1
|
Ghasemzadeh Rahbardar M, Fazeli Kakhki H, Hosseinzadeh H. Ziziphus jujuba (Jujube) in Metabolic Syndrome: From Traditional Medicine to Scientific Validation. Curr Nutr Rep 2024; 13:845-866. [PMID: 39354208 DOI: 10.1007/s13668-024-00581-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/13/2024] [Indexed: 10/03/2024]
Abstract
PURPOSE OF REVIEW This review evaluates the therapeutic potential of Ziziphus jujuba and its main components in managing complications of metabolic syndrome, including diabetes, dyslipidemia, obesity, and hypertension. RECENT FINDINGS The reviewed studies provide evidence supporting the use of Z. jujuba and its main components (lupeol and betulinic acid) as natural treatments for complications of metabolic syndrome. These substances enhance glucose uptake through the activation of signaling pathways such as phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt), reduce hepatic glucose synthesis, and increase glucose uptake by adipocytes and skeletal muscle cells. They also improve insulin sensitivity by modulating AMP-activated protein kinase (AMPK) activity and regulating insulin signaling proteins and glucose transporters. In the field of dyslipidemia, they inhibit triglyceride synthesis, lipid accumulation, and adipogenic enzymes, while influencing key signaling pathways involved in adipogenesis. Z. jujuba and its constituents demonstrate anti-adipogenic effects, inhibiting lipid accumulation and modulating adipogenic enzymes and transcription factors. They also exhibit positive effects on endothelial function and vascular health by enhancing endothelial nitric oxide synthase (eNOS) expression, NO production, and antioxidant enzyme activity. Z. jujuba, lupeol, and betulinic acid hold promise as natural treatments for complications of metabolic syndrome. They improve glucose metabolism, insulin sensitivity, and lipid profiles while exerting anti-adipogenic effects and enhancing endothelial function. However, further research is needed to elucidate the mechanisms and confirm their efficacy in clinical trials. These natural compounds offer potential as alternative therapies for metabolic disorders and contribute to the growing body of evidence supporting the use of natural medicines in their management.
Collapse
Affiliation(s)
| | - Homa Fazeli Kakhki
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Hosseinzadeh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
2
|
Fernandes S, Vieira M, Prudêncio C, Ferraz R. Betulinic Acid for Glioblastoma Treatment: Reality, Challenges and Perspectives. Int J Mol Sci 2024; 25:2108. [PMID: 38396785 PMCID: PMC10889789 DOI: 10.3390/ijms25042108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/02/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
Betulinic acid is a naturally occurring compound that can be obtained through methanolic or ethanolic extraction from plant sources, as well as through chemical synthesis or microbial biotransformation. Betulinic acid has been investigated for its potential therapeutic properties, and exhibits anti-inflammatory, antiviral, antimalarial, and antioxidant activities. Notably, its ability to cross the blood-brain barrier addresses a significant challenge in treating neurological pathologies. This review aims to compile information about the impact of betulinic acid as an antitumor agent, particularly in the context of glioblastoma. Importantly, betulinic acid demonstrates selective antitumor activity against glioblastoma cells by inhibiting proliferation and inducing apoptosis, consistent with observations in other cancer types. Compelling evidence published highlights the acid's therapeutic action in suppressing the Akt/NFκB-p65 signaling cascade and enhancing the cytotoxic effects of the chemotherapeutic agent temozolomide. Interesting findings with betulinic acid also suggest a focus on researching the reduction of glioblastoma's invasiveness and aggressiveness profile. This involves modulation of extracellular matrix components, remodeling of the cytoskeleton, and secretion of proteolytic proteins. Drawing from a comprehensive review, we conclude that betulinic acid formulations as nanoparticles and/or ionic liquids are promising drug delivery approaches with the potential for translation into clinical applications for the treatment and management of glioblastoma.
Collapse
Affiliation(s)
- Sílvia Fernandes
- Center for Translational Health and Medical Biotechnology Research (TBIO), School of Health (ESS), Polytechnic University of Porto, Rua Dr. António Bernardino de Almeida, 400, 4200-072 Porto, Portugal; (S.F.); (C.P.)
- Center for Research on Health and Environment (CISA), School of Health (ESS), Polytechnic University of Porto, Rua Dr. António Bernardino de Almeida, 400, 4200-072 Porto, Portugal
| | - Mariana Vieira
- Center for Translational Health and Medical Biotechnology Research (TBIO), School of Health (ESS), Polytechnic University of Porto, Rua Dr. António Bernardino de Almeida, 400, 4200-072 Porto, Portugal; (S.F.); (C.P.)
| | - Cristina Prudêncio
- Center for Translational Health and Medical Biotechnology Research (TBIO), School of Health (ESS), Polytechnic University of Porto, Rua Dr. António Bernardino de Almeida, 400, 4200-072 Porto, Portugal; (S.F.); (C.P.)
- Ciências Químicas e das Biomoléculas, School of Health (ESS), Polytechnic University of Porto, Rua Dr. António Bernardino de Almeida, 400, 4200-072 Porto, Portugal
| | - Ricardo Ferraz
- Center for Translational Health and Medical Biotechnology Research (TBIO), School of Health (ESS), Polytechnic University of Porto, Rua Dr. António Bernardino de Almeida, 400, 4200-072 Porto, Portugal; (S.F.); (C.P.)
- Ciências Químicas e das Biomoléculas, School of Health (ESS), Polytechnic University of Porto, Rua Dr. António Bernardino de Almeida, 400, 4200-072 Porto, Portugal
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, 687, 4169-007 Porto, Portugal
| |
Collapse
|
3
|
Han XJ, Zhang WF, Wang Q, Li M, Zhang CB, Yang ZJ, Tan RJ, Gan LJ, Zhang LL, Lan XM, Zhang FL, Hong T, Jiang LP. HIF-1α promotes the proliferation and migration of pulmonary arterial smooth muscle cells via activation of Cx43. J Cell Mol Med 2021; 25:10663-10673. [PMID: 34698450 PMCID: PMC8581339 DOI: 10.1111/jcmm.17003] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 09/14/2021] [Accepted: 10/04/2021] [Indexed: 12/17/2022] Open
Abstract
The proliferation of pulmonary artery smooth muscle cells (PASMCs) is an important cause of pulmonary vascular remodelling in hypoxia-induced pulmonary hypertension (HPH). However, its underlying mechanism has not been well elucidated. Connexin 43 (Cx43) plays crucial roles in vascular smooth muscle cell proliferation in various cardiovascular diseases. Here, the male Sprague-Dawley (SD) rats were exposed to hypoxia (10% O2 ) for 21 days to induce rat HPH model. PASMCs were treated with CoCl2 (200 µM) for 24 h to establish the HPH cell model. It was found that hypoxia up-regulated the expression of Cx43 and phosphorylation of Cx43 at Ser 368 in rat pulmonary arteries and PASMCs, and stimulated the proliferation and migration of PASMCs. HIF-1α inhibitor echinomycin attenuated the CoCl2 -induced Cx43 expression and phosphorylation of Cx43 at Ser 368 in PASMCs. The interaction between HIF-1α and Cx43 promotor was also identified using chromatin immunoprecipitation assay. Moreover, Cx43 specific blocker (37,43 Gap27) or knockdown of Cx43 efficiently alleviated the proliferation and migration of PASMCs under chemically induced hypoxia. Therefore, the results above suggest that HIF-1α, as an upstream regulator, promotes the expression of Cx43, and the HIF-1α/Cx43 axis regulates the proliferation and migration of PASMCs in HPH.
