1
|
Wu D, Ding Z, Lu T, Chen Y, Zhang F, Lu S. DDR1-targeted therapies: current limitations and future potential. Drug Discov Today 2024; 29:103975. [PMID: 38580164 DOI: 10.1016/j.drudis.2024.103975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/22/2024] [Accepted: 03/29/2024] [Indexed: 04/07/2024]
Abstract
Discoidin domain receptor (DDR)-1 has a crucial role in regulating vital processes, including cell differentiation, proliferation, adhesion, migration, invasion, and matrix remodeling. Overexpression or activation of DDR1 in various pathological scenarios makes it a potential therapeutic target for the treatment of cancer, fibrosis, atherosclerosis, and neuropsychiatric, psychiatric, and neurodegenerative disorders. In this review, we summarize current therapeutic approaches targeting DDR1 from a medicinal chemistry perspective. Furthermore, we analyze factors other than issues of low selectivity and risk of resistance, contributing to the infrequent success of DDR1 inhibitors. The complex interplay between DDR1 and the extracellular matrix (ECM) necessitates additional validation, given that DDR1 might exhibit complex and synergistic interactions with other signaling molecules during ECM regulation. The mechanisms involved in DDR1 regulation in cancer and inflammation-related diseases also remain unknown.
Collapse
Affiliation(s)
- Donglin Wu
- School of Science, China Pharmaceutical University, Nanjing 211198, China
| | - Zihui Ding
- School of Science, China Pharmaceutical University, Nanjing 211198, China
| | - Tao Lu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China.
| | - Yadong Chen
- Laboratory of Molecular Design and Drug Discovery, China Pharmaceutical University, Nanjing 211198, China.
| | - Feng Zhang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Shuai Lu
- School of Science, China Pharmaceutical University, Nanjing 211198, China.
| |
Collapse
|
2
|
Shen XT, Xie SZ, Zheng X, Zou TT, Hu BY, Xu J, Liu L, Xu YF, Wang XF, Wang H, Wang S, Zhu L, Yu KK, Zhu WW, Lu L, Zhang JB, Chen JH, Dong QZ, Yang LY, Qin LX. Cirrhotic-extracellular matrix attenuates aPD-1 treatment response by initiating immunosuppressive neutrophil extracellular traps formation in hepatocellular carcinoma. Exp Hematol Oncol 2024; 13:20. [PMID: 38388466 PMCID: PMC10882882 DOI: 10.1186/s40164-024-00476-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 01/12/2024] [Indexed: 02/24/2024] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is closely associatedwith chronic liver diseases, particularly liver cirrhosis, which has an altered extracellular matrix (ECM) composition. The influence and its mechanism of the cirrhotic-ECM on the response of HCC to immune checkpoint inhibitor (ICI) remains less clarified. METHODS In silico, proteomic and pathological assessment of alteration of cirrhotic-ECM were applied in clinical cohort. Multiple pre-clinical models with ECM manipulation were used to evaluate cirrhotic-ECM's effect on ICI treatment. In silico, flow cytometry and IHC were applied to explore how cirrhotic-ECM affect HCC microenvironment. In vitro and in vivo experiments were carried out to identify the mechanism of how cirrhotic-ECM undermined ICI treatment. RESULTS We defined "a pro-tumor cirrhotic-ECM" which was featured as the up-regulation of collagen type 1 (Col1). Cirrhotic-ECM/Col1 was closely related to impaired T cell function and limited anti PD-1 (aPD-1) response of HCC patients from the TCGA pan cancer cohort and the authors' institution, as well as in multiple pre-clinical models. Mechanically, cirrhotic-ECM/Col1 orchestrated an immunosuppressive microenvironment (TME) by triggering Col1-DDR1-NFκB-CXCL8 axis, which initiated neutrophil extracellular traps (NETs) formation to shield HCC cells from attacking T cells and impede approaching T cells. Nilotinib, an inhibitor of DDR1, reversed the neutrophils/NETs dominant TME and efficiently enhanced the response of HCC to aPD-1. CONCLUSIONS Cirrhotic-ECM modulated a NETs enriched TME in HCC, produced an immune suppressive TME and weakened ICI efficiency. Col1 receptor DDR1 could be a potential target synergically used with ICI to overcome ECM mediated ICI resistance. These provide a mechanical insight and novel strategy to overcome the ICI resistance of HCC.
