1
|
Xiang Y, Dai J, Xu L, Li X, Jiang J, Xu J. Research progress in immune microenvironment regulation of muscle atrophy induced by peripheral nerve injury. Life Sci 2021; 287:120117. [PMID: 34740577 DOI: 10.1016/j.lfs.2021.120117] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 09/18/2021] [Accepted: 10/28/2021] [Indexed: 01/08/2023]
Abstract
Denervated skeletal muscular atrophy is primarily characterized by loss of muscle strength and mass and an unideal functional recovery of the muscle after extended denervation. This review emphasizes the interaction between the immune system and the denervated skeletal muscle. Immune cells such as neutrophils, macrophages and T-cells are activated and migrate to denervated muscle, where they release a high concentration of cytokines and chemokines. The migration of these immune cells, the transformation of different functional immune cell subtypes, and the cytokine network in the immune microenvironment may be involved in the regulatory process of muscle atrophy or repair. However, the exact mechanisms of the interaction between these immune cells and immune molecules in skeletal muscles are unclear. In this paper, the immune microenvironment regulation of muscle atrophy induced by peripheral nerve injury is reviewed.
Collapse
Affiliation(s)
- Yaoxian Xiang
- Department of Hand Surgery, Huashan Hospital, Fudan University, Shanghai, China; Key Laboratory of Hand Reconstruction, Ministry of Health, Shanghai, China; Shanghai Key Laboratory of Peripheral Nerve and Microsurgery, Shanghai, China
| | - Junxi Dai
- Department of Hand Surgery, Huashan Hospital, Fudan University, Shanghai, China; Key Laboratory of Hand Reconstruction, Ministry of Health, Shanghai, China; Shanghai Key Laboratory of Peripheral Nerve and Microsurgery, Shanghai, China
| | - Lei Xu
- Department of Hand Surgery, Huashan Hospital, Fudan University, Shanghai, China; Key Laboratory of Hand Reconstruction, Ministry of Health, Shanghai, China; Shanghai Key Laboratory of Peripheral Nerve and Microsurgery, Shanghai, China
| | - Xiaokang Li
- Natl Res Inst Child Hlth & Dev, Div Transplantat Immunol, Tokyo, Japan
| | - Junjian Jiang
- Department of Hand Surgery, Huashan Hospital, Fudan University, Shanghai, China; Key Laboratory of Hand Reconstruction, Ministry of Health, Shanghai, China; Shanghai Key Laboratory of Peripheral Nerve and Microsurgery, Shanghai, China.
| | - Jianguang Xu
- Department of Hand Surgery, Huashan Hospital, Fudan University, Shanghai, China; Key Laboratory of Hand Reconstruction, Ministry of Health, Shanghai, China; Shanghai Key Laboratory of Peripheral Nerve and Microsurgery, Shanghai, China; School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
2
|
Davies JM, Radford KJ, Begun J, Levesque JP, Winkler IG. Adhesion to E-selectin primes macrophages for activation through AKT and mTOR. Immunol Cell Biol 2021; 99:622-639. [PMID: 33565143 DOI: 10.1111/imcb.12447] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 02/08/2021] [Accepted: 02/08/2021] [Indexed: 12/29/2022]
Abstract
The endothelial adhesion protein E-selectin/CD62E is not required for leukocyte homing, unlike closely related family member P-selectin/CD62P. As transmigration through the endothelium is one of the first steps in generating a local immune response, we hypothesized that E-selectin may play additional roles in the early stages of immune activation. We found contact with E-selectin, but not P-selectin or vascular cell adhesion molecule 1 (CD106), induced phosphorylation of protein kinase B (AKT) and nuclear factor-κB in mouse bone marrow-derived macrophages (BMDMs) in vitro. This occurred within 15 min of E-selectin contact and was dependent on phosphatidylinositol-3 kinase activity. Binding to E-selectin activated downstream proteins including mammalian target of rapamycin, p70 ribosomal protein S6 kinase and eukaryotic translation initiation factor 4E-binding protein 1. Functionally, adhesion to E-selectin induced upregulation of CD86 expression and CCL2 secretion. We next asked whether contact with E-selectin impacts further BMDM stimulation. We found enhanced secretion of both interleukin (IL)-10 and CCL2, but not tumor necrosis factor or IL-6 in response to lipopolysaccharide (LPS) stimulation after adhesion to E-selectin. Importantly, adhesion to E-selectin did not polarize BMDMs to one type of response but enhanced both arginase activity and nitric oxide production following IL-4 or LPS stimulation, respectively. In cultured human monocytes, adhesion to E-selectin similarly induced phosphorylation of AKT. Finally, when E-selectin was blocked in vivo in mice, thioglycollate-elicited macrophages showed reduced CD86 expression, validating our in vitro studies. Our results imply functions for E-selectin beyond homing and suggest that E-selectin plays an early role in priming and amplifying innate immune responses.