Collapse
Affiliation(s)
- Xiao-Jian Han
- Key Laboratory of Drug Targets and Drug Screening of Jiangxi Province, Nanchang, China.,Institute of Geriatrics, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang, China.,Department of Neurology, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang, China
| | - Wei-Fang Zhang
- Department of Pharmacy, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Qin Wang
- Department of Pharmacology, School of Pharmaceutical Science, Nanchang University, Nanchang, China
| | - Min Li
- Department of Pharmacology, School of Pharmaceutical Science, Nanchang University, Nanchang, China
| | - Chun-Bo Zhang
- Key Laboratory of Drug Targets and Drug Screening of Jiangxi Province, Nanchang, China.,Department of Pharmacology, School of Pharmaceutical Science, Nanchang University, Nanchang, China
| | - Zhang-Jian Yang
- Department of Pharmacology, School of Pharmaceutical Science, Nanchang University, Nanchang, China
| | - Ren-Jie Tan
- Department of Pharmacology, School of Pharmaceutical Science, Nanchang University, Nanchang, China
| | - Li-Jun Gan
- Department of Pharmacology, School of Pharmaceutical Science, Nanchang University, Nanchang, China
| | - Le-Ling Zhang
- Department of Pharmacology, School of Pharmaceutical Science, Nanchang University, Nanchang, China
| | - Xue-Mei Lan
- Department of Pharmacology, School of Pharmaceutical Science, Nanchang University, Nanchang, China
| | - Fang-Lin Zhang
- Department of Pharmacology, School of Pharmaceutical Science, Nanchang University, Nanchang, China
| | - Tao Hong
- Department of Neurosurgery, First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Li-Ping Jiang
- Key Laboratory of Drug Targets and Drug Screening of Jiangxi Province, Nanchang, China.,Department of Pharmacology, School of Pharmaceutical Science, Nanchang University, Nanchang, China
| |
Collapse
|
4
|
Huang L, Zhu L, Ou Z, Ma C, Kong L, Huang Y, Chen Y, Zhao H, Wen L, Wu J, Yuan Z, Yi J. Betulinic acid protects against renal damage by attenuation of oxidative stress and inflammation via Nrf2 signaling pathway in T-2 toxin-induced mice. Int Immunopharmacol 2021; 101:108210. [PMID: 34628148 DOI: 10.1016/j.intimp.2021.108210] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 09/12/2021] [Accepted: 09/28/2021] [Indexed: 02/07/2023]
Abstract
Betulinic acid (BA) is a pentacyclic triterpenoid compound with potential antioxidant and anti-inflammatory effects. In this study, T-2 toxin was injected intraperitoneally in mice to establish kidney damage model and to evaluate the protective effects of BA and further reveal the molecular mechanism. BA pretreatment inhibited the T-2 toxin-stimulated increase in serum Crea, but showed no significant effect on serum Urea. BA pretreatment alleviated excessive glomerular hemorrhage and inflammatory cell infiltration in kidneys caused by T-2 toxin. Moreover, pretreatment with BA mitigated T-2 toxin-induced renal oxidative damage by up-regulating the activities of SOD and CAT, and the content of GSH, while down-regulating the accumulation of ROS and MDA. Meanwhile, BA pretreatment markedly attenuated T-2 toxin-induced renal inflammatory response by decreasing the mRNA expression of IL-1β, TNF-α and IL-10, and increasing IL-6 mRNA expression. Furthermore, mechanism research found that pretreatment with BA could activate Nrf2 signaling pathway. It was suggested that BA ameliorated the oxidative stress and inflammatory response of T-2 toxin-triggered renal damage by activating the Nrf2 signaling pathway.
Collapse
Affiliation(s)
- Lin Huang
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha City 410128, China
| | - Lijuan Zhu
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha City 410128, China
| | - Zhaoping Ou
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha City 410128, China
| | - Chaoyang Ma
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha City 410128, China
| | - Li Kong
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha City 410128, China
| | - You Huang
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha City 410128, China
| | - Yazhi Chen
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha City 410128, China
| | - Haoqiang Zhao
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha City 410128, China
| | - Lixin Wen
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha City 410128, China
| | - Jing Wu
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha City 410128, China
| | - Zhihang Yuan
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha City 410128, China.
| | - Jine Yi
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha City 410128, China.
| |
Collapse
|
5
|
Jafari Khataylou Y, Ahmadi Afshar S, Mirzakhani N. Betulinic acid reduces the complications of autoimmune diabetes on the body and kidney through effecting on inflammatory cytokines in C57BL/6 mice. VETERINARY RESEARCH FORUM : AN INTERNATIONAL QUARTERLY JOURNAL 2021; 12:203-210. [PMID: 34345387 PMCID: PMC8328255 DOI: 10.30466/vrf.2019.101178.2409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Accepted: 06/08/2019] [Indexed: 11/09/2022]
Abstract
Autoimmune diabetes is one of the most common metabolic diseases with increasing prevalence in the past decades in which pancreatic Langerhans β cells are destroyed and lead to lack of insulin due to increased blood sugar. One of the consequences of diabetes is glomerular disease of the kidney, also called diabetes nephropathy. Different studies have been carried out on the effects of triterpenoids and their medicinal effects on diabetes mellitus. betulinic acid, a pentacyclic triterpenoid of Terpenes, is found in bushes and trees. Its medical effects are also approved by many studies. In this survey, we studied the effect of betulinic acid on diabetic inbred C57BL/6 male mice. They were randomly divided to three groups. Group A: Consisted of healthy mice which received citrate buffer. Group B: Diabetic mice without any treatment and group C: Treated diabetic mice with betulinic acid. The level of blood insulin level, fasting blood glucose, C-peptide, TNF-α, IFN-γ, and IL-1 cytokines were measured and pathologic studies of the kidney were performed. The results showed that betulinic acid could increase insulin and C-peptide, and decrease fasting blood sugar, kidney lesions and TNF-α, IFN-γ, IL-1 in the treated groups. The differences were significant except for IL-1. Betulinic acid through reduction of inflammatory cytokines could have positive effects on inflammatory and autoimmune disease including autoimmune diabetes.
Collapse
Affiliation(s)
- Yaser Jafari Khataylou
- Department of Pathobiology, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Somayyeh Ahmadi Afshar
- Department of Microbiology, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Navideh Mirzakhani
- Department of Pathobiology, Faculty of Veterinary Medicine, Amol University of Special Modern Technologies, Amol, Iran
| |
Collapse
|
6
|
Huang HT, Liaw CC, Chiou CT, Kuo YH, Lee KT. Triterpene Acids from Mesona procumbens Exert Anti-inflammatory Effects on LPS-Stimulated Murine Macrophages by Regulating the MAPK Signaling Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:6271-6280. [PMID: 34039004 DOI: 10.1021/acs.jafc.1c01810] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Five new triterpene acids, mesonaic acids A-C (1-3), 2α,3α,19α-trihydroxy-24-nor-4(23),12-oleanadien-28-oic acid (4), and 3α,19α,22α-trihydroxy-2-oxo-12-ursen-28-oic acid (5), and 10 known triterpene acid compounds (6-15) were isolated from a methanolic extract of Mesona procumbens. Triterpenes 1-3 possess unusual hexacyclic skeletons with a 13α,27-cyclopropane ring. Regarding their anti-inflammatory activity, compounds 1-3, 6, and 7 inhibited NO production with EC50 values lower than 15 μM, which were better than that of the positive control quercetin. Compounds 1-3, 6, and 7 markedly decreased levels of the inducible iNOS and COX-2 proteins in macrophages by inhibiting the activation of NF-κB through interference with the MAPK signaling pathway. Based on these data, compounds 1-3, 6, and 7 have great potential as NO inhibitors.
Collapse
Affiliation(s)
- Hung-Tse Huang
- Department of Biochemical Science and Technology, National Taiwan University, Taipei 10617, Taiwan
- Division of Chinese Materia Medica Development, National Research Institute of Chinese Medicine, Taipei 112, Taiwan
| | - Chia-Ching Liaw
- Division of Chinese Materia Medica Development, National Research Institute of Chinese Medicine, Taipei 112, Taiwan
- Department of Biochemical Science and Technology, National Chiayi University, Chiayi 60004, Taiwan
| | - Chun-Tang Chiou
- Division of Chinese Materia Medica Development, National Research Institute of Chinese Medicine, Taipei 112, Taiwan
| | - Yao-Haur Kuo
- Division of Chinese Materia Medica Development, National Research Institute of Chinese Medicine, Taipei 112, Taiwan
- Graduate Institute of Integrated Medicine, College of Chinese Medicine, China Medical University, Taichung 404, Taiwan
| | - Kung-Ta Lee
- Department of Biochemical Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
7
|
Petrenko M, Güttler A, Funtan A, Keßler J, Emmerich D, Paschke R, Vordermark D, Bache M. Combined 3-O-acetylbetulin treatment and carbonic anhydrase IX inhibition results in additive effects on human breast cancer cells. Chem Biol Interact 2021; 333:109326. [PMID: 33245928 DOI: 10.1016/j.cbi.2020.109326] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 11/11/2020] [Accepted: 11/20/2020] [Indexed: 12/18/2022]
Abstract
Hypoxia plays a key role in tumor progression and resistance to radiotherapy. Expression of the transmembrane-tethered enzyme carbonic anhydrase IX (CA IX) is strongly induced by hypoxia. High CA IX expression levels correlate with poor prognosis in cancer patients. Previously, we showed that the downregulation of CA IX expression by siRNA interference and the inhibition of CA IX activity results in increased cytotoxicity, inhibition of migration and radiosensitization of hypoxic cancer cells. Betulinic acid (BA) is a natural compound derived from birch bark. It has shown promising anti-tumor effects due to its cancer cell specific cytotoxic properties. We have shown that BA inhibits the HIF-1α pathway, resulting in apoptosis, inhibition of migration and enhanced cytotoxicity of breast cancer cells. In this study, we investigate the effects of the novel betulin derivative 3-O-acetylbetulin (3-AC) and carbonic anhydrase inhibitors (CAI) octyl disulfamate (OCT) or 4-(3-[4-fluorophenyl]ureido)benzenesulfonamide (SLC-0111), on cellular and radiobiological parameters in MDA-MB-231 and MCF-7 cells. Treatment with 3-AC or OCT alone only caused moderate cytotoxicity, reduction in cell migration, ROS production and DNA damage. However, the combined treatment with 3-AC and CAI strongly enhanced radiosensitivity, increased cytotoxicity, inhibited cell motility and enhanced DNA damage. Our findings suggest that the combination of two bioactive drugs 3-AC and a CAI, such as OCT or SLC-0111, could be a promising therapeutic approach for targeting hypoxic tumor cells.