Collapse
Affiliation(s)
- Xiao-Tian Shen
- Department of General Surgery, Huashan Hospital, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China
- Cancer Metastasis Institute, Fudan University, Shanghai, China
| | - Sun-Zhe Xie
- Department of General Surgery, Huashan Hospital, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China
- Cancer Metastasis Institute, Fudan University, Shanghai, China
| | - Xin Zheng
- Department of General Surgery, Huashan Hospital, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China
- Cancer Metastasis Institute, Fudan University, Shanghai, China
| | - Tian-Tian Zou
- Department of General Surgery, Huashan Hospital, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China
- Cancer Metastasis Institute, Fudan University, Shanghai, China
| | - Bei-Yuan Hu
- Cancer Metastasis Institute, Fudan University, Shanghai, China
| | - Jing Xu
- Department of Dermatology, Huashan Hospital, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China
| | - Lu Liu
- Department of Infection Disease, Huashan Hospital, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China
| | - Yun-Feng Xu
- Department of General Surgery, Huashan Hospital, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China
- Cancer Metastasis Institute, Fudan University, Shanghai, China
| | - Xu-Feng Wang
- Department of General Surgery, Huashan Hospital, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China
- Cancer Metastasis Institute, Fudan University, Shanghai, China
| | - Hao Wang
- Department of General Surgery, Huashan Hospital, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China
- Cancer Metastasis Institute, Fudan University, Shanghai, China
| | - Shun Wang
- Department of General Surgery, Huashan Hospital, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China
- Cancer Metastasis Institute, Fudan University, Shanghai, China
| | - Le Zhu
- Department of General Surgery, Huashan Hospital, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China
- Cancer Metastasis Institute, Fudan University, Shanghai, China
| | - Kang-Kang Yu
- Department of Infection Disease, Huashan Hospital, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China
| | - Wen-Wei Zhu
- Department of General Surgery, Huashan Hospital, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China
- Cancer Metastasis Institute, Fudan University, Shanghai, China
| | - Lu Lu
- Department of General Surgery, Huashan Hospital, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China
- Cancer Metastasis Institute, Fudan University, Shanghai, China
| | - Ju-Bo Zhang
- Department of Infection Disease, Huashan Hospital, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China
| | - Jin-Hong Chen
- Department of General Surgery, Huashan Hospital, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China
- Cancer Metastasis Institute, Fudan University, Shanghai, China
| | - Qiong-Zhu Dong
- Department of General Surgery, Huashan Hospital, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China
- Cancer Metastasis Institute, Fudan University, Shanghai, China
| | - Lu-Yu Yang
- Department of General Surgery, Huashan Hospital, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China.
- Cancer Metastasis Institute, Fudan University, Shanghai, China.
| | - Lun-Xiu Qin
- Department of General Surgery, Huashan Hospital, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China.
- Cancer Metastasis Institute, Fudan University, Shanghai, China.