Collapse
Affiliation(s)
- Julie M Davies
- Mater Research Institute, Translational Research Institute, The University of Queensland, Woolloongabba, QLD, Australia
| | - Kristen J Radford
- Mater Research Institute, Translational Research Institute, The University of Queensland, Woolloongabba, QLD, Australia
| | - Jakob Begun
- Mater Research Institute, Translational Research Institute, The University of Queensland, Woolloongabba, QLD, Australia
| | - Jean-Pierre Levesque
- Mater Research Institute, Translational Research Institute, The University of Queensland, Woolloongabba, QLD, Australia
| | - Ingrid G Winkler
- Mater Research Institute, Translational Research Institute, The University of Queensland, Woolloongabba, QLD, Australia
| |
Collapse
|
3
|
Chen J, Zhu Z, Li Q, Lin Y, Dang E, Meng H, Sha N, Bai H, Wang G, An S, Shao S. Neutrophils Enhance Cutaneous Vascular Dilation and Permeability to Aggravate Psoriasis by Releasing Matrix Metallopeptidase 9. J Invest Dermatol 2020; 141:787-799. [PMID: 32888954 DOI: 10.1016/j.jid.2020.07.028] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 07/07/2020] [Accepted: 07/19/2020] [Indexed: 12/12/2022]
Abstract
Neutrophil infiltration and papillary vessel dilation are hallmarks of the initiation phase of psoriatic lesions. However, how neutrophils aggravate psoriasis development during transendothelial migration and the interaction between neutrophils and cutaneous vascular endothelial cells are less well-understood. In this study, we reported that neutrophils and cutaneous vascular endothelial cells activated each other when neutrophils migrated through the cutaneous endothelial barrier. In addition, neutrophil infiltration into skin lesions caused vascular remodeling including cutaneous vasodilation and enhanced vascular permeability in vivo and in vitro. Microarray gene profile data showed that matrix metallopeptidase (MMP)-9 was overexpressed in psoriatic neutrophils, and zymography assay further validated the bioactivity of MMP-9 secreted by psoriatic neutrophils. Moreover, MMP-9 activated vascular endothelial cells through the extracellular signal‒regulated kinase 1/2 and p38-MAPK signaling pathways, enhancing CD4+ T-cell transmigration in vitro. Correspondingly, an MMP-9 inhibitor significantly reduced cutaneous vasodilation, vascular permeability, and psoriatic symptoms in an imiquimod- or IL-23‒induced psoriasiform mouse model. Overall, our study demonstrates that neutrophil-derived MMP-9 induces cutaneous vasodilation and hyperpermeability by activating cutaneous vascular endothelial cells, thus facilitating psoriatic lesion development, which increases our knowledge on the role of neutrophils in the pathogenesis of psoriasis.