Collapse
Affiliation(s)
- Marina Petrenko
- Department of Radiotherapy, Martin Luther University Halle-Wittenberg, Ernst Grube Straße 40, D-06120, Halle, Germany.
| | - Antje Güttler
- Department of Radiotherapy, Martin Luther University Halle-Wittenberg, Ernst Grube Straße 40, D-06120, Halle, Germany.
| | - Anne Funtan
- Biozentrum, Martin Luther University Halle-Wittenberg, Weinbergweg 22, D-06120, Halle, Germany.
| | - Jacqueline Keßler
- Department of Radiotherapy, Martin Luther University Halle-Wittenberg, Ernst Grube Straße 40, D-06120, Halle, Germany.
| | - Daniel Emmerich
- Biozentrum, Martin Luther University Halle-Wittenberg, Weinbergweg 22, D-06120, Halle, Germany.
| | - Reinhard Paschke
- Biozentrum, Martin Luther University Halle-Wittenberg, Weinbergweg 22, D-06120, Halle, Germany.
| | - Dirk Vordermark
- Department of Radiotherapy, Martin Luther University Halle-Wittenberg, Ernst Grube Straße 40, D-06120, Halle, Germany.
| | - Matthias Bache
- Department of Radiotherapy, Martin Luther University Halle-Wittenberg, Ernst Grube Straße 40, D-06120, Halle, Germany.
| |
Collapse
|
8
|
Amiri S, Dastghaib S, Ahmadi M, Mehrbod P, Khadem F, Behrouj H, Aghanoori MR, Machaj F, Ghamsari M, Rosik J, Hudecki A, Afkhami A, Hashemi M, Los MJ, Mokarram P, Madrakian T, Ghavami S. Betulin and its derivatives as novel compounds with different pharmacological effects. Biotechnol Adv 2019; 38:107409. [PMID: 31220568 DOI: 10.1016/j.biotechadv.2019.06.008] [Citation(s) in RCA: 128] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 05/30/2019] [Accepted: 06/13/2019] [Indexed: 02/07/2023]
Abstract
Betulin (B) and Betulinic acid (BA) are natural pentacyclic lupane-structure triterpenoids which possess a wide range of pharmacological activities. Recent evidence indicates that B and BA have several properties useful for the treatment of metabolic disorders, infectious diseases, cardiovascular disorders, and neurological disorders. In the current review, we discuss B and BA structures and derivatives and then comprehensively explain their pharmacological effects in relation to various diseases. We also explain antiviral, antibacterial and anti-cancer effects of B and BA. Finally, we discuss the delivery methods, in which these compounds most effectively target different systems.
Collapse
Affiliation(s)
- Shayan Amiri
- Department of Human Anatomy and Cell Science, Rady College of Medicine, Max Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
| | - Sanaz Dastghaib
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mazaher Ahmadi
- Department of Analytical Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan, Iran
| | - Parvaneh Mehrbod
- Influenza and Respiratory Viruses Department, Pasteur Institute of IRAN, Tehran, Iran
| | - Forough Khadem
- Department of Immunology, Rady College of Medicine, Max Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
| | - Hamid Behrouj
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohamad-Reza Aghanoori
- Division of Neurodegenerative Disorders, St Boniface Hospital Albrechtsen Research Centre, Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, MB, Canada
| | - Filip Machaj
- Department of Pathology, Pomeranian Medical University, ul. Unii Lubelskiej 1, 71-344 Szczecin, Poland
| | - Mahdi Ghamsari
- Department of Analytical Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan, Iran
| | - Jakub Rosik
- Department of Pathology, Pomeranian Medical University, ul. Unii Lubelskiej 1, 71-344 Szczecin, Poland
| | - Andrzej Hudecki
- Institue of Non-Ferrous Metals, ul. Sowińskiego 5, 44-100 Gliwice, Poland
| | - Abbas Afkhami
- Department of Analytical Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan, Iran
| | - Mohammad Hashemi
- Department of Clinical Biochemistry, Zahedan University of Medical Science, Zahedan, Iran
| | - Marek J Los
- Biotechnology Center, Silesian University of Technology, ul Bolesława Krzywoustego 8, Gliwice, Poland; Linkocare Life Sciences AB, Teknikringen 10, Plan 3, 583 30 Linköping, Sweden
| | - Pooneh Mokarram
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Tayyebeh Madrakian
- Department of Analytical Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan, Iran
| | - Saeid Ghavami
- Department of Human Anatomy and Cell Science, Rady College of Medicine, Max Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada; Biology of Breathing Theme, Children Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, Canada; Health Policy Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran; Research Institute of Oncology and Hematology, CancerCare Manitoba, University of Manitoba, Winnipeg, Canada.
| |
Collapse
|
9
|
Wang J, Zhao Q. Betulinic acid inhibits cell proliferation, migration, and inflammatory response in rheumatoid arthritis fibroblast-like synoviocytes. J Cell Biochem 2019; 120:2151-2158. [PMID: 30367550 DOI: 10.1002/jcb.27523] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 07/30/2018] [Indexed: 01/24/2023]
Abstract
Betulinic acid (BA), a pentacyclic triterpene derived from the bark of the white birch tree, has been reported to have a variety of pharmacological effects, including antioxidant, anti-inflammatory, antitumor, immunomodulatory, and antiarthritis properties. However, the role of BA in rheumatoid arthritis (RA) remains unclear. Thus, the objective of this study was to examine the effects of BA on RA fibroblast-like synoviocytes (RA-FLS) proliferation, migration, and inflammatory response, and further explore the potential underlying mechanisms. Our results showed that BA inhibited the proliferation, migration, and invasion of RA-FLSs. BA also attenuated tumor necrosis factor-α (TNF-α), enhanced matrix metalloproteinases (MMPs) expression, and inflammatory cytokines production in RA-FLS. Furthermore, BA prevented the activation of Akt/NF-κB pathway in RA-FLS exposed to TNF-α. In conclusion, these findings indicated that BA inhibits cell proliferation, migration, and inflammatory response in RA-FLS; and the Akt/NF-κB signaling pathway was involved in the protective effect of BA on RA-FLS. Thus, BA might be a potential therapeutic agent for the treatment of RA.
Collapse
Affiliation(s)
- Jing Wang
- Department of Rheumatology and Immunology, Huaihe Hospital, Henan University, Kaifeng, China
| | - Qing Zhao
- Department of Rheumatology and Immunology, Huaihe Hospital, Henan University, Kaifeng, China
| |
Collapse
|
10
|
Birgani GA, Ahangarpour A, Khorsandi L, Moghaddam HF. Anti-diabetic effect of betulinic acid on streptozotocin-nicotinamide induced diabetic male mouse model. BRAZ J PHARM SCI 2018. [DOI: 10.1590/s2175-97902018000217171] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
|
11
|
Betulinic acid attenuates dexamethasone-induced oxidative damage through the JNK-P38 MAPK signaling pathway in mice. Biomed Pharmacother 2018; 103:499-508. [DOI: 10.1016/j.biopha.2018.04.073] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 04/09/2018] [Accepted: 04/09/2018] [Indexed: 12/20/2022] Open
|
12
|
Viedma-Rodríguez R, Martínez-Hernández MG, Flores-López LA, Baiza-Gutman LA. Epsilon-aminocaproic acid prevents high glucose and insulin induced-invasiveness in MDA-MB-231 breast cancer cells, modulating the plasminogen activator system. Mol Cell Biochem 2017; 437:65-80. [PMID: 28612231 DOI: 10.1007/s11010-017-3096-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 06/08/2017] [Indexed: 01/01/2023]
Abstract
Obesity and type II diabetes mellitus have contributed to the increase of breast cancer incidence worldwide. High glucose concentration promotes the proliferation of metastatic cells, favoring the activation of the plasminogen/plasmin system, thus contributing to tumor progression. The efficient formation of plasmin is dependent on the binding of plasminogen to the cell surface. We studied the effect of ε-aminocaproic acid (EACA), an inhibitor of the binding of plasminogen to cell surface, on proliferation, migration, invasion, epithelial-mesenchymal transition (EMT), and plasminogen activation system, in metastatic MDA-MB-231 breast cancer cells grown in a high glucose microenvironment and treated with insulin. MDA-MB-231 cells were treated with EACA 12.5 mmol/L under high glucose 30 mmol/L (HG) and high glucose and insulin 80 nmol/L (HG-I) conditions, evaluating: cell population growth, % of viability, migratory, and invasive abilities, as well as the expression of uPA, its receptor (uPAR), and its inhibitor (PAI-1), by real-time reverse transcription-polymerase chain reaction (RT-PCR) and Western blot, MMP-2 and MMP-9 mRNAs were evaluated by RT-PCR. Markers of EMT were evaluated by Western blot. Additionally, the presence of active uPA was studied by gel zymography, using casein-plasminogen as substrates. EACA prevented the increase in cell population, migration and invasion induced by HG and insulin, which was associated with the inhibition of EMT and the attenuation of HG- and insulin-dependent expression of uPA, uPAR, PAI-1, MMP-2, MMP-9, α-enolase (ENO A), and HCAM. The interaction of plasminogen to the cell surface and plasmin formation are mediators of the prometastasic action of hyperglycemia and insulin, potentially, EACA can be employed in the prevention and as adjuvant treatment of breast tumorigenesis promoted by hyperglycemia and insulin.
