG11 suppressed the expression of β-catenin, c-Myc, and cyclin D1 in NSCLC cells. Taken together, the study reported here provided evidence that URG11 downregulation suppresses proliferation, invasion, and β-catenin expression in NSCLC cells. Thus, URG11 may be a novel potential therapeutic target for NSCLC.
Collapse
Affiliation(s)
- Zhe-Liang Liu
- The First Department of Thoracic Surgery, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | | | | | | | | | | | | |
Collapse
|
7
|
Li Z, Zhang C, Chen L, Li G, Qu L, Balaji K, Du C. E-Cadherin Facilitates Protein Kinase D1 Activation and Subcellular Localization. J Cell Physiol 2016; 231:2741-8. [DOI: 10.1002/jcp.25382] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 03/15/2016] [Indexed: 12/23/2022]
Affiliation(s)
- Zhuo Li
- The First Affiliated Hospital of China Medical University; Shenyang China
- Department of Surgery; University of Massachusetts Medical School; Worcester Massachusetts
| | - Chuanyou Zhang
- Department of Surgery; University of Massachusetts Medical School; Worcester Massachusetts
| | - Li Chen
- Department of Surgery; University of Massachusetts Medical School; Worcester Massachusetts
| | - Guosheng Li
- Shandong Academy of Agricultural Sciences; Jinan China
| | - Ling Qu
- Shandong Academy of Agricultural Sciences; Jinan China
| | - K.C. Balaji
- Department of Urology and Institute of Regenerative Medicine; Wake Forest University; Winston-Salem North Carolina
| | - Cheng Du
- Department of Surgery; University of Massachusetts Medical School; Worcester Massachusetts
| |
Collapse
|
8
|
NickKholgh B, Fang X, Winters SM, Raina A, Pandya KS, Gyabaah K, Fino N, Balaji K. Cell line modeling to study biomarker panel in prostate cancer. Prostate 2016; 76:245-58. [PMID: 26764245 PMCID: PMC4942245 DOI: 10.1002/pros.23116] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Accepted: 10/09/2015] [Indexed: 12/13/2022]
Abstract
BACKGROUND African-American men with prostate cancer (PCa) present with higher-grade and -stage tumors compared to Caucasians. While the disparity may result from multiple factors, a biological basis is often strongly suspected. Currently, few well-characterized experimental model systems are available to study the biological basis of racial disparity in PCa. We report a validated in vitro cell line model system that could be used for the purpose. METHODS We assembled a PCa cell line model that included currently available African-American PCa cell lines and LNCaP (androgen-dependent) and C4-2 (castration-resistant) Caucasian PCa cells. The utility of the cell lines in studying the biological basis of variance in a malignant phenotype was explored using a multiplex biomarker panel consisting of proteins that have been proven to play a role in the progression of PCa. The panel expression was evaluated by Western blot and RT-PCR in cell lines and validated in human PCa tissues by RT-PCR. As proof-of-principle to demonstrate the utility of our model in functional studies, we performed MTS viability assays and molecular studies. RESULTS The dysregulation of the multiplex biomarker panel in primary African-American cell line (E006AA) was similar to metastatic Caucasian cell lines, which would suggest that the cell line model could be used to study an inherent aggressive phenotype in African-American men with PCa. We had previously demonstrated that Protein kinase D1 (PKD1) is a novel kinase that is down regulated in advanced prostate cancer. We established the functional relevance by over expressing PKD1, which resulted in decreased proliferation and epithelial mesenchymal transition (EMT) in PCa cells. Moreover, we established the feasibility of studying the expression of the multiplex biomarker panel in archived human PCa tissue from African-Americans and Caucasians as a prelude to future translational studies. CONCLUSION We have characterized a novel in vitro cell line model that could be used to study the biological basis of disparity in PCa between African-Americans and Caucasians.
Collapse
Affiliation(s)
- Bita NickKholgh
- Wake Forest Institute for Regenerative Medicine (WFIRM), Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Xiaolan Fang
- Wake Forest Institute for Regenerative Medicine (WFIRM), Wake Forest School of Medicine, Winston-Salem, North Carolina
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Shira M. Winters
- Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | - Anvi Raina
- Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | - Komal S. Pandya
- Wake Forest Institute for Regenerative Medicine (WFIRM), Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Kenneth Gyabaah
- Wake Forest Institute for Regenerative Medicine (WFIRM), Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Nora Fino
- Department of Biostatistical Sciences, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - K.C. Balaji
- Wake Forest Institute for Regenerative Medicine (WFIRM), Wake Forest School of Medicine, Winston-Salem, North Carolina
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, North Carolina
- Wake Forest University School of Medicine, Winston-Salem, North Carolina
- Department of Urology, Wake Forest University Baptist Medical Center, Winston-Salem, North Carolina
- Chief of Urology, W.G. (Bill) Hefner Veterans Administration Medical Center, Salisbury, North Carolina
- Correspondence to: K.C. Balaji, Department of Urology, Wake Forest University Baptist Medical Center, Medical Center Boulevard, Winston-Salem, NC 27157.
| |
Collapse
|
9
|
Lorenc Z, Opiłka MN, Kruszniewska-Rajs C, Rajs A, Waniczek D, Starzewska M, Lorenc J, Mazurek U. Expression Level of Genes Coding for Cell Adhesion Molecules of Cadherin Group in Colorectal Cancer Patients. Med Sci Monit 2015; 21:2031-40. [PMID: 26167814 PMCID: PMC4514365 DOI: 10.12659/msm.893610] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Background Colorectal Cancer (CRC) is one of the most frequently diagnosed neoplasms and also one of the main death causes. Cell adhesion molecules are taking part in specific junctions, contributing to tissue integrality. Lower expression of the cadherins may be correlated with poorer differentiation of the CRC, and its more aggressive phenotype. The aim of the study is to designate the cadherin genes potentially useful for the diagnostics, prognostics, and the treatment of CRC. Material/Method Specimens were collected from 28 persons (14 female and 14 male), who were operated for CRC. The molecular analysis was performed using oligonucleotide microarrays, mRNA used was collected from adenocarcinoma, and macroscopically healthy tissue. The results were validated using qRT-PCR technique. Results Agglomerative hierarchical clustering of normalized mRNA levels has shown 4 groups with statistically different gene expression. The control group was divided into 2 groups, the one was appropriate control (C1), the second (C2) had the genetic properties of the CRC, without pathological changes histologically and macroscopically. The other 2 groups were: LSC (Low stage cancer) and HSC (High stage cancer). Consolidated results of the fluorescency of all of the differential genes, designated two coding E-cadherin (CDH1) with the lower expression, and P-cadherin (CDH3) with higher expression in CRC tissue. Conclusions The levels of genes expression are different for several groups of cadherins, and are related with the stage of CRC, therefore could be potentially the useful marker of the stage of the disease, also applicable in treatment and diagnostics of CRC.