Collapse
Affiliation(s)
- Jiaoling Chen
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Zhenlai Zhu
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Qingyang Li
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Yiting Lin
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Erle Dang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Hua Meng
- Department of General Diagnosis and Treatment, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Nanxi Sha
- Department of General Diagnosis and Treatment, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Hua Bai
- Department of General Diagnosis and Treatment, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Gang Wang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Shujie An
- Department of General Diagnosis and Treatment, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Shuai Shao
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
4
|
Guan X, Yuan Y, Wang G, Zheng R, Zhang J, Dong B, Ran N, Hsu ACY, Wang C, Wang F. Ginsenoside Rg3 ameliorates acute exacerbation of COPD by suppressing neutrophil migration. Int Immunopharmacol 2020; 83:106449. [PMID: 32278128 DOI: 10.1016/j.intimp.2020.106449] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 03/12/2020] [Accepted: 03/25/2020] [Indexed: 12/14/2022]
Abstract
Acute Exacerbation of Chronic Obstructive Pulmonary Disease (AECOPD) is an irreversible inflammatory airways disease responsible for global health burden, involved with a complex condition of immunological change. Exacerbation-mediated neutrophilia is an important factor in the pathogenesis of cigarette smoke-induced AECOPD. Ginsenoside Rg3, a red-ginseng-derived compound, has multiple pharmacological properties such as anti-inflammatory and antitumor activities. Here, we investigated a protective role of Rg3 against AECOPD, focusing on neutrophilia. 14-week-cigarette smoke (CS) exposure and non-typeable Haemophilus inflenzae (NTHi) infection were used to establish the AECOPD murine model. Rg3 (10, 20, 40 mg/kg) was administered intragastrically from the 12th week of CS exposure before infection, and this led to improved lung function and lung morphology, and reduced neutrophilic inflammation, indicating a suppressive effect on neutrophil infiltration by Rg3. Further investigations on the mechanism of Rg3 on neutrophils were carried out using bronchial epithelial cell (BEAS-2B) and neutrophil co-culture and transepithelial migration model. Pre-treatment of neutrophils with Rg3 reduced neutrophil migration, which seemed to be the result of inhibition of phosphatidylinositol (PtdIns) 3-kinases (PI3K) activation within neutrophils. Thus, Rg3 could inhibit exacerbation-induced neutrophilia in COPD by negatively regulating PI3K activities in neutrophils. This study provides a potential natural drug against AECOPD neutrophil inflammation.
Collapse
Affiliation(s)
- Xuewa Guan
- Department of Pathogeny Biology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Yuze Yuan
- Department of Pathogeny Biology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Guoqiang Wang
- Department of Pathogeny Biology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Ruipeng Zheng
- Department of Pathogeny Biology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; Department of Invasive Technology, First Hospital of Jilin University, Changchun 130021, China
| | - Jing Zhang
- Department of Pathogeny Biology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; Department of Intensive Care Unit, First Hospital of Jilin University, Changchun 130021, China
| | - Bing Dong
- Department of Pathogeny Biology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Nan Ran
- Department of Pathogeny Biology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Alan Chen-Yu Hsu
- Priority Research Centre for Asthma and Respiratory Diseases, Hunter Medical Research Institute and the University of Newcastle, NSW, Australia
| | - Cuizhu Wang
- Department of Pathogeny Biology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Fang Wang
- Department of Pathogeny Biology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; Key laboratory of Zoonosis Research Ministry of Education, Jilin University, Changchun 130021, China.
| |
Collapse
|
5
|
Morikis VA, Simon SI. Neutrophil Mechanosignaling Promotes Integrin Engagement With Endothelial Cells and Motility Within Inflamed Vessels. Front Immunol 2018; 9:2774. [PMID: 30546362 PMCID: PMC6279920 DOI: 10.3389/fimmu.2018.02774] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 11/12/2018] [Indexed: 12/24/2022] Open
Abstract
Neutrophils are the most motile of mammalian cells, a feature that enables them to protect the host against the rapid spread of pathogens from tissue into the circulatory system. A critical process is the recruitment of neutrophils to inflamed endothelium within post-capillary venules. This occurs through cooperation between at least four families of adhesion molecules and G-protein coupled signaling receptors. These adhesion molecules convert the drag force induced by blood flow acting on the cell surface into bond tension that resists detachment. A common feature of selectin-glycoprotein tethering and integrin-ICAM bond formation is the mechanics by which force acting on these specific receptor-ligand pairs influences their longevity, strength, and topographic organization on the plasma membrane. Another distinctly mechanical aspect of neutrophil guidance is the capacity of adhesive bonds to convert external mechanical force into internal biochemical signals through the transmission of force from the outside-in at focal sites of adhesive traction on inflamed endothelium. Within this region of the plasma membrane, we denote the inflammatory synapse, Ca2+ release, and intracellular signaling provide directional cues that guide actin assembly and myosin driven motive force. This review provides an overview of how bond formation and outside-in signaling controls neutrophil recruitment and migration relative to the hydrodynamic shear force of blood flow.