Collapse
Affiliation(s)
- Rubí Viedma-Rodríguez
- Unidad de Morfofisiología, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Avenida de los Barrios 1, Los Reyes Iztacala, 54090, Tlalnepantla, Estado de México, Mexico
| | - María Guadalupe Martínez-Hernández
- Unidad de Morfofisiología, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Avenida de los Barrios 1, Los Reyes Iztacala, 54090, Tlalnepantla, Estado de México, Mexico
| | - Luis Antonio Flores-López
- Unidad de Morfofisiología, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Avenida de los Barrios 1, Los Reyes Iztacala, 54090, Tlalnepantla, Estado de México, Mexico
| | - Luis Arturo Baiza-Gutman
- Unidad de Morfofisiología, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Avenida de los Barrios 1, Los Reyes Iztacala, 54090, Tlalnepantla, Estado de México, Mexico.
| |
Collapse
|
13
|
Yoon JJ, Lee YJ, Han BH, Choi ES, Kho MC, Park JH, Ahn YM, Kim HY, Kang DG, Lee HS. Protective effect of betulinic acid on early atherosclerosis in diabetic apolipoprotein-E gene knockout mice. Eur J Pharmacol 2017; 796:224-232. [DOI: 10.1016/j.ejphar.2016.11.044] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 11/23/2016] [Accepted: 11/24/2016] [Indexed: 12/27/2022]
|
14
|
Chen S, Bai Y, Li Z, Jia K, Jin Y, He B, Qiu WW, Du C, Siwko S, Chen H, Liu M, Luo J. A betulinic acid derivative SH479 inhibits collagen-induced arthritis by modulating T cell differentiation and cytokine balance. Biochem Pharmacol 2016; 126:69-78. [PMID: 27965071 DOI: 10.1016/j.bcp.2016.12.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 12/09/2016] [Indexed: 01/10/2023]
Abstract
The ideal therapeutic drug for rheumatoid arthritis (RA) should not only inhibit inflammation, but also prevent articular joint damage and particularly inhibit osteoclastogenesis. Betulinic acid (BA) is a natural pentacyclic triterpene that has displayed moderate anti-inflammatory and anti-osteoclastogenesis activities in various experimental systems, suggesting that BA or its derivatives could have an inhibitory effect on RA. In this study, we screened BA derivatives and found a heterocyclic ring-fused BA derivative, SH479, which had greater inhibitory effect than BA on Th17 differentiation. Moreover, we investigated the immune regulatory activity and potential therapeutic effects of SH479 in an experimental model of rheumatoid arthritis, the collagen-induced arthritis (CIA) mouse model. SH479 significantly inhibited Th1 and Th17 polarization, antigen-specific T cell proliferation and splenic lymphocyte-induced osteoclastogenesis. Furthermore, it diminished arthritis scores as well as bone destruction and cartilage depletion in the CIA mouse model. The protective effect of SH479 was accompanied by decreased levels of pro-inflammatory cytokines IL-17 and IFN-γ, together with enhanced anti-inflammatory cytokine expression including IL-10 and IL-4, as well as elevated CD4+ Foxp3+ cell number. At the molecular level, our results indicated that SH479 alleviated CIA through regulation of CD4+ T cell subtypes by JAK-STAT pathways. In conclusion, this study demonstrates that SH479 has therapeutic potential for rheumatoid arthritis through an anti-inflammatory effect by shifting a pathogenic Th17/Th1 response to a Th2/Treg phenotype, and also through an additional articular bone protection effect.
Collapse
Affiliation(s)
- Shijie Chen
- Shanghai Fengxian District Central Hospital and East China Normal University Joint Center for Translational Medicine, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China; Department of Orthopaedics, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, China
| | - Yang Bai
- Shanghai Fengxian District Central Hospital and East China Normal University Joint Center for Translational Medicine, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Zhen Li
- Shanghai Fengxian District Central Hospital and East China Normal University Joint Center for Translational Medicine, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Kunhang Jia
- Shanghai Fengxian District Central Hospital and East China Normal University Joint Center for Translational Medicine, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Yunyun Jin
- Shanghai Fengxian District Central Hospital and East China Normal University Joint Center for Translational Medicine, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Bei He
- Shanghai Fengxian District Central Hospital and East China Normal University Joint Center for Translational Medicine, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Wen-Wei Qiu
- Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Changsheng Du
- Laboratory of Receptor-Based Bio-medicine, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Stefan Siwko
- Institute of Biosciences and Technology, Department of Molecular and Cellular Medicine, Texas A&M University Health Science Center, Houston, TX, USA
| | - Huaqing Chen
- Shanghai Fengxian District Central Hospital and East China Normal University Joint Center for Translational Medicine, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China.
| | - Mingyao Liu
- Shanghai Fengxian District Central Hospital and East China Normal University Joint Center for Translational Medicine, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China; Institute of Biosciences and Technology, Department of Molecular and Cellular Medicine, Texas A&M University Health Science Center, Houston, TX, USA.
| | - Jian Luo
- Shanghai Fengxian District Central Hospital and East China Normal University Joint Center for Translational Medicine, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China.
| |
Collapse
|
15
|
Betulinyl Sulfamates as Anticancer Agents and Radiosensitizers in Human Breast Cancer Cells. Int J Mol Sci 2015; 16:26249-62. [PMID: 26540049 PMCID: PMC4661812 DOI: 10.3390/ijms161125953] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 10/08/2015] [Accepted: 10/15/2015] [Indexed: 12/20/2022] Open
Abstract
Betulinic acid (BA), a natural compound of birch bark, is cytotoxic for many tumors. Recently, a betulinyl sulfamate was described that inhibits carbonic anhydrases (CA), such as CAIX, an attractive target for tumor-selective therapy strategies in hypoxic cancer cells. Data on combined CAIX inhibition with radiotherapy are rare. In the human breast cancer cell lines MDA-MB231 and MCF7, the effects of BA and betulinyl sulfamates on cellular and radiobiological behavior under normoxia and hypoxia were evaluated. The two most effective betulinyl sulfamates CAI 1 and CAI 3 demonstrated a 1.8–2.8-fold higher cytotoxicity than BA under normoxia in breast cancer cells, with IC50 values between 11.1 and 18.1 µM. BA exhibits its strongest cytotoxicity with IC50 values of 8.2 and 16.4 µM under hypoxia. All three substances show a dose-dependent increase in apoptosis, inhibition of migration, and inhibition of hypoxia-induced gene expression. In combination with irradiation, betulinyl sulfamates act as radiosensitizers, with DMF10 values of 1.47 (CAI 1) and 1.75 (CAI 3) under hypoxia in MDA-MB231 cells. BA showed additive effects in combination with irradiation. Taken together; our results suggest that BA and betulinyl sulfamates seem to be attractive substances to combine with radiotherapy; particularly for hypoxic breast cancer.
Collapse
|
16
|
Yi J, Zhu R, Wu J, Wu J, Xia W, Zhu L, Jiang W, Xiang S, Tan Z. In vivo protective effect of betulinic acid on dexamethasone induced thymocyte apoptosis by reducing oxidative stress. Pharmacol Rep 2015; 68:95-100. [PMID: 26721359 DOI: 10.1016/j.pharep.2015.07.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 06/06/2015] [Accepted: 07/01/2015] [Indexed: 12/19/2022]
Abstract
BACKGROUND Dexamethasone (Dex), a synthetic glucocorticoid, is strictly controlled for use due to its serious side effects, including immune suppression. Betulinic acid (BA), an antioxidant prepared from the white birch, exhibits immunomodulation properties. To assess the implications and investigate the mechanisms of BA-elicited immunomodulation, we hypothesized that Dex induced thymocyte apoptosis via oxidative stress could be lessened by BA. METHODS Mice were given oral doses of BA (0.25, 0.5, and 1.0mg/kg) daily for 14 days, and induced oxidative stress by giving a single dose of Dex intraperitoneal at the dosage of 25mg/kg body weight 8h after the last administration of BA. RESULTS Dex administration alone significantly decreased antioxidant enzyme activities, while significantly increased reactive oxygen species (ROS) production, lipid peroxidation, mitochondrial dysfunctions, caspase-3 activation and cellular apoptosis. However, pretreatment with BA dose-dependently mitigated Dex-induced oxidative damage after 14 days of feeding. In addition to ROS scavenging activity in Dex-induced thymocyte, BA administration decreased lipid peroxidation, up-regulated antioxidant enzymes, restored mitochondrial function, increased Bcl-2 expression but reduced Bax expression, inhibited caspase-3 activation, and improved cell survival. CONCLUSIONS These findings reveal a protective capability of BA against Dex-induced cell death by reducing oxidative stress via mitochondrial mediated signal pathway which could be the potential mechanism underlying BA-elicited immunomodulation.