Collapse
Affiliation(s)
- Zbigniew Lorenc
- Chair and Clinical Department of General, Colorectal and Trauma Surgery, Medical University of Silesia, Katowice, Poland
| | - Mieszko Norbert Opiłka
- Chair and Clinical Department of General, Colorectal and Trauma Surgery, Medical University of Silesia, Katowice, Poland
| | | | - Antoni Rajs
- Department of Molecular Biology, Medical University of Silesia, Katowice, Poland
| | - Dariusz Waniczek
- Department of Propedeutics Surgery, Chair of General, Colorectal and Polytrauma Surgery, Medical University of Silesia, Katowice, Poland
| | - Małgorzata Starzewska
- Chair and Clinical Department of General, Colorectal and Trauma Surgery, Medical University of Silesia, Katowice, Poland
| | - Justyna Lorenc
- Chair and Clinical Department of General, Colorectal and Trauma Surgery, Medical University of Silesia, Katowice, Poland
| | - Urszula Mazurek
- Department of Molecular Biology, Medical University of Silesia, Katowice, Poland
| |
Collapse
|
10
|
Sundram V, Ganju A, Hughes JE, Khan S, Chauhan SC, Jaggi M. Protein kinase D1 attenuates tumorigenesis in colon cancer by modulating β-catenin/T cell factor activity. Oncotarget 2015; 5:6867-84. [PMID: 25149539 PMCID: PMC4196169 DOI: 10.18632/oncotarget.2277] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Over 80% of colon cancer development and progression is a result of the dysregulation of β-catenin signaling pathway. Herein, for the first time, we demonstrate that a serine-threonine kinase, Protein Kinase D1 (PKD1), modulates the functions of β-catenin to suppress colon cancer growth. Analysis of normal and colon cancer tissues reveals downregulation of PKD1 expression in advanced stages of colon cancer and its co-localization with β-catenin in the colon crypts. This PKD1 downregulation corresponds with the aberrant expression and nuclear localization of β-catenin. In-vitro investigation of the PKD1-β-catenin interaction in colon cancer cells reveal that PKD1 overexpression suppresses cell proliferation and clonogenic potential and enhances cell-cell aggregation. We demonstrate that PKD1 directly interacts with β-catenin and attenuates β-catenin transcriptional activity by decreasing nuclear β-catenin levels. Additionally, we show that inhibition of nuclear β-catenin transcriptional activity is predominantly influenced by nucleus targeted PKD1. This subcellular modulation of β-catenin results in enhanced membrane localization of β-catenin and thereby increases cell-cell adhesion. Studies in a xenograft mouse model indicate that PKD1 overexpression delayed tumor appearance, enhanced necrosis and lowered tumor hypoxia. Overall, our results demonstrate a putative tumor-suppressor function of PKD1 in colon tumorigenesis via modulation of β-catenin functions in cells.
Collapse
Affiliation(s)
- Vasudha Sundram
- Cancer Biology Research Center, Sanford Research/USD, Sioux Falls, SD, USA.
| | - Aditya Ganju
- Department of Pharmaceutical Sciences and Center for Cancer Research, University of Tennessee Health Science Center, Memphis, Tennessee.
| | - Joshua E Hughes
- Cancer Biology Research Center, Sanford Research/USD, Sioux Falls, SD, USA
| | - Sheema Khan
- Department of Pharmaceutical Sciences and Center for Cancer Research, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Subhash C Chauhan
- Department of Pharmaceutical Sciences and Center for Cancer Research, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Meena Jaggi
- Department of Pharmaceutical Sciences and Center for Cancer Research, University of Tennessee Health Science Center, Memphis, Tennessee
| |
Collapse
|
11
|
Stope MB, Weiss M, Preuss M, Streitbörger A, Ritter CA, Zimmermann U, Walther R, Burchardt M. Immediate and transient phosphorylation of the heat shock protein 27 initiates chemoresistance in prostate cancer cells. Oncol Rep 2014; 32:2380-6. [PMID: 25231055 DOI: 10.3892/or.2014.3492] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Accepted: 07/18/2014] [Indexed: 11/05/2022] Open
Abstract
Drug resistance minimizes the effects of prostate cancer (PC) chemotherapy with docetaxel and is generally considered to be associated with the expression of heat shock protein (HSP) 27 including various cytoprotective pathways. In the present study, we investigated the effects of HSP27 phosphorylation on PC cell growth underlying docetaxel treatment. Cell counting revealed significantly reduced cell growth during docetaxel treatment as a result of both activation of mitogen-activated protein kinase p38 (MAPK p38) and protein kinase D1 (PKD1), and, most importantly, the overexpression of the phosphorylation-mimicking mutant HSP27-3D. Further analysis revealed a docetaxel-dependent induction of HSP27 accompanied by an initial phosphorylation and rapid dephosphorylation of the protein. Based on the data, we can conclude that phosphorylation of HSP27 protein is a crucial mechanism in the initiation of chemoresistance in PC. Moreover, the results indicate a key impact of HSP27 on viability and proliferation of PC cells underlying anticancer therapy. The protective function depends on the initial phosphorylation status of HSP27 and represents a putative co-therapeutic target to prevent chemoresistance during docetaxel therapy.
Collapse
Affiliation(s)
- Matthias B Stope
- Department of Urology, University Medicine Greifswald, Greifswald, Germany
| | - Martin Weiss
- Department of Urology, University Medicine Greifswald, Greifswald, Germany
| | - Melanie Preuss
- Department of Urology, University Medicine Greifswald, Greifswald, Germany
| | | | - Christoph A Ritter
- Institute of Pharmacy, Ernst-Moritz-Arndt-University of Greifswald, Greifswald, Germany
| | - Uwe Zimmermann
- Department of Urology, University Medicine Greifswald, Greifswald, Germany
| | - Reinhard Walther
- Department of Medical Biochemistry and Molecular Biology, University Medicine Greifswald, Greifswald, Germany
| | - Martin Burchardt
- Department of Urology, University Medicine Greifswald, Greifswald, Germany
| |
Collapse
|
12
|
Du W, Liu X, Fan G, Zhao X, Sun Y, Wang T, Zhao R, Wang G, Zhao C, Zhu Y, Ye F, Jin X, Zhang F, Zhong Z, Li X. From cell membrane to the nucleus: an emerging role of E-cadherin in gene transcriptional regulation. J Cell Mol Med 2014; 18:1712-9. [PMID: 25164084 PMCID: PMC4196647 DOI: 10.1111/jcmm.12340] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 05/05/2014] [Indexed: 01/06/2023] Open
Abstract
E-cadherin is a well-known mediator of cell–cell adherens junctions. However, many other functions of E-cadherin have been reported. Collectively, the available data suggest that E-cadherin may also act as a gene transcriptional regulator. Here, evidence supporting this claim is reviewed, and possible mechanisms of action are discussed. E-cadherin has been shown to modulate the activity of several notable cell signalling pathways, and given that most of these pathways in turn regulate gene expression, we proposed that E-cadherin may regulate gene transcription by affecting these pathways. Additionally, E-cadherin has been shown to accumulate in the nucleus where documentation of an E-cadherin fragment bound to DNA suggests that E-cadherin may directly regulate gene transcription. In summary, from the cell membrane to the nucleus, a role for E-cadherin in gene transcription may be emerging. Studies specifically focused on this potential role would allow for a more thorough understanding of this transmembrane glycoprotein in mediating intra- and intercellular activities.