Collapse
Affiliation(s)
- Vasilios A Morikis
- Simon Lab, Department of Biomedical Engineering, University of California, Davis, Davis, CA, United States
| | - Scott I Simon
- Simon Lab, Department of Biomedical Engineering, University of California, Davis, Davis, CA, United States
| |
Collapse
|
6
|
PI3K Is a Linker Between L-selectin and PSGL-1 Signaling to IL-18 Transcriptional Activation at the Promoter Level. Inflammation 2018; 41:555-561. [PMID: 29218606 DOI: 10.1007/s10753-017-0711-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
L-selectin and P-selectin glycoprotein ligand-1 (PSGL-1) are adhesion molecules which induce similar physiological events. Our previous paper showed that phosphatidylinositol 3-kinase (PI3K) played a crucial role in L-selectin- and PSGL-1-mediated F-actin redistribution and assembly during neutrophil rolling on E-selectin. However, it is not clear whether L-selectin and PSGL-1 induce other similar physiology events by PI3K. Here, we investigated the possibility of PI3K linking the signaling pathways of L-selectin and PSGL-1 to IL-18 transcription. We first demonstrated that L-selectin and PSGL-1 stimulation upregulated IL-18 transcription level in Jurkat cells. Then we found that PI3K inhibitor LY294002 reduced L-selectin- and PSGL-1-induced mRNA upregulation of IL-18 in Jurkat cells. Transfection of phosphatase and tensin homolog expressing plasmid inhibited the transcription level of IL-18. Therefore, PI3K is a signal linker between L-selectin and PSGL-1 in IL-18 transcriptional activation at the promoter level. To our knowledge, this is the first time to directly link PI3K to L-selectin- and PSGL-1-mediated IL-18 transcription, providing a foundation for intervention of PI3K-related inflammation.
Collapse
|
7
|
Abstract
PURPOSE OF REVIEW We review P-selectin glycoprotein ligand-1 (PSGL-1) as a selectin and chemokine-binding adhesion molecule. PSGL-1 is widely studied in neutrophils. Here, we focus on T cells, because PSGL-1 was recently described as a major immunomodulatory molecule during viral infection. PSGL-1 also plays a crucial role in T-cell homeostasis by binding to lymphoid chemokines, and can induce tolerance by enhancing the functions of regulatory T cells. RECENT FINDINGS PSGL-1 was originally described as a leukocyte ligand for P-selectin, but it is actually a ligand for all selectins (P-, L- and E-selectin), binds chemokines, activates integrins and profoundly affects T-cell biology. It has been shown recently that PSGL-1 can modulate T cells during viral infection by acting as a negative regulator for T-cell functions. Absence of PSGL-1 promotes effector CD4 and CD8 T-cell differentiation and prevents T-cell exhaustion. Consistent with this, tumor growth was significantly reduced in PSGL-1-deficient mice because of an enhanced number of effector T cells together with reduced levels of inhibitory receptors that induce T-cell exhaustion. SUMMARY PSGL-1 is the best-studied selectin ligand and has become a posterchild of versatility in leukocyte adhesion, inflammation and immunology. The direct involvement of PSGL-1 in T-cell biology suggests that it might be a drug target. Indeed, PSGL-1 has been tested in some clinical trials and recently, PSGL-1 blockers were proposed as a potential cotherapy in cancer immunotherapy.
Collapse
|
8
|
Ibrahim SA, Kulshrestha A, Katara GK, Amin MA, Beaman KD. Cancer derived peptide of vacuolar ATPase 'a2' isoform promotes neutrophil migration by autocrine secretion of IL-8. Sci Rep 2016; 6:36865. [PMID: 27845385 PMCID: PMC5109272 DOI: 10.1038/srep36865] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 10/20/2016] [Indexed: 01/14/2023] Open
Abstract
Neutrophils play significant regulatory roles within the tumor microenvironment by directly promoting tumor progression that leads to poor clinical outcomes. Identifying the tumor associated molecules that regulate neutrophil infiltration into tumors may provide new and specific therapeutic targets for cancer treatment. The a2-isoform of vacuolar ATPase (a2V) is uniquely and highly expressed on cancer cell plasma membrane. Cancer cells secrete a peptide from a2V (a2NTD) that promotes the pro-tumorigenic properties of neutrophils. This provides a2V the propensity to control neutrophil migration. Here, we report that the treatment of human neutrophils with recombinant a2NTD leads to neutrophil adherence and polarization. Moreover, a2NTD treatment activates surface adhesion receptors, as well as FAK and Src kinases that are essential regulators of the migration process in neutrophils. Functional analysis reveals that a2NTD can act as a chemo-attractant and promotes neutrophil migration. In addition, a2Neuɸ secrete high levels of IL-8 via NF-κB pathway activation. Confirmatory assays demonstrate that the promoted migration of a2Neuɸ was dependent on the autocrine secretion of IL-8 from a2Neuɸ. These findings demonstrate for the first time the direct regulatory role of cancer associated a2-isoform V-ATPase on neutrophil migration, suggesting a2V as a potential target for cancer therapy.