Collapse
Affiliation(s)
- Jine Yi
- College of Veterinary Medicine, Hunan Agricultural University, Changsha City, China.
| | - Ruocen Zhu
- College of Veterinary Medicine, Hunan Agricultural University, Changsha City, China
| | - Jianping Wu
- Department of Agricultural, Food and Nutritional Science, 4-10 Ag/For Center, University of Alberta, Edmonton, Canada
| | - Jing Wu
- College of Veterinary Medicine, Hunan Agricultural University, Changsha City, China
| | - Wei Xia
- College of Veterinary Medicine, Hunan Agricultural University, Changsha City, China
| | - Lijuan Zhu
- College of Veterinary Medicine, Hunan Agricultural University, Changsha City, China
| | - Weiwei Jiang
- College of Veterinary Medicine, Hunan Agricultural University, Changsha City, China
| | - Siting Xiang
- College of Veterinary Medicine, Hunan Agricultural University, Changsha City, China
| | - Zhuliang Tan
- College of Veterinary Medicine, Hunan Agricultural University, Changsha City, China.
| |
Collapse
|
17
|
Härmä V, Haavikko R, Virtanen J, Ahonen I, Schukov HP, Alakurtti S, Purev E, Rischer H, Yli-Kauhaluoma J, Moreira VM, Nees M, Oksman-Caldentey KM. Optimization of Invasion-Specific Effects of Betulin Derivatives on Prostate Cancer Cells through Lead Development. PLoS One 2015; 10:e0126111. [PMID: 25965345 PMCID: PMC4428838 DOI: 10.1371/journal.pone.0126111] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 03/23/2015] [Indexed: 11/29/2022] Open
Abstract
The anti-invasive and anti-proliferative effects of betulins and abietane derivatives was systematically tested using an organotypic model system of advanced, castration-resistant prostate cancers. A preliminary screen of the initial set of 93 compounds was performed in two-dimensional (2D) growth conditions using non-transformed prostate epithelial cells (EP156T), an androgen-sensitive prostate cancer cell line (LNCaP), and the castration-resistant, highly invasive cell line PC-3. The 25 most promising compounds were all betulin derivatives. These were selected for a focused secondary screen in three-dimensional (3D) growth conditions, with the goal to identify the most effective and specific anti-invasive compounds. Additional sensitivity and cytotoxicity tests were then performed using an extended cell line panel. The effects of these compounds on cell cycle progression, mitosis, proliferation and unspecific cytotoxicity, versus their ability to specifically interfere with cell motility and tumor cell invasion was addressed. To identify potential mechanisms of action and likely compound targets, multiplex profiling of compound effects on a panel of 43 human protein kinases was performed. These target de-convolution studies, combined with the phenotypic analyses of multicellular organoids in 3D models, revealed specific inhibition of AKT signaling linked to effects on the organization of the actin cytoskeleton as the most likely driver of altered cell morphology and motility.
Collapse
Affiliation(s)
- Ville Härmä
- Industrial Biotechnology, VTT Technical Research Centre of Finland Ltd, Turku, Finland
| | - Raisa Haavikko
- Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Johannes Virtanen
- Industrial Biotechnology, VTT Technical Research Centre of Finland Ltd, Turku, Finland
| | - Ilmari Ahonen
- Turku Centre for Biotechnology BTK, University of Turku, Turku, Finland
| | - Hannu-Pekka Schukov
- University of Turku, Faculty of Medicine, Institute of Biomedicine, Turku, Finland
| | - Sami Alakurtti
- Process Chemistry and Environmental Engineering, VTT Technical Research Centre of Finland Ltd, Espoo, Finland
| | - Enkhee Purev
- Industrial Biotechnology, VTT Technical Research Centre of Finland Ltd, Turku, Finland
- National University of Mongolia, Ulanbataar, Mongolia
| | - Heiko Rischer
- Industrial Biotechnology, VTT Technical Research Centre of Finland Ltd, Espoo, Finland
| | - Jari Yli-Kauhaluoma
- Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Vânia M. Moreira
- Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Matthias Nees
- Industrial Biotechnology, VTT Technical Research Centre of Finland Ltd, Turku, Finland
- Turku Centre for Biotechnology BTK, University of Turku, Turku, Finland
| | | |
Collapse
|
18
|
Yi J, Zhu R, Wu J, Wu J, Tan Z. Ameliorative effect of betulinic acid on oxidative damage and apoptosis in the splenocytes of dexamethasone treated mice. Int Immunopharmacol 2015; 27:85-94. [PMID: 25959028 DOI: 10.1016/j.intimp.2015.04.050] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2014] [Revised: 04/22/2015] [Accepted: 04/25/2015] [Indexed: 10/23/2022]
Abstract
Betulinic acid (BA) is a bioactive pentacyclic triterpene that exhibits a variety of biological activities including antioxidative and immunomodulative properties. The objective of this study was to investigate the potential splenocytes protective effect and underlying mechanism of BA using dexamethasone (Dex)-induced mice as a model system. Pretreatment with BA (0.25, 0.5, and 1.0 mg/kg) dose-dependently ameliorated Dex-induced oxidative damage and apoptosis after 14 days of feeding. In addition to reactive oxygen species scavenging activity in Dex-induced splenocytes, BA administration up-regulated antioxidant enzymes, decreased lipid peroxidation, restored mitochondrial function, decreased the expression of pro-apoptotic protein Bax, prevented the decline of anti-apoptotic protein Bcl-2, inhibited caspase-9 and caspase-3 activation, and improved cell survival. These findings reveal that BA was able to mitigate Dex-induced oxidative stress and might play an important role in repairs of oxidative damage in immunological system.
Collapse
Affiliation(s)
- Jine Yi
- College of Veterinary Medicine, Hunan Agricultural University, Changsha City 410128, China.
| | - Ruocen Zhu
- College of Veterinary Medicine, Hunan Agricultural University, Changsha City 410128, China
| | - Jing Wu
- College of Veterinary Medicine, Hunan Agricultural University, Changsha City 410128, China
| | - Jianping Wu
- Department of Agricultural, Food and Nutritional Science, 4-10 Ag/For Center, University of Alberta, Edmonton T6G2P5, Canada
| | - Zhuliang Tan
- College of Veterinary Medicine, Hunan Agricultural University, Changsha City 410128, China.
| |
Collapse
|
19
|
Alcazar W, López AS, Alakurtti S, Tuononen ML, Yli-Kauhaluoma J, Ponte-Sucre A. Betulin derivatives impair Leishmania braziliensis viability and host–parasite interaction. Bioorg Med Chem 2014; 22:6220-6. [DOI: 10.1016/j.bmc.2014.08.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 08/12/2014] [Accepted: 08/20/2014] [Indexed: 10/24/2022]
|
20
|
Im NK, Jang WJ, Jeong CH, Jeong GS. Delphinidin Suppresses PMA-Induced MMP-9 Expression by Blocking the NF-κB Activation Through MAPK Signaling Pathways in MCF-7 Human Breast Carcinoma Cells. J Med Food 2014; 17:855-61. [DOI: 10.1089/jmf.2013.3077] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Nam-Kyung Im
- College of Pharmacy, Keimyung University, Dae-gu, Korea
| | - Won Jun Jang
- College of Pharmacy, Keimyung University, Dae-gu, Korea
| | - Chul-Ho Jeong
- College of Pharmacy, Keimyung University, Dae-gu, Korea
| | | |
Collapse
|
21
|
Wang K, Wen L, Peng W, Li H, Zhuang J, Lu Y, Liu B, Li X, Li W, Xu Y. Vinpocetine attenuates neointimal hyperplasia in diabetic rat carotid arteries after balloon injury. PLoS One 2014; 9:e96894. [PMID: 24819198 PMCID: PMC4018422 DOI: 10.1371/journal.pone.0096894] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2013] [Accepted: 04/13/2014] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Diabetes exacerbates abnormal vascular smooth muscle cell (VSMC) accumulation in response to arterial wall injury. Vinpocetine has been shown to improve vascular remolding; however, little is known about the direct effects of vinpocetine on vascular complications mediated by diabetes. The objective of this study was to determine the effects of vinpocetine on hyperglycemia-facilitated neointimal hyperplasia and explore its possible mechanism. MATERIALS AND METHODS Nondiabetic and diabetic rats were subjected to balloon injury of the carotid artery followed by 3-week treatment with either vinpocetine (10 mg/kg/day) or saline. Morphological analysis and proliferating cell nuclear antigen (PCNA) immunostaining were performed on day 21. Rat VSMCs proliferation was determined with 5-ethynyl-20-deoxyuridine cell proliferation assays. Chemokinesis was monitored with scratch assays, and production of reactive oxygen species (ROS) was assessed using a 2',7'-dichlorodihydrofluorescein diacetate (H2DCFDA) flow cytometric assay. Apoptosis was detected by annexin V-FITC/PI flow cytometric assay. Cell signaling was assessed by immunblotting. RESULTS Vinpocetine prevented intimal hyperplasia in carotid arteries in both normal (I/M ratio: 93.83 ± 26.45% versus 143.2 ± 38.18%, P<0.05) and diabetic animals (I/M ratio: 120.5 ± 42.55% versus 233.46 ± 33.98%, P<0.05) when compared to saline. The in vitro study demonstrated that vinpocetine significantly inhibited VSMCs proliferation and chemokinesis as well as ROS generation and apoptotic resistance, which was induced by high glucose (HG) treatment. Vinpocetine significantly abolished HG-induced phosphorylation of Akt and JNK1/2 without affecting their total levels. For downstream targets, HG-induced phosphorylation of IκBα was significantly inhibited by vinpocetine. Vinpocetine also attenuated HG-enhanced expression of PCNA, cyclin D1 and Bcl-2. CONCLUSIONS Vinpocetine attenuated neointimal formation in diabetic rats and inhibited HG-induced VSMCs proliferation, chemokinesis and apoptotic resistance by preventing ROS activation and affecting MAPK, PI3K/Akt, and NF-κB signaling.