| |
Collapse
|
3
|
Lutter L, Ter Linde JJM, Brand EC, Hoytema van Konijnenburg DP, Roosenboom B, Horjus Talabur-Horje C, Oldenburg B, van Wijk F. Compartment-driven imprinting of intestinal CD4 T cells in inflammatory bowel disease and homeostasis. Clin Exp Immunol 2023; 214:235-248. [PMID: 37565620 PMCID: PMC10719222 DOI: 10.1093/cei/uxad095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 07/16/2023] [Accepted: 08/09/2023] [Indexed: 08/12/2023] Open
Abstract
The mucosal immune system is implicated in the etiology and progression of inflammatory bowel diseases. The lamina propria and epithelium of the gut mucosa constitute two separate compartments, containing distinct T-cell populations. Human CD4 T-cell programming and regulation of lamina propria and epithelium CD4 T cells, especially during inflammation, remain incompletely understood. We performed flow cytometry, bulk, and single-cell RNA-sequencing to profile ileal lamina propria and intraepithelial CD4 T cells (CD4CD8αα, regulatory T cells (Tregs), CD69- and CD69high Trm T cells) in controls and Crohn's disease (CD) patients (paired non-inflamed and inflamed). Inflammation results in alterations of the CD4 T-cell population with a pronounced increase in Tregs and migrating/infiltrating cells. On a transcriptional level, inflammation within the epithelium induced T-cell activation, increased IFNγ responses, and an effector Treg profile. Conversely, few transcriptional changes within the lamina propria were observed. Key regulators including the chromatin remodelers ARID4B and SATB1 were found to drive compartment-specific transcriptional programming of CD4 T(reg) cells. In summary, inflammation in CD patients primarily induces changes within the epithelium and not the lamina propria. Additionally, there is compartment-specific CD4 T-cell imprinting, driven by shared regulators, between the lamina propria and the epithelium. The main consequence of intraepithelial adaptation, irrespective of inflammation, seems to be an overall dampening of broad (pro-inflammatory) responses and tight regulation of lifespan. These data suggest differential regulation of the lamina propria and epithelium, with a specific regulatory role in the inflamed epithelium.
Collapse
Affiliation(s)
- Lisanne Lutter
- Centre for Translational Immunology, University Medical Centre Utrecht, Utrecht, The Netherlands
- Department of Gastroenterology and Hepatology, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - José J M Ter Linde
- Centre for Translational Immunology, University Medical Centre Utrecht, Utrecht, The Netherlands
- Department of Gastroenterology and Hepatology, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Eelco C Brand
- Centre for Translational Immunology, University Medical Centre Utrecht, Utrecht, The Netherlands
- Department of Gastroenterology and Hepatology, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - David P Hoytema van Konijnenburg
- Centre for Translational Immunology, University Medical Centre Utrecht, Utrecht, The Netherlands
- Division of Immunology, Boston Children's Hospital and Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Britt Roosenboom
- Department of Gastroenterology and Hepatology, Rijnstate Hospital, Arnhem, The Netherlands
| | | | - Bas Oldenburg
- Department of Gastroenterology and Hepatology, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Femke van Wijk
- Centre for Translational Immunology, University Medical Centre Utrecht, Utrecht, The Netherlands
| |
Collapse
|
4
|
Maitz K, Valadez-Cosmes P, Raftopoulou S, Kindler O, Kienzl M, Bolouri H, Houghton AM, Schicho R, Heinemann A, Kargl J. Altered Treg Infiltration after Discoidin Domain Receptor 1 (DDR1) Inhibition and Knockout Promotes Tumor Growth in Lung Adenocarcinoma. Cancers (Basel) 2023; 15:5767. [PMID: 38136314 PMCID: PMC10742023 DOI: 10.3390/cancers15245767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/20/2023] [Accepted: 11/29/2023] [Indexed: 12/24/2023] Open
Abstract
Lung cancer is the leading cause of cancer-related death worldwide. Discoidin domain receptor 1 (DDR1), a tyrosine kinase receptor, has been associated with poor prognosis in patients with non-small cell lung cancer (NSCLC). However, its role in tumorigenesis remains poorly understood. This work aimed to explore the impact of DDR1 expression on immune cell infiltration in lung adenocarcinoma. Pharmacological inhibition and knockout of DDR1 were used in an immunocompetent mouse model of KRAS/p53-driven lung adenocarcinoma (LUAD). Tumor cells were engrafted subcutaneously, after which tumors were harvested for investigation of immune cell composition via flow cytometry. The Cancer Genome Atlas (TCGA) cohort was used to perform gene expression analysis of 509 patients with LUAD. Pharmacological inhibition and knockout of DDR1 increased the tumor burden, with DDR1 knockout tumors showing a decrease in CD8+ cytotoxic T cells and an increase in CD4+ helper T cells and regulatory T cells. TCGA analysis revealed that low-DDR1-expressing tumors showed higher FoxP3 (regulatory T-cell marker) expression than high-DDR1-expressing tumors. Our study showed that under certain conditions, the inhibition of DDR1, a potential therapeutic target in cancer treatment, might have negative effects, such as inducing a pro-tumorigenic tumor microenvironment. As such, further investigations are necessary.