Collapse
Affiliation(s)
- Wenjun Du
- Department of Digestion, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong Province, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Fang X, Sittadjody S, Gyabaah K, Opara EC, Balaji KC. Novel 3D co-culture model for epithelial-stromal cells interaction in prostate cancer. PLoS One 2013; 8:e75187. [PMID: 24073251 PMCID: PMC3779160 DOI: 10.1371/journal.pone.0075187] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Accepted: 08/11/2013] [Indexed: 11/19/2022] Open
Abstract
Paracrine function is a major mechanism of cell-cell communication within tissue microenvironment in normal development and disease. In vitro cell culture models simulating tissue or tumor microenvironment are necessary tools to delineate epithelial-stromal interactions including paracrine function, yet an ideal three-dimensional (3D) tumor model specifically studying paracrine function is currently lacking. In order to fill this void we developed a novel 3D co-culture model in double-layered alginate hydrogel microspheres, incorporating prostate cancer epithelial and stromal cells in separate compartments of the microspheres. The cells remained confined and viable within their respective spheres for over 30 days. As a proof of principle regarding paracrine function of the model, we measured shedded component of E-cadherin (sE-cad) in the conditioned media, a major membrane bound cell adhesive molecule that is highly dysregulated in cancers including prostate cancer. In addition to demonstrating that sE-cad can be reliably quantified in the conditioned media, the time course experiments also demonstrated that the amount of sE-cad is influenced by epithelial-stromal interaction. In conclusion, the study establishes a novel 3D in vitro co-culture model that can be used to study cell-cell paracrine interaction.
Collapse
Affiliation(s)
- Xiaolan Fang
- Institute for Regenerative Medicine, Wake Forest University Health Sciences, Winston-Salem, North Carolina, United States of America
- Department of Cancer Biology, Comprehensive Cancer Center, Wake Forest University Health Sciences, Winston-Salem, North Carolina, United States of America
| | - Sivanandane Sittadjody
- Institute for Regenerative Medicine, Wake Forest University Health Sciences, Winston-Salem, North Carolina, United States of America
| | - Kenneth Gyabaah
- Institute for Regenerative Medicine, Wake Forest University Health Sciences, Winston-Salem, North Carolina, United States of America
- Department of Cancer Biology, Comprehensive Cancer Center, Wake Forest University Health Sciences, Winston-Salem, North Carolina, United States of America
| | - Emmanuel C. Opara
- Institute for Regenerative Medicine, Wake Forest University Health Sciences, Winston-Salem, North Carolina, United States of America
| | - Kethandapatti C. Balaji
- Institute for Regenerative Medicine, Wake Forest University Health Sciences, Winston-Salem, North Carolina, United States of America
- Department of Cancer Biology, Comprehensive Cancer Center, Wake Forest University Health Sciences, Winston-Salem, North Carolina, United States of America
- Department of Urology, Wake Forest University Health Sciences, Winston-Salem, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
14
|
Hudson BD, Kulp KS, Loots GG. Prostate cancer invasion and metastasis: insights from mining genomic data. Brief Funct Genomics 2013; 12:397-410. [PMID: 23878130 DOI: 10.1093/bfgp/elt021] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Prostate cancer (PCa) is the second most commonly diagnosed malignancy in men in the Western world and the second leading cause of cancer-related deaths among men worldwide. Although most cancers have the potential to metastasize under appropriate conditions, PCa favors the skeleton as a primary site of metastasis, suggesting that the bone microenvironment is conducive to its growth. PCa metastasis proceeds through a complex series of molecular events that include angiogenesis at the site of the original tumor, local migration within the primary site, intravasation into the blood stream, survival within the circulation, extravasation of the tumor cells to the target organ and colonization of those cells within the new site. In turn, each one of these steps involves a complicated chain of events that utilize multiple protein-protein interactions, protein signaling cascades and transcriptional changes. Despite the urgent need to improve current biomarkers for diagnosis, prognosis and drug resistance, advances have been slow. Global gene expression methods such as gene microarrays and RNA sequencing enable the study of thousands of genes simultaneously and allow scientists to examine molecular pathways of cancer pathogenesis. In this review, we summarize the current literature that explored high-throughput transcriptome analysis toward the advancement of biomarker discovery for PCa. Novel biomarkers are strongly needed to enable more accurate detection of PCa, improve prediction of tumor aggressiveness and facilitate the discovery of new therapeutic targets for tailored medicine. Promising molecular markers identified from gene expression profiling studies include HPN, CLU1, WT1, WNT5A, AURKA and SPARC.
Collapse
Affiliation(s)
- Bryan D Hudson
- Biology and Biotechnology Division, Lawrence Livermore National Laboratory, 7000 East Avenue, L-452, Livermore, CA 94550, USA.
| | | | | |
Collapse
|
15
|
Diagnostic impact of promoter methylation and E-cadherin gene and protein expression levels in laryngeal carcinoma. Contemp Oncol (Pozn) 2013; 17:263-71. [PMID: 24596512 PMCID: PMC3934075 DOI: 10.5114/wo.2013.35284] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2012] [Revised: 04/27/2013] [Accepted: 05/08/2013] [Indexed: 01/22/2023] Open
Abstract
Aim of the study Inactivation of the tumor suppressor E-cadherin (CDH1) and its decreased expression is an important occurrence during carcinogenesis. Nevertheless, the relationship of CDH1 expression and the promoter methylation with laryngeal cancer cell aggressiveness is still unclear. The purpose of this study was to elucidate the gene and protein E-cadherin expression and the DNA methylation levels and to describe the correlations with morphological features in squamous cell laryngeal cancer. Material and methods The authors studied E-cadherin and the DNA methylation level in 86 cases to gain a further understanding of the clinicopathologic significance of analyzed parameters. The pathological evaluation included pTNM classification and the tumor front grading (TFG) criteria. Quantitative analysis of the amplified product in real time (qRT-PCR) for estimation of CDH1 mRNA was used. The methylation status was investigated by using methyl-specific polymerase chain reaction (MSP). The level of CDH1 protein expression by Western blot was determined. Results Downregulation of E-cadherin was found to be related to promoter methylation (p < 0.001). In tumors with the highest invasiveness according to TFG criteria the lowest E-cadherin gene and protein level in the study group was observed (p = 0.046 and p = 0.0002, respectively). In SCLC with muscle and cartilage invasion and disperse infiltration the lowest CDH1 gene and protein expression was noted (p = 0.0003 and p = 0.003 for deep invasion, p = 0.033 and p = 0.003 for multifocal infiltration, respectively). Conclusions The current findings suggest an association of E-cadherin tumor expression with progression of laryngeal cancer. CDH1 gene level may be an auxiliary molecular marker for advanced cases of laryngeal carcinoma; however, further studies are necessary.