Collapse
Affiliation(s)
- Ke Wang
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Li Wen
- Department of Cardiopulmonary Circulation, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Wenhui Peng
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Hailing Li
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jianhui Zhuang
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yuyan Lu
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Baoxin Liu
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiankai Li
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Weiming Li
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yawei Xu
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
22
|
Hyperglycemia, a neglected factor during cancer progression. BIOMED RESEARCH INTERNATIONAL 2014; 2014:461917. [PMID: 24864247 PMCID: PMC4016871 DOI: 10.1155/2014/461917] [Citation(s) in RCA: 154] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 02/17/2014] [Accepted: 02/17/2014] [Indexed: 12/11/2022]
Abstract
Recent evidence from large cohort studies suggests that there exists a higher cancer incidence in people with type 2 diabetes (DM2). However, to date, the potential reasons for this association remain unclear. Hyperglycemia, the most important feature of diabetes, may be responsible for the excess glucose supply for these glucose-hungry cells, and it contributes to apoptosis resistance, oncogenesis, and tumor cell resistance to chemotherapy. Considering associations between diabetes and malignancies, the effect of hyperglycemia on cancer progression in cancer patients with abnormal blood glucose should not be neglected. In this paper, we describe the role that hyperglycemia plays in cancer progression and treatment and illustrate that hyperglycemia may contribute to a more malignant phenotype of cancer cells and lead to drug resistance. Therefore, controlling hyperglycemia may have important therapeutic implications in cancer patients.
Collapse
|
23
|
Wu WY, Yan H, Wang XB, Gui YZ, Gao F, Tang XL, Qin YL, Su M, Chen T, Wang YP. Sodium tanshinone IIA silate inhibits high glucose-induced vascular smooth muscle cell proliferation and migration through activation of AMP-activated protein kinase. PLoS One 2014; 9:e94957. [PMID: 24739942 PMCID: PMC3989257 DOI: 10.1371/journal.pone.0094957] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Accepted: 03/21/2014] [Indexed: 11/30/2022] Open
Abstract
The proliferation of vascular smooth muscle cells may perform a crucial role in the pathogenesis of diabetic vascular disease. AMPK additionally exerts several salutary effects on vascular function and improves vascular abnormalities. The current study sought to determine whether sodium tanshinone IIA silate (STS) has an inhibitory effect on vascular smooth muscle cell (VSMC) proliferation and migration under high glucose conditions mimicking diabetes without dyslipidemia, and establish the underlying mechanism. In this study, STS promoted the phosphorylation of AMP-activated protein kinase (AMPK) at T172 in VSMCs. VSMC proliferation was enhanced under high glucose (25 mM glucose, HG) versus normal glucose conditions (5.5 mM glucose, NG), and this increase was inhibited significantly by STS treatment. We utilized western blotting analysis to evaluate the effects of STS on cell-cycle regulatory proteins and found that STS increased the expression of p53 and the Cdk inhibitor, p21, subsequent decreased the expression of cell cycle-associated protein, cyclin D1. We further observed that STS arrested cell cycle progression at the G0/G1 phase. Additionally, expression and enzymatic activity of MMP-2, translocation of NF-κB, as well as VSMC migration were suppressed in the presence of STS. Notably, Compound C (CC), a specific inhibitor of AMPK, as well as AMPK siRNA blocked STS-mediated inhibition of VSMC proliferation and migration. We further evaluated its potential for activating AMPK in aortas in animal models of type 2 diabetes and found that Oral administration of STS for 10 days resulted in activation of AMPK in aortas from ob/ob or db/db mice. In conclusion, STS inhibits high glucose-induced VSMC proliferation and migration, possibly through AMPK activation. The growth suppression effect may be attributable to activation of AMPK-p53-p21 signaling, and the inhibitory effect on migration to the AMPK/NF-κB signaling axis.
Collapse
MESH Headings
- AMP-Activated Protein Kinases/genetics
- AMP-Activated Protein Kinases/metabolism
- Abietanes/pharmacology
- Animals
- Aorta/enzymology
- Blotting, Western
- Cell Cycle Checkpoints/drug effects
- Cell Movement/drug effects
- Cell Proliferation/drug effects
- Diabetes Mellitus, Type 2/enzymology
- Diabetes Mellitus, Type 2/genetics
- Dose-Response Relationship, Drug
- Drugs, Chinese Herbal/pharmacology
- Enzyme Activation/drug effects
- Flow Cytometry
- Glucose/pharmacology
- Male
- Mice
- Mice, Mutant Strains
- Mice, Obese
- Muscle, Smooth, Vascular/cytology
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Phosphorylation/drug effects
- Primary Cell Culture
- RNA Interference
- Rats, Sprague-Dawley
- Threonine/metabolism
Collapse
Affiliation(s)
- Wen-yu Wu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Hong Yan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Xin-bo Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Yu-zhou Gui
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Fei Gao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Xi-lan Tang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Yin-lin Qin
- Carefree Pharmaceutical Co., Ltd, Nanjing, China
| | - Mei Su
- Carefree Pharmaceutical Co., Ltd, Nanjing, China
| | - Tao Chen
- Carefree Pharmaceutical Co., Ltd, Nanjing, China
| | - Yi-ping Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
24
|
Karki R, Kim SB, Kim DW. Magnolol inhibits migration of vascular smooth muscle cells via cytoskeletal remodeling pathway to attenuate neointima formation. Exp Cell Res 2013; 319:3238-50. [DOI: 10.1016/j.yexcr.2013.07.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2013] [Revised: 07/11/2013] [Accepted: 07/19/2013] [Indexed: 01/21/2023]
|
25
|
Karki R, Park CH, Kim DW. Extract of buckwheat sprouts scavenges oxidation and inhibits pro-inflammatory mediators in lipopolysaccharide-stimulated macrophages (RAW264.7). JOURNAL OF INTEGRATIVE MEDICINE-JIM 2013; 11:246-52. [PMID: 23867243 DOI: 10.3736/jintegrmed2013036] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE Buckwheat has been considered as a potential source of nutraceutical components on the world market of probiotic foodstuffs. The purpose of this study was to evaluate the effects of tartary buckwheat (Fagopyrum tataricum) sprouts on oxidation and pro-inflammatory mediators. METHODS The anti-oxidant effects of buckwheat extract (BWE) and rutin were evaluated by using 1,1-diphenyl-2-picrylhydrazyl (DPPH)- and nitric oxide (NO)-scavenging activities, serum peroxidation and chelating assays. Lipopolysaccharide (LPS)-stimulated RAW264.7 cells were used to evaluate anti-inflammatory activities of buckwheat and rutin. NO production in LPS-stimulated RAW264.7 cells was determined by using Griess reagent. The expressions of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), nuclear factor-kappa B (NF-κB) p65 subunit in cytosolic and nuclear portions were determined by Western blot analysis. Also, the production of inflammatory cytokines interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) was determined by enzyme-linked immunosorbent assay. RESULTS Inhibitory concentration 50 values for DPPH- and NO-scavenging activities of BWE were 24.97 and 72.54 μg/mL respectively. BWE inhibited serum oxidation and possessed chelating activity. Furthermore, BWE inhibited IL-6 and TNF-α production in LPS-stimulated RAW264.7 cells. Also, BWE inhibited iNOS and COX-2 expression and NF-κB p65 translocation. CONCLUSION Buckwheat sprouts possessed strong antioxidant activity and inhibited production of pro-inflammatory mediators in the applied model systems. Thus, buckwheat can be suggested to be beneficial in inflammatory diseases by inhibiting the free radicals and inflammatory mediators.
