1
|
Lou CH, Shao A, Shum EY, Espinoza JL, Huang L, Karam R, Wilkinson MF. Posttranscriptional control of the stem cell and neurogenic programs by the nonsense-mediated RNA decay pathway. Cell Rep 2014; 6:748-64. [PMID: 24529710 DOI: 10.1016/j.celrep.2014.01.028] [Citation(s) in RCA: 118] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 12/11/2013] [Accepted: 01/21/2014] [Indexed: 11/19/2022] Open
Abstract
The mechanisms dictating whether a cell proliferates or differentiates have undergone intense scrutiny, but they remain poorly understood. Here, we report that UPF1, a central component in the nonsense-mediated RNA decay (NMD) pathway, plays a key role in this decision by promoting the proliferative, undifferentiated cell state. UPF1 acts, in part, by destabilizing the NMD substrate encoding the TGF-β inhibitor SMAD7 and stimulating TGF-β signaling. UPF1 also promotes the decay of mRNAs encoding many other proteins that oppose the proliferative, undifferentiated cell state. Neural differentiation is triggered when NMD is downregulated by neurally expressed microRNAs (miRNAs). This UPF1-miRNA circuitry is highly conserved and harbors negative feedback loops that act as a molecular switch. Our results suggest that the NMD pathway collaborates with the TGF-β signaling pathway to lock in the stem-like state, a cellular state that is stably reversed when neural differentiation signals that induce NMD-repressive miRNAs are received.
Collapse
Affiliation(s)
- Chih H Lou
- Department of Reproductive Medicine, School of Medicine, University of California, San Diego, La Jolla, CA 92093-0695, USA
| | - Ada Shao
- Department of Reproductive Medicine, School of Medicine, University of California, San Diego, La Jolla, CA 92093-0695, USA
| | - Eleen Y Shum
- Department of Reproductive Medicine, School of Medicine, University of California, San Diego, La Jolla, CA 92093-0695, USA
| | - Josh L Espinoza
- Department of Reproductive Medicine, School of Medicine, University of California, San Diego, La Jolla, CA 92093-0695, USA
| | - Lulu Huang
- Department of Reproductive Medicine, School of Medicine, University of California, San Diego, La Jolla, CA 92093-0695, USA
| | - Rachid Karam
- Department of Reproductive Medicine, School of Medicine, University of California, San Diego, La Jolla, CA 92093-0695, USA
| | - Miles F Wilkinson
- Department of Reproductive Medicine, School of Medicine, University of California, San Diego, La Jolla, CA 92093-0695, USA; Institute of Genomic Medicine, University of California, San Diego, La Jolla, CA 92093-0695, USA.
| |
Collapse
|
2
|
Aguiar DP, Pontes B, Mendes FA, Andrade LR, Viana NB, Abreu JG. CTGF/CCN2 has a chemoattractive function but a weak adhesive property to embryonic carcinoma cells. Biochem Biophys Res Commun 2011; 413:582-7. [DOI: 10.1016/j.bbrc.2011.09.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2011] [Accepted: 09/01/2011] [Indexed: 02/01/2023]
|
3
|
Fuchs C, Scheinast M, Pasteiner W, Lagger S, Hofner M, Hoellrigl A, Schultheis M, Weitzer G. Self-organization phenomena in embryonic stem cell-derived embryoid bodies: axis formation and breaking of symmetry during cardiomyogenesis. Cells Tissues Organs 2011; 195:377-91. [PMID: 21860211 PMCID: PMC7615842 DOI: 10.1159/000328712] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/13/2011] [Indexed: 12/29/2022] Open
Abstract
Aggregation of embryonic stem cells gives rise to embryoid bodies (EBs) which undergo developmental processes reminiscent of early eutherian embryonic development. Development of the three germ layers suggests that gastrulation takes place. In vivo, gastrulation is a highly ordered process but in EBs only few data support the hypothesis that self-organization of differentiating cells leads to morphology, reminiscent of the early gastrula. Here we demonstrate that a timely implantation-like process is a prerequisite for the breaking of the radial symmetry of suspended EBs. Attached to a surface, EBs develop a bilateral symmetry and presumptive mesodermal cells emerge between the center of the EBs and a horseshoe-shaped ridge of cells. The development of an epithelial sheet of cells on one side of the EBs allows us to define an 'anterior' and a 'posterior' end of the EBs. In the mesodermal area, first cardiomyocytes (CMCs) develop mainly next to this epithelial sheet of cells. Development of twice as many CMCs at the 'left' side of the EBs breaks the bilateral symmetry and suggests that cardiomyogenesis reflects a local or temporal asymmetry in EBs. The asymmetric appearance of CMCs but not the development of mesoderm can be disturbed by ectopic expression of the muscle-specific protein Desmin. Later, the bilateral morphology becomes blurred by an apparently chaotic differentiation of many cell types. The absence of comparable structures in aggregates of cardiovascular progenitor cells isolated from the heart demonstrates that the self-organization of cells during a gastrulation-like process is a unique feature of embryonic stem cells.
Collapse
Affiliation(s)
- Christiane Fuchs
- Max F. Perutz Laboratories, Department of Medical Biochemistry, Division of Molecular Biology and
| | - Matthias Scheinast
- Max F. Perutz Laboratories, Department of Medical Biochemistry, Division of Molecular Biology and
| | - Waltraud Pasteiner
- Max F. Perutz Laboratories, Department of Medical Biochemistry, Division of Molecular Biology and
| | - Sabine Lagger
- Division of Molecular Genetics, Medical University of Vienna, Vienna, Austria
| | - Manuela Hofner
- Max F. Perutz Laboratories, Department of Medical Biochemistry, Division of Molecular Biology and
| | - Alexandra Hoellrigl
- Max F. Perutz Laboratories, Department of Medical Biochemistry, Division of Molecular Biology and
| | - Martina Schultheis
- Max F. Perutz Laboratories, Department of Medical Biochemistry, Division of Molecular Biology and
| | - Georg Weitzer
- Max F. Perutz Laboratories, Department of Medical Biochemistry, Division of Molecular Biology and
| |
Collapse
|
4
|
Nakaya K, Ooishi R, Funaba M, Murakami M. A JNK inhibitor SP600125 induces defective cytokinesis and enlargement in P19 embryonal carcinoma cells. Cell Biochem Funct 2009; 27:468-72. [PMID: 19711443 DOI: 10.1002/cbf.1597] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
While analyzing the role of c-Jun NH(2)-terminal kinase (JNK) in neurogenesis in P19 embryonal carcinoma cells, we noticed that treatment with SP600125, a JNK inhibitor, increased the cell size markedly. SP600125-induced enlargement of P19 cells was time- and dose-dependent. The increased cell size in response to SP600125 was also detected in B6mt-1 embryonic stem cells. SP600125 treatment inhibited cell growth and increased DNA contents, indicating the inhibition of cell proliferation resulting from endoreduplication. Concurrently, the gene expression of p21, a regulator of G2/M arrest as well as G1 arrest, was increased in cells treated with SP600125. The increased cell size in response to SP600125 was detected even in P19 cells treated with colcemide, an inhibitor of cell cycle progression at the metaphase. The present study suggests that treatment with SP600125 progresses the cell cycle, skipping cytokinesis in P19 cells.
Collapse
Affiliation(s)
- Kohei Nakaya
- Laboratory of Molecular Biology, Azabu University School of Veterinary Medicine, Sagamihara, Japan
| | | | | | | |
Collapse
|