Collapse
|
16
|
Delineation of the key aspects in the regulation of epithelial monolayer formation. Mol Cell Biol 2013; 33:2535-50. [PMID: 23608536 DOI: 10.1128/mcb.01435-12] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The formation, maintenance, and repair of epithelial barriers are of critical importance for whole-body homeostasis. However, the molecular events involved in epithelial tissue maturation are not fully established. To this end, we investigated the molecular processes involved in renal epithelial proximal-tubule monolayer maturation utilizing transcriptomic, metabolomic, and functional parameters. We uncovered profound dynamic alterations in transcriptional regulation, energy metabolism, and nutrient utilization over the maturation process. Proliferating cells exhibited high glycolytic rates and high transcript levels for fatty acid synthesis genes (FASN), whereas matured cells had low glycolytic rates, increased oxidative capacity, and preferentially expressed genes for beta oxidation. There were dynamic alterations in the expression and localization of several adherens (CDH1, -4, and -16) and tight junction (TJP3 and CLDN2 and -10) proteins. Genes involved in differentiated proximal-tubule function, cilium biogenesis (BBS1), and transport (ATP1A1 and ATP1B1) exhibited increased expression during epithelial maturation. Using TransAM transcription factor activity assays, we could demonstrate that p53 and FOXO1 were highly active in matured cells, whereas HIF1A and c-MYC were highly active in proliferating cells. The data presented here will be invaluable in the further delineation of the complex dynamic cellular processes involved in epithelial cell regulation.
Collapse
|
17
|
Zou Z, Zeng F, Xu W, Wang C, Ke Z, Wang QJ, Deng F. PKD2 and PKD3 promote prostate cancer cell invasion by modulating NF-κB- and HDAC1-mediated expression and activation of uPA. J Cell Sci 2012; 125:4800-11. [PMID: 22797919 DOI: 10.1242/jcs.106542] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Although protein kinase D3 (PKD3) has been shown to contribute to prostate cancer cell growth and survival, the role of PKD in prostate cancer cell motility remains unclear. Here, we show that PKD2 and PKD3 promote nuclear factor kappa B (NF-κB) signaling and urokinase-type plasminogen activator (uPA) expression/activation, which are crucial for prostate cancer cell invasion. Silencing of endogenous PKD2 and/or PKD3 markedly decreased prostate cancer cell migration and invasion, reduced uPA and uPA receptor (uPAR) expression and increased plasminogen activator inhibitor-2 (PAI-2) expression. These results were further substantiated by the finding that PKD2 and PKD3 promoted the activity of uPA and matrix metalloproteinase 9 (MMP9). Furthermore, depletion of PKD2 and/or PKD3 decreased the level of binding of the p65 subunit of NF-κB to the promoter of the gene encoding uPA (PLAU), suppressing transcriptional activation of uPA. Endogenous PKD2 and PKD3 interacted with inhibitor of NF-κB (IκB) kinase β (IKKβ); PKD2 mainly regulated the phosphorylated IKK (pIKK)-phosphorylated IκB (pIκB)-IκB degradation cascade, p65 nuclear translocation, and phosphorylation of Ser276 on p65, whereas PKD3 was responsible for the phosphorylation of Ser536 on p65. Conversely, inhibition of uPA transactivation by PKD3 silencing was rescued by constitutive Ser536 p65 phosphorylation, and reduced tumor cell invasion resulting from PKD2 or PKD3 silencing was rescued by ectopic expression of p65. Interestingly, PKD3 interacted with histone deacetylase 1 (HDAC1), suppressing HDAC1 expression and decreasing its binding to the uPA promoter. Moreover, depletion of HDAC1 resulted in recovery of uPA transactivation in PKD3-knockdown cells. Taken together, these data suggest that PKD2 and PKD3 coordinate to promote prostate cancer cell invasion through p65 NF-κB- and HDAC1-mediated expression and activation of uPA.
Collapse
Affiliation(s)
- Zhipeng Zou
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | | | | | | | | | | | | |
Collapse
|
18
|
Sundram V, Chauhan SC, Ebeling M, Jaggi M. Curcumin attenuates β-catenin signaling in prostate cancer cells through activation of protein kinase D1. PLoS One 2012; 7:e35368. [PMID: 22523587 PMCID: PMC3327669 DOI: 10.1371/journal.pone.0035368] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2011] [Accepted: 03/15/2012] [Indexed: 11/28/2022] Open
Abstract
Prostate cancer is the most commonly diagnosed cancer affecting 1 in 6 males in the US. Understanding the molecular basis of prostate cancer progression can serve as a tool for early diagnosis and development of novel treatment strategies for this disease. Protein Kinase D1 (PKD1) is a multifunctional kinase that is highly expressed in normal prostate. The decreased expression of PKD1 has been associated with the progression of prostate cancer. Therefore, synthetic or natural products that regulate this signaling pathway can serve as novel therapeutic modalities for prostate cancer prevention and treatment. Curcumin, the active ingredient of turmeric, has shown anti-cancer properties via modulation of a number of different molecular pathways. Herein, we have demonstrated that curcumin activates PKD1, resulting in changes in β-catenin signaling by inhibiting nuclear β-catenin transcription activity and enhancing the levels of membrane β-catenin in prostate cancer cells. Modulation of these cellular events by curcumin correlated with decreased cell proliferation, colony formation and cell motility and enhanced cell-cell aggregation in prostate cancer cells. In addition, we have also revealed that inhibition of cell motility by curcumin is mediated by decreasing the levels of active cofilin, a downstream target of PKD1. The potent anti-cancer effects of curcumin in vitro were also reflected in a prostate cancer xenograft mouse model. The in vivo inhibition of tumor growth also correlated with enhanced membrane localization of β-catenin. Overall, our findings herein have revealed a novel molecular mechanism of curcumin action via the activation of PKD1 in prostate cancer cells.