Collapse
Affiliation(s)
- Rajendra Karki
- Department of Oriental Medicine Resources, Mokpo National University, Muan-gun, Jeollanam-do 534-729, South Korea; E-mail: ,
| | | | | |
Collapse
|
26
|
Karki R, Ho OM, Kim DW. Magnolol attenuates neointima formation by inducing cell cycle arrest via inhibition of ERK1/2 and NF-kappaB activation in vascular smooth muscle cells. Biochim Biophys Acta Gen Subj 2013; 1830:2619-28. [PMID: 23274740 DOI: 10.1016/j.bbagen.2012.12.015] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Revised: 11/19/2012] [Accepted: 12/16/2012] [Indexed: 10/27/2022]
Abstract
BACKGROUND Endovascular injury induces switching of contractile phenotype of vascular smooth muscle cells (VSMCs) to synthetic phenotype, thereby causing proliferation of VSMCs leading to intimal thickening. The purpose of this study was to assess the effect of magnolol on the proliferation of VSMCs in vitro and neointima formation in vivo, as well as the related cell signaling mechanisms. METHODS Tumor necrosis factor alpha (TNF-alpha) induced proliferation ofVSMCs was assessed using colorimetric assay. Cell cycle progression and mRNA expression of cell cycle associated molecules were determined by flow cytometry and reverse transcription polymerase chain reaction (RT-PCR) respectively. The signaling molecules such as ERK1/2,JNK, P38 and NF-kappaB were determined by Western blot analysis. In addition, rat carotid artery balloon injury model was performed to assess the effect of magnolol on neointima formation in vivo. RESULTS Oral administration of magnolol significantly inhibited intimal area and intimal/medial ratio (I/M). Our in vitro assays revealed magnolol dose dependently induced cell cycle arrest at G0/G1. Also, magnolol inhibited mRNA and protein expression of cyclin D1, cyclin E, CDK4 and CDK2 in vitro and in vivo. The cell cycle arrest was associated with inhibition of ERK1/2 phosphorylation and NF-kappaB translocation. CONCLUSION Magnolol suppressed proliferation of VSMCs in vitro and attenuated neointima formation in vivo by inducing cell cycle arrest at G0/G1 through modulation of cyclin D1, cyclin E, CDK4 and CDK2 expression. GENERAL SIGNIFICANCE Thus, the results suggest that magnolol could be a potential therapeutic candidate for the prevention of restenosis and atherosclerosis.
Collapse
Affiliation(s)
- Rajendra Karki
- Division of Pharmacology and Toxicology, School of Pharmacy, University of Missouri-Kansas City, USA
| | | | | |
Collapse
|
27
|
The influence of high glucose on the Cip/Kip family expression profiles in HRECs. J Mol Histol 2013; 44:705-13. [PMID: 23636608 DOI: 10.1007/s10735-013-9510-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Accepted: 04/24/2013] [Indexed: 10/26/2022]
Abstract
Neovascularization is the main characteristic of the proliferative stage of diabetic retinopathy. It has been proven that cell cycle regulation is involved in angiogenesis. The cell cycle regulators, Cip/Kip protein family, belong to the cyclin-dependent kinase inhibitors, are versatile proteins, and except for their function in cell cycle regulation, they also participate in transcription, apoptosis and migration. The expression profiles of the Cip/Kip family in human retina microvascular endothelial cells (HRECs) under normal or high glucose conditions has not been described before. This study was undertaken to determine the expression profiles of the Cip/Kip family proteins, e.g., proteins which are influenced by high glucose and in what manner. Western blot and immunofluorescence analyses were used to investigate the protein expression profiles. Only p21(cip1) and p27(kip1) were detected in HRECs, and they were located in the nucleus. P21(cip1) protein abundance was higher than p27(kip1) in HRECs. Incubation of HRECs in medium containing 30 mM D-glucose for 48 h resulted in downregulation of p21(cip1) protein expression, but had no influence on p27(kip1) protein levels or p21(cip1) mRNA abundance. These results were accompanied by cell cycle G1 phase exit and a lower cell survival rate. Our data show for the first time that high glucose changes the Cip/Kip family expression profiles in HRECs, which may be the foundation for the investigation of the role of the Cip/Kip family in the pathogenesis of diabetic retinopathy.
Collapse
|
28
|
High Glucose Induces Reactive Oxygen Species-Dependent Matrix Metalloproteinase-9 Expression and Cell Migration in Brain Astrocytes. Mol Neurobiol 2013; 48:601-14. [DOI: 10.1007/s12035-013-8442-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Accepted: 03/08/2013] [Indexed: 10/27/2022]
|
29
|
Nelumbo nucifera leaf extract inhibits neointimal hyperplasia through modulation of smooth muscle cell proliferation and migration. Nutrition 2013; 29:268-75. [DOI: 10.1016/j.nut.2012.04.018] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Revised: 03/22/2012] [Accepted: 04/29/2012] [Indexed: 11/21/2022]
|
30
|
Betulinic Acid inhibits growth of cultured vascular smooth muscle cells in vitro by inducing g(1) arrest and apoptosis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2012; 2012:251362. [PMID: 23056140 PMCID: PMC3463985 DOI: 10.1155/2012/251362] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Revised: 08/16/2012] [Accepted: 08/29/2012] [Indexed: 11/18/2022]
Abstract
Betulinic acid is a widely available plant-derived triterpene which is reported to possess selective cytotoxic activity against cancer cells of neuroectodermal origin and leukemia. However, the potential of betulinic acid as an antiproliferative and cytotoxic agent on vascular smooth muscle (VSMC) is still unclear. This study was carried out to demonstrate the antiproliferative and cytotoxic effect of betulinic acid on VSMCs using 3-[4,5-dimethylthizol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) assay, flow cytometry cell cycle assay, BrdU proliferation assay, acridine orange/propidium iodide staining, and comet assay. Result from MTT and BrdU assays indicated that betulinic acid was able to inhibit the growth and proliferation of VSMCs in a dose-dependent manner with IC50 of 3.8 μg/mL significantly (P < 0.05). Nevertheless, betulinic acid exhibited G1 cell cycle arrest in flow cytometry cell cycle profiling and low level of DNA damage against VSMC in acridine orange/propidium iodide and comet assay after 24 h of treatment. In conclusion, betulinic acid induced G1 cell cycle arrest and dose-dependent DNA damage on VSMC.
Collapse
|
31
|
Inhibitory effect of riccardin D on growth of human non-small cell lung cancer: In vitro and in vivo studies. Lung Cancer 2012; 76:300-8. [DOI: 10.1016/j.lungcan.2011.12.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2011] [Revised: 12/20/2011] [Accepted: 12/26/2011] [Indexed: 11/20/2022]
|
32
|
Naringin, the major grapefruit flavonoid, specifically affects atherosclerosis development in diet-induced hypercholesterolemia in mice. J Nutr Biochem 2012; 23:469-77. [DOI: 10.1016/j.jnutbio.2011.02.001] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Revised: 01/24/2011] [Accepted: 02/01/2011] [Indexed: 12/20/2022]
|
33
|
Lee YJ, Yoon JJ, Lee SM, Kim JS, Kang DG, Lee HS. Inhibitory effect ofZanthoxylum schinifoliumon vascular smooth muscle proliferation. Immunopharmacol Immunotoxicol 2012; 34:354-61. [DOI: 10.3109/08923973.2011.608070] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
34
|
Chen KC, Hsieh IC, Hsi E, Wang YS, Dai CY, Chou WW, Juo SHH. Negative feedback regulation between microRNA let-7g and the oxLDL receptor LOX-1. J Cell Sci 2011; 124:4115-24. [PMID: 22135361 DOI: 10.1242/jcs.092767] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Lectin-like oxidized LDL receptor-1 (LOX-1) is a surface scavenger receptor for oxidized low-density lipoprotein (oxLDL). Several transcription factors have been reported to regulate LOX-1 expression. MicroRNAs are small noncoding RNAs that control gene expression, but there have been no reports of LOX-1 expression being regulated by microRNAs. Because the microRNA let-7g has been predicted to bind to LOX-1 mRNA, we investigated whether let-7g can regulate LOX-1 expression. Our experiments first demonstrated that oxLDL can reduce let-7g expression. We later confirmed that there is a let-7g binding site on the 3'-untranslated region of LOX-1 mRNA. We showed that intracellular Ca(2+)-activated protein kinase C is involved in the oxLDL-LOX-1-let-7g pathway. Bioinformatics predicted that the let-7g promoter has a binding site for the transcriptional repressor OCT-1. We used a promoter assay and chromatin immunoprecipitation to confirm this binding. Consequently, knockdown of OCT-1 was found to increase let-7g expression. Transfection of let-7g inhibited oxLDL-induced LOX-1 and OCT-1 expression, cell proliferation and migration. Mice fed with a high-fat diet showed a decrease in let-7g and an increase in LOX-1 and OCT-1. A study on humans showed the serum levels of let-7g are lower in subjects with hypercholesterolemia compared with normal controls. Our findings identify a negative feedback regulation between let-7g and LOX-1, and indicate that let-7g could be a target to treat cardiovascular disease.