Collapse
Affiliation(s)
- Safaa A. Ibrahim
- Department of Microbiology and Immunology, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Egypt
| | - Arpita Kulshrestha
- Department of Microbiology and Immunology, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - Gajendra K. Katara
- Department of Microbiology and Immunology, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - Magdy A. Amin
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Egypt
| | - Kenneth D. Beaman
- Department of Microbiology and Immunology, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| |
Collapse
|
9
|
Xu T, Liu W, Yang C, Ba X, Wang X, Jiang Y, Zeng X. Lipid raft-associated β
-adducin is required for PSGL-1-mediated neutrophil rolling on P-selectin. J Leukoc Biol 2014; 97:297-306. [DOI: 10.1189/jlb.2a0114-016r] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
|
10
|
Luo J, Li C, Xu T, Liu W, Ba X, Wang X, Zeng X. PI3K is involved in β1 integrin clustering by PSGL-1 and promotes β1 integrin-mediated Jurkat cell adhesion to fibronectin. Mol Cell Biochem 2014; 385:287-95. [PMID: 24122451 DOI: 10.1007/s11010-013-1837-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Accepted: 09/26/2013] [Indexed: 10/26/2022]
Abstract
P-selectin glycoprotein ligand-1 (PSGL-1) is involved in the initial step of lymphocyte homing by interacting with P- or E-selectins expressed on activated endothelium cells. Besides, it also functions as a receptor to induce signals that increase integrin affinity to ligands and mediate cell adhesion to endothelium. Integrin is required for the second step of lymphocyte homing, whose activation has been reported tightly regulated by inside-out signals triggered by chemokines or the shear-stress generated during lymphocyte rolling on endothelium. However, the relationship between PSGL-1-triggered signals and integrin activation is not clear. In this study, we demonstrated that PSGL-1 ligation induces β1 integrin-mediated adhesion to fibronectin via regulation of both β1 subunit clustering and conformation changes. Phosphoinositide 3-kinase (PI3K) is required for PSGL-1-induced β1 integrin clustering which ultimately regulates β1 integrin-mediated Jurkat cell adhesion to fibronectin. However, PI3K is not involved in the conformation changes or increases in the total expression of β1 integrin. Taken together, we found a novel signal pathway, PSGL-1-PI3K-β1 integrin, demonstrating the cooperation between initial adhesion and subsequent arrest and stable adhesion.
Collapse
|
11
|
Xu T, Liu W, Luo J, Li C, Ba X, Ampah KK, Wang X, Jiang Y, Zeng X. Lipid Raft is required for PSGL-1 ligation induced HL-60 cell adhesion on ICAM-1. PLoS One 2013; 8:e81807. [PMID: 24312591 PMCID: PMC3849276 DOI: 10.1371/journal.pone.0081807] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2013] [Accepted: 10/16/2013] [Indexed: 01/03/2023] Open
Abstract
P-selectin glycoprotein ligand-1 (PSGL-1) and integrins are adhesion molecules that play critical roles in host defense and innate immunity. PSGL-1 mediates leukocyte rolling and primes leukocytes for integrin-mediated adhesion. However, the mechanism that PSGL-1 as a rolling receptor in regulating integrin activation has not been well characterized. Here, we investigate the function of lipid raft in regulating PSGL-1 induced β2 integrin-mediated HL-60 cells adhesion. PSGL-1 ligation with antibody enhances the β2 integrin activation and β2 integrin-dependent adhesion to ICAM-1. Importantly, with the treatment of methyl-β-cyclodextrin (MβCD), we confirm the role of lipid raft in regulating the activation of β2 integrin. Furthermore, we find that the protein level of PSGL-1 decreased in raft fractions in MβCD treated cells. PSGL-1 ligation induces the recruitment of spleen tyrosine kinase (Syk), a tyrosine kinase and Vav1 (the pivotal downstream effector of Syk signaling pathway involved in cytoskeleton regulation) to lipid raft. Inhibition of Syk activity with pharmacologic inhibitor strongly reduces HL-60 cells adhesion, implicating Syk is crucial for PSGL-1 mediated β2 integrin activation. Taken together, we report that ligation of PSGL-1 on HL-60 cells activates β2 integrin, for which lipid raft integrity and Syk activation are responsible. These findings have shed new light on the mechanisms that connect leukocyte initial rolling with subsequent adhesion.