Collapse
Affiliation(s)
- Vasudha Sundram
- Cancer Biology Research Center, Sanford Research/USD, Sioux Falls, South Dakota, United States of America
| | - Subhash C. Chauhan
- Cancer Biology Research Center, Sanford Research/USD, Sioux Falls, South Dakota, United States of America
- Department of OB/GYN and Basic Biomedical Science Division, Sanford School of Medicine, The University of South Dakota, Sioux Falls, South Dakota, United States of America
| | - Mara Ebeling
- Cancer Biology Research Center, Sanford Research/USD, Sioux Falls, South Dakota, United States of America
| | - Meena Jaggi
- Cancer Biology Research Center, Sanford Research/USD, Sioux Falls, South Dakota, United States of America
- Department of OB/GYN and Basic Biomedical Science Division, Sanford School of Medicine, The University of South Dakota, Sioux Falls, South Dakota, United States of America
- * E-mail:
| |
Collapse
|
19
|
Bollag WB, Bollag RJ. Ultraviolet activation of PKD: implications for skin cancer. Future Oncol 2011; 7:485-7. [PMID: 21463136 DOI: 10.2217/fon.11.16] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|
20
|
Lysophosphatidic acid induces a migratory phenotype through a crosstalk between RhoA-Rock and Src-FAK signalling in colon cancer cells. Eur J Pharmacol 2011; 671:7-17. [PMID: 21968138 DOI: 10.1016/j.ejphar.2011.09.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Revised: 08/23/2011] [Accepted: 09/08/2011] [Indexed: 01/07/2023]
Abstract
Lysophosphatidic acid (LPA) acts as a potent stimulator of tumorigenesis. Cell-cell adhesion disassembly, actin cytoskeletal alterations, and increased migratory potential are initial steps of colorectal cancer progression. However, the role that LPA plays in these events in this cancer type is still unknown. We explored this question by using Caco-2 cells, as colon cancer model, and treatment with LPA or pretreatment with different cell signalling inhibitors. Changes in the location of adherent junction proteins were examined by immunofluorescence and immunoblotting. The actin cytoskeleton organisation and focal adhesion were analysed by confocal microscopy. Rho-GTPase activation was analysed by the pull-down assay, FAK and Src activation by immunoblotting, and cell migration by the wound healing technique. We show that LPA induced adherent junction disassembly, perijunctional actin cytoskeletal reorganisation, and increased cell migration. These events were dependent on Src, Rho and Rock because their chemical inhibitors PP2, toxin A and Y27632, respectively, abrogated the effects of LPA. Moreover, we showed that Src acts upstream of RhoA in this signalling cascade and that LPA induces focal adhesion formation and FAK redistribution and activation in confluent monolayers. Focal adhesion formation was also observed in the front of migrating cells in response to LPA, and Rock inhibitor abolished this effect. In conclusion, our findings show that LPA modulates adherent junction disassembly, actin cytoskeletal disorganisation, and focal adhesion formation, conferring a migratory phenotype in colon tumour cells. We suggest a functional regulatory cascade that integrates RhoA-Rock and Src-FAK signalling to control these events during colorectal cancer progression.
Collapse
|
21
|
Abstract
Protein kinase D1 (PKD1) is a serine-threonine kinase that regulates various functions within the cell, including cell proliferation, apoptosis, adhesion, and cell motility. In normal cells, this protein plays key roles in multiple signaling pathways by relaying information from the extracellular environment and/or upstream kinases and converting them into a regulated intracellular response. The aberrant expression of PKD1 is associated with enhanced cancer phenotypes, such as deregulated cell proliferation, survival, motility, and epithelial mesenchymal transition. In this review, we summarize the structural and functional aspects of PKD1 and highlight the pathobiological roles of this kinase in cancer.
Collapse
Affiliation(s)
- Vasudha Sundram
- Cancer Biology Research Center, Sanford Research/USD, University of South Dakota, Sioux Falls, South Dakota 57105, USA
| | | | | |
Collapse
|
22
|
Khamis ZI, Iczkowski KA, Sang QXA. Metastasis suppressors in human benign prostate, intraepithelial neoplasia, and invasive cancer: their prospects as therapeutic agents. Med Res Rev 2011; 32:1026-77. [PMID: 22886631 DOI: 10.1002/med.20232] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Despite advances in diagnosis and treatment of prostate cancer, development of metastases remains a major clinical challenge. Research efforts are dedicated to overcome this problem by understanding the molecular basis of the transition from benign cells to prostatic intraepithelial neoplasia (PIN), localized carcinoma, and metastatic cancer. Identification of proteins that inhibit dissemination of cancer cells will provide new perspectives to define novel therapeutics. Development of antimetastatic drugs that trigger or mimic the effect of metastasis suppressors represents new therapeutic approaches to improve patient survival. This review focuses on different biochemical and cellular functions of metastasis suppressors known to play a role in prostate carcinogenesis and progression. Ten putative metastasis suppressors implicated in prostate cancer are discussed. CD44s is decreased in both PIN and cancer; Drg-1, E-cadherin, KAI-1, RKIP, and SSeCKS show similar expression between benign epithelia and PIN, but are downregulated in invasive cancer; whereas, maspin, MKK4, Nm23 and PTEN are upregulated in PIN and downregulated in cancer. Moreover, the potential role of microRNA in prostate cancer progression, the understanding of the cellular distribution and localization of metastasis suppressors, their mechanism of action, their effect on prostate invasion and metastasis, and their potential use as therapeutics are addressed.
Collapse
Affiliation(s)
- Zahraa I Khamis
- Department of Chemistry and Biochemistry and Institute of Molecular Biophysics, Florida State University, Tallahassee, Florida 32306-4390, USA
| | | | | |
Collapse
|
23
|
Bae KM, Parker NN, Dai Y, Vieweg J, Siemann DW. E-cadherin plasticity in prostate cancer stem cell invasion. Am J Cancer Res 2010; 1:71-84. [PMID: 21968440 PMCID: PMC3180112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2010] [Accepted: 10/18/2010] [Indexed: 05/31/2023] Open
Abstract
Prostate cancer that has progressed to metastatic disease remains largely untreatable. Nearly 90% of patients with advanced prostate cancer develop skeletal metastases, resulting in a substantial reduction in the quality of life and a drastic worsening of patient prognosis. The mechanisms involved in prostate cancer cell dissemination, however, remain poorly understood. We previously reported the identification of a highly tumorigenic E-cadherin positive prostate tumor stem cell subpopulation that expressed the embryonic stem cell markers SOX2 and OCT3/4. We herein demonstrate that this subpopulation is also highly invasive and, importantly, is capable of altering its E-cadherin expression during the process of invasion. The non-tumorigenic E-cadherin negative subpopulation which minimally expresses SOX2 or OCT3/4 was found to be poorly invasive. In addition, targeted knockdown of SOX2 or OCT3/4 markedly suppressed the invasion of prostate cancer cells. Taken together, these findings indicate that the expression of SOX2 or OCT3/4 is required for invasive cell capacity, but the ability to modulate E-cadherin is the key permissive factor enabling cancer stem cell invasion in vitro. We therefore propose a model in which the post-epithelial to mesenchymal transition phenotype progresses to a frank, aggressive, and invasive phenotype by a process requiring the acquisition of E-cadherin plasticity. Considering the clinical significance of the metastatic complications of prostate adenocarcinoma, the identification of factors that promote the dissemination of the malignant prostate phenotype is essential to establish effective therapies to combat this disease in future.
Collapse
|
24
|
Du C, Zhang C, Hassan S, Biswas MHU, Balaji KC. Protein kinase D1 suppresses epithelial-to-mesenchymal transition through phosphorylation of snail. Cancer Res 2010; 70:7810-9. [PMID: 20940406 DOI: 10.1158/0008-5472.can-09-4481] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cancer cells undergo epithelial-mesenchymal transition (EMT) as a program of increased invasion and metastasis during cancer progression. Here, we report that a novel regulator of EMT in cancer cells is protein kinase D1 (PKD1), which is downregulated in advanced prostate, breast, and gastric cancers. Ectopic reexpression of PKD1 in metastatic prostate cancer cells reversibly suppressed expression of mesenchyme-specific genes and increased epithelial markers such as E-cadherin, whereas small interfering RNA-mediated knockdown of PKD1 increased expression of mesenchyme markers. Further, PKD1 inhibited tumor growth and metastasis in a tumor xenograft model. PKD1 phosphorylates Ser(11) (S11) on transcription factor Snail, a master EMT regulator and repressor of E-cadherin expression, triggering nuclear export of Snail via 14-3-3σ binding. Snail S11 mutation causes acquisition of mesenchymal traits and expression of stem cell markers. Together, our results suggest that PKD1 functions as a tumor and metastasis suppressor, at least partly by regulating Snail-mediated EMT, and that loss of PKD1 may contribute to acquisition of an aggressive malignant phenotype.