Collapse
Affiliation(s)
- Ku-Chung Chen
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | | | | | | | | | | | | |
Collapse
|
35
|
Fu JY, Qian LB, Zhu LG, Liang HT, Tan YN, Lu HT, Lu JF, Wang HP, Xia Q. Betulinic acid ameliorates endothelium-dependent relaxation in L-NAME-induced hypertensive rats by reducing oxidative stress. Eur J Pharm Sci 2011; 44:385-391. [PMID: 21907795 DOI: 10.1016/j.ejps.2011.08.025] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Accepted: 08/27/2011] [Indexed: 02/07/2023]
Abstract
Zizyphi Spinosi semen (ZSS) is one of the most widely used traditional Chinese herbs with protective effects on the cardiovascular system. It is not clear whether betulinic acid (BA), the key active constituent of ZSS, has beneficial cardiovascular effects on N(ω)-nitro-L-arginine methyl ester hydrochloride (L-NAME)-induced hypertensive rats. The objective of this study was to investigate the effect of BA on endothelium-dependent vasorelaxation in isolated aortic rings from L-NAME-induced hypertensive rats and its underlying mechanisms. Male Sprague-Dawley rats were injected with L-NAME (15 mg/kg/d, i.p.) for 4 weeks to induce hypertension. After treatment with L-NAME for 2 weeks, rats with mean blood pressure >120 mm Hg measured by tail-cuff method were considered hypertensive and then injected with BA (0.8, 4, 20 mg/kg/d, i.p.) for the last 2 weeks. The effect of BA on the tension of rat thoracic aortic rings was measured in an organ bath system. The levels of nitric oxide (NO), reactive oxygen species (ROS), and the activity of superoxide dismutase (SOD) and nitric oxide synthase (NOS) in aortas were assayed. We found that BA (0.1-100 μM) evoked a concentration-dependent vasorelaxation in endothelium-intact normal rat aortic rings, which was significantly attenuated by pretreatment with L-NAME (100 μM) or methylene blue (MB, 10 μM), but not by indomethacin (10 μM). Pretreatment with EC(50) (1.67 μM) concentration of BA enhanced the acetylcholine (ACh)-induced vasorelaxation, which was also markedly reversed by both L-NAME and MB. The blood pressure in hypertensive rats increased to 135.22±5.38 mm Hg (P<0.01 vs. control group), which was markedly attenuated by high dose of BA. The ACh-induced vasorelaxation in hypertensive rat aortic rings was impaired, which was markedly improved by chronic treatment with BA (20 mg/kg/d) for 2 weeks. The increase of ROS level and the decrease of NO level, SOD and eNOS activities in hypertensive rat aortas were all markedly inhibited by BA. These results indicate that BA decreased blood pressure and improved ACh-induced endothelium-dependent vasorelaxation in L-NAME-induced hypertension rats, which may be mediated by reducing oxidative stress and retaining the bioavailability of NO in the cardiovascular system.
Collapse
Affiliation(s)
- Jia-Yin Fu
- Department of Physiology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Bache M, Zschornak MP, Passin S, Kessler J, Wichmann H, Kappler M, Paschke R, Kaluđerović GN, Kommera H, Taubert H, Vordermark D. Increased betulinic acid induced cytotoxicity and radiosensitivity in glioma cells under hypoxic conditions. Radiat Oncol 2011; 6:111. [PMID: 21906280 PMCID: PMC3182903 DOI: 10.1186/1748-717x-6-111] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Accepted: 09/09/2011] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Betulinic acid (BA) is a novel antineoplastic agent under evaluation for tumor therapy. Because of the selective cytotoxic effects of BA in tumor cells (including gliomas), the combination of this agent with conservative therapies (such as radiotherapy and chemotherapy) may be useful. Previously, the combination of BA with irradiation under hypoxic conditions had never been studied. METHODS In this study, the effects of 3 to 30 μM BA on cytotoxicity, migration, the protein expression of PARP, survivin and HIF-1α, as well as radiosensitivity under normoxic and hypoxic conditions were analyzed in the human malignant glioma cell lines U251MG and U343MG. Cytotoxicity and radiosensitivity were analyzed with clonogenic survival assays, migration was analyzed with Boyden chamber assays (or scratch assays) and protein expression was examined with Western blot analyses. RESULTS Under normoxic conditions, a half maximal inhibitory concentration (IC50) of 23 μM was observed in U251MG cells and 24 μM was observed in U343MG cells. Under hypoxic conditions, 10 μM or 15 μM of BA showed a significantly increased cytotoxicity in U251MG cells (p = 0.004 and p = 0.01, respectively) and U343MG cells (p < 0.05 and p = 0.01, respectively). The combination of BA with radiotherapy resulted in an additive effect in the U343MG cell line under normoxic and hypoxic conditions. Weak radiation enhancement was observed in U251MG cell line after treatment with BA under normoxic conditions. Furthermore, under hypoxic conditions, the incubation with BA resulted in increased radiation enhancement. The enhancement factor, at an irradiation dose of 15 Gy after treatment with 10 or 15 μM BA, was 2.20 (p = 0.02) and 4.50 (p = 0.03), respectively. Incubation with BA led to decreased cell migration, cleavage of PARP and decreased expression levels of survivin in both cell lines. Additionally, BA treatment resulted in a reduction of HIF-1α protein under hypoxic conditions. CONCLUSION Our results suggest that BA is capable of improving the effects of tumor therapy in human malignant glioma cells, particularly under hypoxic conditions. Further investigations are necessary to characterize its potential as a radiosensitizer.
Collapse
Affiliation(s)
- Matthias Bache
- Department of Radiotherapy, Martin-Luther-University Halle-Wittenberg, Dryanderstr, 4, 06110 Halle, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Sun J, Sukhova GK, Zhang J, Chen H, Sjöberg S, Libby P, Xia M, Xiong N, Gelb BD, Shi GP. Cathepsin K deficiency reduces elastase perfusion-induced abdominal aortic aneurysms in mice. Arterioscler Thromb Vasc Biol 2011; 32:15-23. [PMID: 21817099 DOI: 10.1161/atvbaha.111.235002] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
OBJECTIVE Cathepsin K (CatK) is one of the most potent mammalian elastases. We have previously shown increased expression of CatK in human abdominal aortic aneurysm (AAA) lesions. Whether this protease participates directly in AAA formation, however, remains unknown. METHODS AND RESULTS Mouse experimental AAA was induced with aortic perfusion of a porcine pancreatic elastase. Using this experimental model, we demonstrated that absence of CatK prevented AAA formation in mice 14 days postperfusion. CatK deficiency significantly reduced lesion CD4(+) T-cell content, total lesion and medial cell proliferation and apoptosis, medial smooth muscle cell (SMC) loss, elastinolytic CatL and CatS expression, and elastin fragmentation, but it did not affect AAA lesion Mac-3(+) macrophage accumulation or CD31(+) microvessel numbers. In vitro studies revealed that CatK contributed importantly to CD4(+) T-cell proliferation, SMC apoptosis, and other cysteinyl cathepsin and matrix metalloproteinase expression and activities in SMCs and endothelial cells but played negligible roles in microvessel growth and monocyte migration. AAA lesions from CatK-deficient mice showed reduced elastinolytic cathepsin activities compared with those from wild-type control mice. CONCLUSIONS This study demonstrates that CatK plays an essential role in AAA formation by promoting T-cell proliferation, vascular SMC apoptosis, and elastin degradation and by affecting vascular cell protease expression and activities.
Collapse
Affiliation(s)
- Jiusong Sun
- Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Karki R, Sahi N, Jeon ER, Park YS, Kim DW. Chungtaejeon, a Korean fermented tea, scavenges oxidation and inhibits cytokine induced proliferation and migration of human aortic smooth muscle cells. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2011; 66:27-33. [PMID: 21344199 DOI: 10.1007/s11130-011-0211-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Oxidation susceptibility of serum lipid and the proliferation and migration of vascular smooth muscle cells (VSMC) from tunica media to the sub endothelial region are the key steps in the progression of atherosclerosis. The objective of this study was to determine the effects of Chungtaejeon (CTJ) on oxidation and cytokine induced proliferation and migration of human aortic smooth muscle cells (HASMC). The antioxidative effects of CTJ were evaluated by using 1,1-diphenyl-2-picryl hydrazyl (DPPH) scavenging assay, nitric oxide (NO) scavenging assay and thiobarbituric acid reactive substance (TBARS) assay. Similarly, the proliferation, migration and expression of matrix metalloproteinases (MMPs) in HASMC were assessed by MTT assay, transwell Boyden chamber assay and gelatin zymography, respectively. Western blotting was done to determine the protein expression of MMP-9, phospho extracellular regulated kinase (pERK1/2) and phospho c-Jun N-terminal kinase (pJNK). In results, the IC(50) values for DPPH and NO scavenging activities were 8.91 μg/ml and 14.32 μg/ml, respectively. Furthermore, CTJ inhibited TBARS formation dose dependently. The pretreatment of CTJ dose dependently inhibited the tumor necrosis factor-α (TNF-α) induced proliferation and MMP-9 expression and platelet derived growth factor (PDGF) induced migration of HASMC. Thus, CTJ can be suggested to have beneficial effect in the prevention of atherosclerosis.
Collapse
Affiliation(s)
- Rajendra Karki
- Department of Oriental Medicine Resources, Mokpo National University, Mokpo, South Korea.
| | | | | | | | | |
Collapse
|