Collapse
Affiliation(s)
- Tingshuang Xu
- Institute of Genetics and Cytology, Northeast Normal University, Changchun, Jilin Province, China
| | - Wenai Liu
- Institute of Genetics and Cytology, Northeast Normal University, Changchun, Jilin Province, China
| | - Jixian Luo
- Department of Bioscience, Shanxi University, Taiyuan, China
| | - Chunfeng Li
- Institute of Genetics and Cytology, Northeast Normal University, Changchun, Jilin Province, China
| | - Xueqing Ba
- Institute of Genetics and Cytology, Northeast Normal University, Changchun, Jilin Province, China
| | - Khamal Kwesi Ampah
- Institute of Genetics and Cytology, Northeast Normal University, Changchun, Jilin Province, China
| | - Xiaoguang Wang
- Department of Bioscience, Changchun Teachers College, Changchun, China
- * E-mail: (XGW); (XLZ)
| | - Yong Jiang
- Department of Pathophysiology, Southern Medical University, Guangzhou, China
| | - Xianlu Zeng
- Institute of Genetics and Cytology, Northeast Normal University, Changchun, Jilin Province, China
- * E-mail: (XGW); (XLZ)
| |
Collapse
|
12
|
Luo J, Xu T, Li C, Ba X, Wang X, Jiang Y, Zeng X. p85-RhoGDI2, a novel complex, is required for PSGL-1-induced β1 integrin-mediated lymphocyte adhesion to VCAM-1. Int J Biochem Cell Biol 2013; 45:2764-73. [PMID: 24055812 DOI: 10.1016/j.biocel.2013.09.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Revised: 08/30/2013] [Accepted: 09/10/2013] [Indexed: 01/04/2023]
Abstract
P-selectin glycoprotein ligand-1 and β1 integrin play essential roles in T cell trafficking during inflammation. E-selectin and vascular cell adhesion molecule-1 are their ligands expressed on inflammation-activated endothelium. During the tethering and rolling of lymphocytes on endothelium, P-selectin glycoprotein ligand-1 binds E-selectin and induces signals. Subsequently, β1 integrin is activated and mediates stable adhesion. However, the intracellular signal pathways from PSGL-1 to β1 integrin have not yet been fully understood. Here, we find that p85, a regulatory subunit of phosphoinositide 3-kinase, forms a novel complex with Rho-GDP dissociation inhibitor-2, a lymphocyte-specific RhoGTPases dissociation inhibitor. Phosporylations of the p85-bound Rho-GDP dissociation inhibitor-2 on 130 and 153 tyrosine residues by c-Abl and Src were required for the complex to be recruited to P-selectin glycoprotein ligand-1 and thereby regulate β1 integrin-mediated T cell adhesion to vascular cell adhesion molecule-1. Both shRNAs to Rho-GDP dissociation inhibitor-2 and p85 and over-expression of Rho-GDP dissociation inhibitor-2 Y130F and Y153F significantly reduced the above-mentioned adhesion. Although Rho-GDP dissociation inhibitor-2 in the p85-Rho-GDP dissociation inhibitor-2 complex was also phosphorylated on 24 tyrosine residue by Syk, the phosphorylation is not required for the adhesion. Taken together, we find that specific phosphorylations on 130 and 153 tyrosine residues of p85-bound Rho-GDP dissociation inhibitor-2 are pivotal for P-selectin glycoprotein ligand-1-induced β1 integrin-mediated lymphocyte adhesion to vascular cell adhesion molecule-1. This will shed new light on the mechanisms that connect leukocyte initial rolling with subsequent adhesion.