Collapse
Affiliation(s)
- Cheng Du
- Division of Urology, Department of Surgery, University of Massachusetts Medical School, Worcester, MA 01655, USA.
| | | | | | | | | |
Collapse
|
25
|
Gupta S, Iljin K, Sara H, Mpindi JP, Mirtti T, Vainio P, Rantala J, Alanen K, Nees M, Kallioniemi O. FZD4 as a mediator of ERG oncogene-induced WNT signaling and epithelial-to-mesenchymal transition in human prostate cancer cells. Cancer Res 2010; 70:6735-45. [PMID: 20713528 DOI: 10.1158/0008-5472.can-10-0244] [Citation(s) in RCA: 202] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
TMPRSS2-ERG and other gene fusions involving ETS factors and genes with strong promoter elements are common in prostate cancer. Although ERG activation has been linked to invasive properties of prostate cancers, the precise mechanisms and pathways of ERG-mediated oncogenesis remain poorly understood. Here, we show that ERG knockdown in VCaP prostate cancer cells causes an activation of cell adhesion, resulting in strongly induced active beta(1)-integrin and E-cadherin expression as well as changes in WNT signaling. These observations were corroborated by data from ERG-overexpressing nontransformed prostate epithelial cells as well as gene expression data from clinical prostate cancer samples, which both indicated a link between ERG and epithelial-to-mesenchymal transition (EMT). Upregulation of several WNT pathway members was seen in ERG-positive prostate cancers, with frizzled-4 (FZD4) showing the strongest overexpression as verified by both reverse transcription-PCR and immunostaining. Both ERG knockin and knockdown modulated the levels of FZD4 expression. FZD4 silencing could mimic the ERG knockdown phenotype by inducing active beta(1)-integrin and E-cadherin expression, whereas FZD4 overexpression reversed the phenotypic effects seen with ERG knockdown. Taken together, our results provide mechanistic insights to ERG oncogenesis in prostate cancer, involving activation of WNT signaling through FZD4, leading to cancer-promoting phenotypic effects, including EMT and loss of cell adhesion.
Collapse
Affiliation(s)
- Santosh Gupta
- Medical Biotechnology, VTT Technical Research Centre of Finland, Finland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Effect of artemisinin derivatives on apoptosis and cell cycle in prostate cancer cells. Anticancer Drugs 2010; 21:423-32. [PMID: 20130467 DOI: 10.1097/cad.0b013e328336f57b] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Artemisinin is a plant-derived anti-malarial drug that has relatively low toxicity in humans and is activated by heme and/or intracellular iron leading to intracellular free radical formation. Interestingly, artemisinin has displayed anti-cancer activity, with artemisinin dimers being more potent than monomeric artemisinin. Intracellular iron uptake is regulated by the transferrin receptor (TfR), and the activity of artemisinin depends on the availability of iron. We examined the level of TfR in prostate cancer (PCa) tumor cells, synthesized two new artemisinin dimers, and evaluated the effect of dihydroartemisinin and artemisinin dimers, ON-2Py and 2Py, on proliferation and apoptosis in PCa cells. TfR was expressed in the majority of PCa bone and soft tissue metastases, all 24 LuCaP PCa xenografts, and PCa cell lines. After treatment with dihydroartemisinin, ON-2Py, or 2Py all PCa cell lines displayed dose-dependent decrease in cell number. 2Py was most effective in decreasing cell number. An increase in apoptotic events and growth arrest was observed in the C4-2 and LNCaP cell lines. Growth arrest was observed in PC-3 cells, but no significant change was observed in DU 145 cells. Treatment with 2Py resulted in a loss of the anti-apoptotic protein survivin in all four cell lines. 2Py treatment also decreased androgen receptor and prostate-specific antigen expression in C4-2 and LNCaP cells, with a concomitant loss of cell cycle regulatory proteins cyclin D1 and c-Myc. This study shows the potential use of artemisinin derivatives as therapeutic candidates for PCa and warrants the initiation of preclinical studies.
Collapse
|
27
|
LaValle CR, George KM, Sharlow ER, Lazo JS, Wipf P, Wang QJ. Protein kinase D as a potential new target for cancer therapy. Biochim Biophys Acta Rev Cancer 2010; 1806:183-92. [PMID: 20580776 DOI: 10.1016/j.bbcan.2010.05.003] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2010] [Revised: 05/13/2010] [Accepted: 05/13/2010] [Indexed: 12/20/2022]
Abstract
Protein kinase D is a novel family of serine/threonine kinases and diacylglycerol receptors that belongs to the calcium/calmodulin-dependent kinase superfamily. Evidence has established that specific PKD isoforms are dysregulated in several cancer types, and PKD involvement has been documented in a variety of cellular processes important to cancer development, including cell growth, apoptosis, motility, and angiogenesis. In light of this, there has been a recent surge in the development of novel chemical inhibitors of PKD. This review focuses on the potential of PKD as a chemotherapeutic target in cancer treatment and highlights important recent advances in the development of PKD inhibitors.
Collapse
Affiliation(s)
- Courtney R LaValle
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | | | | | | | | | | |
Collapse
|
28
|
Brenner W, Beitz S, Schneider E, Benzing F, Unger RE, Roos FC, Thüroff JW, Hampel C. Adhesion of renal carcinoma cells to endothelial cells depends on PKCmu. BMC Cancer 2010; 10:183. [PMID: 20459627 PMCID: PMC2873397 DOI: 10.1186/1471-2407-10-183] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2009] [Accepted: 05/06/2010] [Indexed: 11/29/2022] Open
Abstract
Background The formation of metastases includes the separation of tumor cells from the primary tumor, cell migration into subendothelial tissue and cell proliferation in secondary organ. In this process, cell adhesion of tumor cells to the endothelium is an essential requirement for formation of metastases. Protein kinase C (PKC) regulates adhesion and proliferation. To identify a relation between PKC isoforms and tumor progression in renal cell carcinoma (RCC), the influence of PKC isoforms on cell adhesion and proliferation, and possible influences of integrins were analyzed in RCC cells. Methods The experiments were performed in the RCC cell lines CCF-RC1 and CCF-RC2 after pre-incubation (16 h) with the PKC inhibitors GF109203X (inhibits PKCα, βI, βII, γ, δ and ε), GÖ6976 (inhibits PKCα, βI and μ), RO31-8220 (inhibits PKCα, βI, βII, γ and ε) and rottlerin (inhibits PKCδ). Cell adhesion was assessed through adherence of RCC cells to an endothelial monolayer. Cell proliferation was analyzed by a BrdU incorporation assay. The expression of β1 integrins was analyzed by flow cytometry. Results In CCF-RC1 cells, cell adhesion was significantly reduced by GÖ6976 to 55% and by RO31-8220 to 45% of control. In CCF-RC2 cells, only GÖ6976 induced a significant reduction of cell adhesion to 50% of control levels. Proliferation of both cell lines was reduced by rottlerin to 39% and 45% of control, respectively. The β1 integrin expression on the cell surface of CCF-RC1 and CCR-RC2 cells was decreased by RO31-8220 to 8% and 7% of control, respectively. β2 and β3 integrins were undetectable in both cell lines. Conclusions The combination of the PKC inhibitors leads to the assumption that PKCμ influences cell adhesion in CCF-RC1 and CCF-RC2 cells, whereas in CCF-RC1 cells PKCε also seems to be involved in this process. The expression of β1 integrins appears to be regulated in particular by PKCε. Cell proliferation was inhibited by rottlerin, so that PKCδ might be involved in cell proliferation in these cells.