Collapse
Affiliation(s)
- Kathrin Maitz
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, 8010 Graz, Austria
| | - Paulina Valadez-Cosmes
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, 8010 Graz, Austria
| | - Sofia Raftopoulou
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, 8010 Graz, Austria
| | - Oliver Kindler
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, 8010 Graz, Austria
| | - Melanie Kienzl
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, 8010 Graz, Austria
| | - Hamid Bolouri
- Center for Systems Immunology, Benaroya Research Center, Seattle, WA 98101, USA
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - A. McGarry Houghton
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
- Division of Pulmonary and Critical Care Medicine, University of Washington, Seattle, WA 98195, USA
| | - Rudolf Schicho
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, 8010 Graz, Austria
- BioTechMed, 8010 Graz, Austria
| | - Akos Heinemann
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, 8010 Graz, Austria
- BioTechMed, 8010 Graz, Austria
| | - Julia Kargl
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, 8010 Graz, Austria
- BioTechMed, 8010 Graz, Austria
| |
Collapse
|
5
|
De Martino D, Bravo-Cordero JJ. Collagens in Cancer: Structural Regulators and Guardians of Cancer Progression. Cancer Res 2023; 83:1386-1392. [PMID: 36638361 PMCID: PMC10159947 DOI: 10.1158/0008-5472.can-22-2034] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 11/29/2022] [Accepted: 01/11/2023] [Indexed: 01/15/2023]
Abstract
Collagen is one of the most abundant proteins in animals and a major component of the extracellular matrix (ECM) in tissues. Besides playing a role as a structural building block of tissues, collagens can modulate the behavior of cells, and their deregulation can promote diseases such as cancer. In tumors, collagens and many other ECM molecules are mainly produced by fibroblasts, and recent evidence points toward a role of tumor-derived collagens in tumor progression and metastasis. In this review, we focus on the newly discovered functions of collagens in cancer. Novel findings have revealed the role of collagens in tumor dormancy and immune evasion, as well as their interplay with cancer cell metabolism. Collagens could serve as prognostic markers for patients with cancer, and therapeutic strategies targeting the collagen ECM have the potential to prevent tumor progression and metastasis.
Collapse
Affiliation(s)
- Daniela De Martino
- Department of Medicine, Division of Hematology and Oncology, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York
| | - Jose Javier Bravo-Cordero
- Department of Medicine, Division of Hematology and Oncology, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York
| |
Collapse
|
6
|
Faisal SM, Comba A, Varela ML, Argento AE, Brumley E, Abel C, Castro MG, Lowenstein PR. The complex interactions between the cellular and non-cellular components of the brain tumor microenvironmental landscape and their therapeutic implications. Front Oncol 2022; 12:1005069. [PMID: 36276147 PMCID: PMC9583158 DOI: 10.3389/fonc.2022.1005069] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 09/20/2022] [Indexed: 11/26/2022] Open
Abstract
Glioblastoma (GBM), an aggressive high-grade glial tumor, is resistant to therapy and has a poor prognosis due to its universal recurrence rate. GBM cells interact with the non-cellular components in the tumor microenvironment (TME), facilitating their rapid growth, evolution, and invasion into the normal brain. Herein we discuss the complexity of the interactions between the cellular and non-cellular components of the TME and advances in the field as a whole. While the stroma of non-central nervous system (CNS) tissues is abundant in fibrillary collagens, laminins, and fibronectin, the normal brain extracellular matrix (ECM) predominantly includes proteoglycans, glycoproteins, and glycosaminoglycans, with fibrillary components typically found only in association with the vasculature. However, recent studies have found that in GBMs, the microenvironment evolves into a more complex array of components, with upregulated collagen gene expression and aligned fibrillary ECM networks. The interactions of glioma cells with the ECM and the degradation of matrix barriers are crucial for both single-cell and collective invasion into neighboring brain tissue. ECM-regulated mechanisms also contribute to immune exclusion, resulting in a major challenge to immunotherapy delivery and efficacy. Glioma cells chemically and physically control the function of their environment, co-opting complex signaling networks for their own benefit, resulting in radio- and chemo-resistance, tumor recurrence, and cancer progression. Targeting these interactions is an attractive strategy for overcoming therapy resistance, and we will discuss recent advances in preclinical studies, current clinical trials, and potential future clinical applications. In this review, we also provide a comprehensive discussion of the complexities of the interconnected cellular and non-cellular components of the microenvironmental landscape of brain tumors to guide the development of safe and effective therapeutic strategies against brain cancer.