Collapse
Affiliation(s)
- Jixian Luo
- Institute of Genetics and Cytology, Northeast Normal University, Changchun, China; Department of Bioscience, Shanxi University, Taiyuan, China
| | | | | | | | | | | | | |
Collapse
|
13
|
Lin HY, Yang YT, Yu SL, Hsiao KN, Liu CC, Sia C, Chow YH. Caveolar endocytosis is required for human PSGL-1-mediated enterovirus 71 infection. J Virol 2013; 87:9064-76. [PMID: 23760234 PMCID: PMC3754029 DOI: 10.1128/jvi.00573-13] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 05/30/2013] [Indexed: 12/18/2022] Open
Abstract
Enterovirus 71 (EV71) causes hand, foot, and mouth disease and severe neurological disorders in children. Human scavenger receptor class B member 2 (hSCARB2) and P-selectin glycoprotein ligand-1 (PSGL-1) are identified as receptors for EV71. The underling mechanism of PSGL-1-mediated EV71 entry remains unclear. The endocytosis required for EV71 entry were investigated in Jurkat T and mouse L929 cells constitutively expressing human PSGL-1 (PSGL-1-L929) or human rhabdomyosarcoma (RD) cells displaying high SCARB2 but no PSGL-1 by treatment of specific inhibitors or siRNA. We found that disruption of clathrin-dependent endocytosis prevented EV71 infection in RD cells, while there was no influence in Jurkat T and PSGL-1-L929 cells. Disturbing caveolar endocytosis by specific inhibitor or caveolin-1 siRNA in Jurkat T and PSGL-1-L929 cells significantly blocked EV71 infection, whereas it had no effect on EV71 infection in RD cells. Confocal immunofluorescence demonstrated caveola, and EV71 was directly colocalized. pH-dependent endosomal acidification and intact membrane cholesterol were important for EV71 infection, as judged by the pretreatment of inhibitors that abrogated the infection. A receptor-dominated endocytosis of EV71 infection was observed: PSGL-1 initiates caveola-dependent endocytosis and hSCARB2 activates clathrin-dependent endocytosis.
Collapse
Affiliation(s)
- Hsiang-Yin Lin
- Institute of Infectious Disease and Vaccinology, National Health Research Institutes, Zhunan, Miaoli County, Taiwan
| | - Ya-Ting Yang
- Institute of Infectious Disease and Vaccinology, National Health Research Institutes, Zhunan, Miaoli County, Taiwan
| | - Shu-Ling Yu
- Institute of Infectious Disease and Vaccinology, National Health Research Institutes, Zhunan, Miaoli County, Taiwan
| | - Kuang-Nan Hsiao
- Institute of Infectious Disease and Vaccinology, National Health Research Institutes, Zhunan, Miaoli County, Taiwan
| | - Chia-Chyi Liu
- Institute of Infectious Disease and Vaccinology, National Health Research Institutes, Zhunan, Miaoli County, Taiwan
| | - Charles Sia
- Institute of Infectious Disease and Vaccinology, National Health Research Institutes, Zhunan, Miaoli County, Taiwan
- Graduate Institute of Immunology, China Medical University, Taichung, Taiwan
| | - Yen-Hung Chow
- Institute of Infectious Disease and Vaccinology, National Health Research Institutes, Zhunan, Miaoli County, Taiwan
| |
Collapse
|
14
|
Adiponectin inhibits neutrophil phagocytosis of Escherichia coli by inhibition of PKB and ERK 1/2 MAPK signalling and Mac-1 activation. PLoS One 2013; 8:e69108. [PMID: 23935932 PMCID: PMC3723777 DOI: 10.1371/journal.pone.0069108] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Accepted: 06/06/2013] [Indexed: 11/24/2022] Open
Abstract
Full length adiponectin is a potent immune modulatory adipokine, impacting upon the actions of several immune cells. Neutrophil oxidative burst has been shown to decrease in response to adiponectin, and we speculated that it could have other effects on neutrophil function. Here we report that adiponectin reduces the phagocytic ability of human neutrophils, decreasing significantly the ingestion of opsonised E. coli by these cells in whole blood (p<0.05) and as isolated neutrophils (p<0.05). We then determined the mechanisms involved. We observed that the activation of Mac-1, the receptor engaged in complement-mediated phagocytosis, was decreased by adiponectin in response to E. coli stimulation. Moreover, treatment of neutrophils with adiponectin prior to incubation with E. coli significantly inhibited signalling through the PI3K/PKB and ERK 1/2 pathways, with a parallel reduction of F-actin content. Studies with pharmacological inhibitors showed that inhibition of PI3K/PKB, but not ERK 1/2 signalling was able to prevent the activation of Mac-1. In conclusion, we propose that adiponectin negatively affects neutrophil phagocytosis, reducing the uptake of E. coli and inhibiting Mac-1 activation, the latter by blockade of the PI3K/PKB signal pathway.