Collapse
Affiliation(s)
- Walburgis Brenner
- Department of Urology, University Medical Center Mainz, Mainz, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Biswas MHU, Du C, Zhang C, Straubhaar J, Languino LR, Balaji KC. Protein kinase D1 inhibits cell proliferation through matrix metalloproteinase-2 and matrix metalloproteinase-9 secretion in prostate cancer. Cancer Res 2010; 70:2095-104. [PMID: 20160036 DOI: 10.1158/0008-5472.can-09-4155] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
We and others previously showed that protein kinase D1 (PKD1) is downregulated in several cancers including prostate; interacts with E-cadherin, a major cell adhesion epithelial protein; and causes increased cell aggregation and decreased motility of prostate cancer cells. In this study, we show that PKD1 complexes with beta3-integrin, resulting in activation of mitogen-activated protein kinase/extracellular signal-regulated kinase (ERK) kinase-ERK pathway, which causes increased production of matrix metalloproteinase (MMP)-2 and MMP-9, that is associated with shedding of soluble 80 kDa E-cadherin extracellular domain. Interestingly, decreased cell proliferation following PKD1 transfection was rescued by MMP-2 and MMP-9 inhibitors and augmented by recombinant MMP-2 (rMMP-2) and rMMP-9 proteins, suggesting an antiproliferative role for MMPs in prostate cancer. Translational studies by in silico analysis of publicly available DNA microarray data sets show a significant direct correlation between PKD1 and MMP-2 expression in human prostate tissues. The study shows a novel mechanism for antiproliferative effects of PKD1, a protein of emerging translational interest in several human cancers, through increased production of MMP-2 and MMP-9 in cancer cells.
Collapse
Affiliation(s)
- M Helal Uddin Biswas
- Division of Urology, Department of Surgery, University of Massachusetts Medical School, Worcester, Massachusetts 01655, USA
| | | | | | | | | | | |
Collapse
|
30
|
A transcription co-factor integrates cell adhesion and motility with the p53 response. Proc Natl Acad Sci U S A 2009; 106:19872-7. [PMID: 19897726 DOI: 10.1073/pnas.0906785106] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Despite its obvious importance in tumorigenesis, little information is available on the mechanisms that integrate cell motility and adhesion with nuclear events. JMY is a transcription co-factor that regulates the p53 response. In addition, JMY contains a series of WH2 domains that facilitate in vitro actin nucleation. We show here that the ability of JMY to influence cell motility is dependent, in part, on its control of cadherin expression as well as the WH2 domains. In DNA damage conditions JMY undergoes nuclear accumulation, which drives the p53 transcription response but reduces its influence on cell motility. Consequently, the role of JMY in actin nucleation is less in damaged cells, although the WH2 domains remain functional in the nucleus where they impact on p53 activity. Together, these findings demonstrate a pathway that links the cytoskeleton with the p53 response, and further suggest that the ability of JMY to regulate actin and cadherin is instrumental in coordinating cell motility with the p53 response.
Collapse
|
31
|
Heat shock protein 27 mediates repression of androgen receptor function by protein kinase D1 in prostate cancer cells. Oncogene 2009; 28:4386-96. [DOI: 10.1038/onc.2009.291] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
32
|
Du C, Jaggi M, Zhang C, Balaji KC. Protein kinase D1-mediated phosphorylation and subcellular localization of beta-catenin. Cancer Res 2009; 69:1117-24. [PMID: 19141652 DOI: 10.1158/0008-5472.can-07-6270] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
beta-Catenin is essential for E-cadherin-mediated cell adhesion in epithelial cells and also acts as a key cofactor for transcription activity. We previously showed that protein kinase D1 (PKD1), founding member of the PKD family of signal transduction proteins, is down-regulated in advanced prostate cancer and interacts with E-cadherin. This study provides evidence that PKD1 interacts with and phosphorylates beta-catenin at Thr(112) and Thr(120) residues in vitro and in vivo; mutation of Thr(112) and Thr(120) results in increased nuclear localization of beta-catenin and is associated with altered beta-catenin-mediated transcription activity. It is known that mutation of Thr(120) residue abolishes binding of beta-catenin to alpha-catenin, which links to cytoskeleton, suggesting that PKD1 phosphorylation of Thr(120) could be critical for cell-cell adhesion. Overexpression of PKD1 represses beta-catenin-mediated transcriptional activity and cell proliferation. Epistatic studies suggest that PKD1 and E-cadherin are within the same signaling pathway. Understanding the molecular basis of PKD1-beta-catenin interaction provides a novel strategy to target beta-catenin function in cells including prostate cancer.
Collapse
Affiliation(s)
- Cheng Du
- Department of Surgery, Division of Urology, University of Massachusetts Medical School, Worcester, Massachusett 01655, USA.
| | | | | | | |
Collapse
|
33
|
Molli PR, Adam L, Kumar R. Therapeutic IMC-C225 antibody inhibits breast cancer cell invasiveness via Vav2-dependent activation of RhoA GTPase. Clin Cancer Res 2008; 14:6161-70. [PMID: 18829495 DOI: 10.1158/1078-0432.ccr-07-5288] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Abnormalities in the expression and signaling pathways downstream of epidermal growth factor receptor (EGFR) contribute to progression, invasion, and maintenance of the malignant phenotype in human cancers. Accordingly, biological agents, such as the EGFR-blocking antibody IMC-C225 have promising anticancer potential and are currently in various stages of clinical development. Because use of IMC-C225 is limited, at present, only for treatment of cancer with high EGFR expression, the goal of the present study was to determine the effect of IMC-C225 on the invasiveness of breast cancer cells with high and low levels of EGFR expression. EXPERIMENTAL DESIGN The effect of IMC-C225 on invasion was studied using breast cancer cell lines with high and low levels of EGFR expression. RESULTS The addition of EGF led to progressive stress fiber dissolution. In contrast, cells treated with IMC-C225 showed reduced invasiveness and increased stress-fiber formation. Interestingly, IMC-C225 pretreatment was accompanied by EGFR phosphorylation, as detected using an anti-phosphorylated tyrosine antibody (PY99), which correlated with phosphorylation of Vav2 guanine nucleotide exchange factor and activation of RhoA GTPase irrespective of EGFR level, and Vav2 interacted with EGFR only in IMC-C225-treated cells. The underlying mechanism involved an enhanced interaction between beta1 integrins and EGFR upon IMC-C225 treatment. CONCLUSION Here, we defined a new mechanism for IMC-C225 that cross-links integrins with EGFR, leading to activation of RhoA and inhibition of breast cancer cell invasion irrespective of the level of EGFR in the cells, thus providing a rationale for using IMC-C225 in the metastatic setting independent of the levels of EGFR.