Collapse
Affiliation(s)
- Syed M. Faisal
- Dept. of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Dept. of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Andrea Comba
- Dept. of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Dept. of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Maria L. Varela
- Dept. of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Dept. of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Anna E. Argento
- Dept. of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States
| | - Emily Brumley
- Dept. of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Dept. of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Clifford Abel
- Dept. of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Dept. of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Maria G. Castro
- Dept. of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Dept. of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Pedro R. Lowenstein
- Dept. of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Dept. of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, United States
- Dept. of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States
- *Correspondence: Pedro R. Lowenstein,
| |
Collapse
|
7
|
Borza CM, Bolas G, Pozzi A. Genetic and pharmacological tools to study the role of discoidin domain receptors in kidney disease. Front Pharmacol 2022; 13:1001122. [PMID: 36249782 PMCID: PMC9554349 DOI: 10.3389/fphar.2022.1001122] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
Following injury the kidney undergoes a repair process, which results in replacement of the injured tissue with little evidence of damage. However, repetitive injuries or inability of the kidney to stop the repair process result in abnormal deposition of extracellular matrix (ECM) components leading to fibrosis and organ dysfunction. The synthesis/degradation of ECM components is finely regulated by several factors, including discoidin domain receptors (DDRs). These are receptor tyrosine kinases that are activated by collagens. Upon activation, DDRs control several cell functions that, when exacerbated, contribute to kidney injury and fibrosis. DDRs are undetectable in healthy kidney, but become rapidly upregulated in several kidney fibrotic conditions, thus making them attractive anti-fibrotic targets. DDRs contribute to kidney injury and fibrosis by promoting apoptosis of injured kidney cells, stimulating the production of pro-inflammatory cytokines, and regulating the production of ECM components. They achieve these effects by activating canonical intracellular molecules or by directly interacting with nuclear chromatin and promoting the transcription of pro-fibrotic genes. The goal of this review is to highlight canonical and non-canonical mechanisms whereby DDRs contribute to kidney injury/fibrosis. This review will summarize key findings obtained using cells and mice lacking DDRs and it will discuss the discovery and development of targeted DDR small molecule- and antisense-based inhibitors. Understanding the molecular mechanisms whereby DDRs control kidney injury and fibrosis might enable us to not only develop more selective and potent inhibitors, but to also determine when DDR inhibition needs to be achieved to prevent and/or halt the development of kidney fibrosis.