Collapse
|
15
|
Chase SD, Magnani JL, Simon SI. E-selectin ligands as mechanosensitive receptors on neutrophils in health and disease. Ann Biomed Eng 2012; 40:849-59. [PMID: 22271244 DOI: 10.1007/s10439-011-0507-y] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Accepted: 12/29/2011] [Indexed: 11/30/2022]
Abstract
Application of mechanical force to bonds between selectins and their ligands is a requirement for these adhesion receptors to optimally perform functions that include leukocyte tethering and activation of stable adhesion. Although all three selectins are reported to signal from the outside-in subsequent to ligand binding, E-selectin is unique in its capacity to bind multiple sialyl Lewis x presenting ligands and mediate slow rolling on the order of a micron per second. A diverse set of ligands are recognized by E-selectin in the mouse, including ESL-1, CD44 (HCELL), and PSGL-1 which are critical in transition from slow rolling to arrest and for efficient transendothelial migration. The molecular recognition process is different in humans as L-selectin is a major ligand, which along with glycolipids constitute more than half of the E-selectin receptors on human polymorphonuclear neutrophils (PMN). In addition, E-selectin is most efficient at raising the affinity and avidity of CD18 integrins that supports PMN deceleration and trafficking to sites of acute inflammation. The mechanism is only partially understood but known to involve a rise in cytosolic calcium and tyrosine phosphorylation that activates p38 MAP kinase and Syk kinase, both of which transduce signals from clustered E-selectin ligands. In this review we highlight the molecular recognition and mechanical requirements of this process to reveal how E-selectin confers selectivity and efficiency of signaling for extravasation at sites of inflammation and the mechanism of action of a new glycomimetic antagonist targeted to the lectin domain that has shown efficacy in blocking neutrophil activation and adhesion on inflamed endothelium.
Collapse
Affiliation(s)
- S D Chase
- University of California Davis, Davis, CA, USA
| | | | | |
Collapse
|
16
|
Pankhurst T, Nash G, Williams J, Colman R, Hussain A, Savage C. Immunoglobulin subclass determines ability of immunoglobulin (Ig)G to capture and activate neutrophils presented as normal human IgG or disease-associated anti-neutrophil cytoplasm antibody (ANCA)-IgG. Clin Exp Immunol 2011; 164:218-26. [PMID: 21391987 DOI: 10.1111/j.1365-2249.2011.04367.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Immunoglobulin G (IgG) is a potent neutrophil stimulus, particularly when presented as anti-neutrophil cytoplasm antibody (ANCA) in ANCA-associated vasculitis. We assessed whether IgG subclasses had differential effects on neutrophil activation and whether differences were dependent on specific Fc-receptor engagement. Using a physiologically relevant flow model, we compared adhesion of neutrophils to different subclasses of normal IgG coated onto solid surfaces, with adhesion of neutrophils treated with different subclasses of soluble ANCA IgG to P-selectin surfaces or endothelial cells (EC). Normal IgG captured flowing neutrophils efficiently in the order IgG3 > IgG1 > IgG2 > IgG4. Fc-receptor blockade reduced capture, IgG3 being more dependent on CD16 and IgG1/2 on CD32. Blockade of the integrin CD18 reduced neutrophil spreading, while inhibition of calcium-dependent signalling reduced both capture and spreading, suggesting that both were active processes. Neutrophils treated with ANCA IgG subclasses 1, 3 and 4 showed stabilization of adhesion to P-selectin surfaces and EC. ANCA changed neutrophil behaviour from rolling to static adhesion and the potency of the subclasses followed the same pattern as above: IgG3 > IgG1 > IgG4. Blockade of Fc receptors resulted in neutrophils continuing to roll, i.e. they were not ANCA-activated; differential utilization of Fc receptor by particular IgG subclasses was not as apparent as during neutrophil capture by normal IgG. IgG3 is the most effective subclass for inducing neutrophil adhesion and altered behaviour, irrespective of whether the IgG is surface bound or docks onto neutrophil surface antigens prior to engaging Fc receptors. Engagement of Fc receptors underpins these responses; the dominant Fc receptor depends on IgG subclass.
Collapse
Affiliation(s)
- T Pankhurst
- School of Immunity, Infection and Inflammation School of Clinical and Experimental Medicine, University of Birmingham, UK.
| | | | | | | | | | | |
Collapse
|