Collapse
Affiliation(s)
- Poonam R Molli
- Department of Molecular and Cellular Oncology, University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | | | | |
Collapse
|
34
|
Jaggi M, Chauhan SC, Du C, Balaji KC. Bryostatin 1 modulates beta-catenin subcellular localization and transcription activity through protein kinase D1 activation. Mol Cancer Ther 2008; 7:2703-12. [PMID: 18765827 DOI: 10.1158/1535-7163.mct-08-0119] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In recent years, the use of natural products for cancer prevention and treatment has received considerable attention. Bryostatin 1 is a natural macrocyclic lactone and a protein kinase D (PKD) modulator with potent antineoplastic properties that has been used to treat human cancers in clinical trials with limited success. Further understanding the mechanistic basis of Bryostatin 1 action may provide opportunities to improve clinical results of treatment with Bryostatin 1. We identified that PKD1, founding member of PKD family of serine/threonine kinases, modulates E-cadherin/beta-catenin activity, which plays an important role in cell integrity, polarity, growth, and morphogenesis. An aberrant expression and localization of E-cadherin/beta-catenin has been strongly associated with cancer progression and metastasis. In this study, we examined the effect of Bryostatin 1 treatment on PKD1 activation, beta-catenin translocation and transcription activity, and malignant phenotype of prostate cancer cells. Initial activation of PKD1 with Bryostatin 1 leads to colocalization of the cytoplasmic pool of beta-catenin with PKD1, trans-Golgi network markers, and proteins involved in vesicular trafficking. Activation of PKD1 by Bryostatin 1 decreases nuclear beta-catenin expression and beta-catenin/TCF transcription activity. Activation of PKD1 alters cellular aggregation and proliferation in prostate cancer cells associated with subcellular redistribution of E-cadherin and beta-catenin. For the first time, we have identified that Bryostatin 1 modulates beta-catenin signaling through PKD1, which identifies a novel mechanism to improve efficacy of Bryostatin 1 in clinical settings.
Collapse
Affiliation(s)
- Meena Jaggi
- Cancer Biology Research Center, Department of OBGYN and Basic Biomedical Science, Sanford Research/University of South Dakota, Sanford School of Medicine, University of South Dakota, 1400 West 22nd Street, Sioux Falls, SD 57105, USA.
| | | | | | | |
Collapse
|
35
|
Mak P, Jaggi M, Syed V, Chauhan SC, Hassan S, Biswas H, Balaji KC. Protein kinase D1 (PKD1) influences androgen receptor (AR) function in prostate cancer cells. Biochem Biophys Res Commun 2008; 373:618-23. [PMID: 18602367 DOI: 10.1016/j.bbrc.2008.06.097] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2008] [Accepted: 06/23/2008] [Indexed: 01/02/2023]
Abstract
Protein kinase D1 (PKD1), founding member of PKD protein family, is down-regulated in advanced prostate cancer (PCa). We demonstrate that PKD1 and androgen receptor (AR) are present as a protein complex in PCa cells. PKD1 is associated with a transcriptional complex which contains AR and promoter sequence of the Prostate Specific Antigen (PSA) gene. Ectopic expression of wild type PKD1 and the kinase dead mutant PKD1 (K628W) attenuated the ligand-dependent transcriptional activation of AR in prostate cancer cells and yeast cells indicating that PKD1 can affect AR transcription activity, whereas knocking down PKD1 enhanced the ligand-dependent transcriptional activation of AR. Co-expression of kinase dead mutant with AR significantly inhibited androgen-mediated cell proliferation in both LNCaP and DU145 PC cells. Our data demonstrate for the first time that PKD1 can influence AR function in PCa cells.
Collapse
Affiliation(s)
- Paul Mak
- University of Massachusetts Medical School, Division of Urology, Department of Surgery, Worcester, MA 01655, USA
| | | | | | | | | | | | | |
Collapse
|
36
|
Lee CH. Phosphoinositides Signaling and Epithelial-to-Mesenchymal Transition: Putative Topic for Basic Toxicological Research. Toxicol Res 2008; 24:1-9. [PMID: 32038770 PMCID: PMC7006266 DOI: 10.5487/tr.2008.24.1.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2008] [Accepted: 02/19/2008] [Indexed: 11/27/2022] Open
Abstract
Ptdlns(4,5)P2 is a key cellular phosphoinositide that localizes in separate and distinctive pools in subcellular membrane and vesicular compartments. In membranes, Ptdlns(4,5)P2 acts as a precursor to second messengers and is itself a main signaling and targeting molecule. Specific subcellular localization of type I PIP kinases directed by interacting with specific targeting module differentiates Ptdlns(4,5)P2 production in a spatial and temporal manner. Several lines of evidences support the idea that Ptdlns(4,5)P2 is generated in very specific pools in a spatial and temporal manner or by feeding Ptdlns(4,5)P2 directly to effectors. In this concept, the interaction of PIPKI isoforms with a specific targeting module to allow precise subcellular targeting modulates highly specific Ptdlns(4,5)P2 synthesis and channeling overall effectors. For instance, localization of PIPKIγ661 to focal adhesions by an interaction with talin results in spatial and temporal production of Ptdlns(4,5)P2, which regulates EGF-stimulated directional cell migration. In addition, Type lγ PIPK is targeted to E-cadherin in cell adherence junction and plays a role in controlling dynamics of cell adherence junction and endocytosis of E-cadherin. Characterizing how PIP kinase isoforms are regulated by interactions with their targeting modules, as well as the mechanisms by which their product, Ptdlns(4,5)P2, exerts its effects on cellular signaling processes, is crucial to understand the harmonized control of numerous cellular signaling pathways. Thus, in this review the roles of the Ptdlns(4)P(5) kinases and Ptdlns(4,5)P2 were described and critically reviewed in terms of regulation of the E-cadherin trafficking, cell migration, and formation of cell adherence junction which is indispensable and is tightly controlled in epithelial-to-mesenchymal transition process.
Collapse
Affiliation(s)
- Chang Ho Lee
- Department of Pharmacology and Biomedical Science, College of Medicine, Hanyang University, Sungdong-gu, Seoul, 133-791 Korea
| |
Collapse
|