Collapse
Affiliation(s)
- Corina M. Borza
- Department of Medicine (Division of Nephrology), Vanderbilt University School of Medicine, Nashville, TN, United States
| | - Gema Bolas
- Department of Medicine (Division of Nephrology), Vanderbilt University School of Medicine, Nashville, TN, United States
| | - Ambra Pozzi
- Department of Medicine (Division of Nephrology), Vanderbilt University School of Medicine, Nashville, TN, United States
- Veterans Affairs Hospitals, Nashville, TN, United States
| |
Collapse
|
8
|
Wang Y, Han B, Liu K, Wang X. Effects of DDR1 on migration and adhesion of periodontal ligament cells and the underlying mechanism. J Periodontal Res 2022; 57:568-577. [PMID: 35297053 DOI: 10.1111/jre.12986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 02/13/2022] [Accepted: 03/09/2022] [Indexed: 12/01/2022]
Abstract
BACKGROUND AND OBJECTIVE As one of the widely expressed cell surface receptors binding to collagen, the most abundant component of the extracellular matrix (ECM), knowledge of the expression, functions, and mechanisms underlying the role of discoidin domain receptor 1 (DDR1) in human periodontal ligament cells (hPDLCs) is incomplete. This study determined the expression of DDR1 in hPDLCs and the effect of DDR1 upon migration and adhesion to hPDLCs, as well as the related regulatory mechanisms. MATERIALS AND METHODS The expression of DDR1 and the DDR1 isoforms in hPDLCs from six donors were tested. The migratory ability (horizontal and vertical) and adhesive capacity of hPDLCs with or without specific knockdown of DDR1 were evaluated. After treatment with MEK-ERK1/2 inhibitors (PD98059 and U0126) with or without RNAi, the migratory and adhesive capacity of hPDLCs were re-tested. Western blotting was performed to verify p-MEK1/2 and p-ERK1/2, the key factors of the MEK-ERK1/2 signaling pathways. RESULTS DDR1 was detected in hPDLCs in the mRNA and protein level; DDR1b was the dominant isoform. Knockdown of DDR1 almost halved the migratory capacity and significantly downregulated the adhesive capacity of hPDLCs. The use of MEK-ERK1/2 inhibitors caused declined migratory and adhesive capacity of hPDLCs as well. After DDR1 was knocked down, the expression of p-MEK and p-ERK protein declined significantly while total MEK and ERK showed no obvious change, which means the ratio of p-MEK/MEK and p-ERK/ERK was markedly reduced. CONCLUSIONS DDR1 plays an important role in the migration and adhesion of hPDLCs and might be regulated via the MEK-ERK1/2 signaling pathway.
Collapse
Affiliation(s)
- Yuhan Wang
- Department of Cariology and Endodontology, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing, China
| | - Bing Han
- Department of Cariology and Endodontology, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing, China
| | - Kaining Liu
- Department of Periodontology, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing, China
| | - Xiaoyan Wang
- Department of Cariology and Endodontology, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing, China
| |
Collapse
|
9
|
Urena F, Ma C, Hoffmann FW, Nunes LGA, Urschitz J, Moisyadi S, Khadka VS, Deng Y, Hoffmann PR. T-cell activation decreases miRNA-15a/16 levels to promote MEK1-ERK1/2-Elk1 signaling and proliferative capacity. J Biol Chem 2022; 298:101634. [PMID: 35085550 PMCID: PMC8861121 DOI: 10.1016/j.jbc.2022.101634] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 01/13/2022] [Accepted: 01/18/2022] [Indexed: 02/08/2023] Open
Abstract
While miRs have been extensively studied in the context of malignancy and tumor progression, their functions in regulating T-cell activation are less clear. In initial studies, we found reduced levels of miR-15a/16 at 3 to 18 h post-T-cell receptor (TCR) stimulation, suggesting a role for decreased levels of this miR pair in shaping T-cell activation. To further explore this, we developed an inducible miR15a/16 transgenic mouse model to determine how elevating miR-15a/16 levels during early stages of activation would affect T-cell proliferation and to identify TCR signaling pathways regulated by this miR pair. Doxycycline (DOX)-induced expression of miR-15a/16 from 0 to 18 h post-TCR stimulation decreased ex vivo T-cell proliferation as well as in vivo antigen-specific T-cell proliferation. We also combined bioinformatics and proteomics approaches to identify the mitogen-activated protein kinase kinase 1 (MEK1) (Map2k1) as a target of miR-15a/16. MEK1 targeting by miR-15a/16 was confirmed using miR mimics that decreased Map2k1 mRNA containing the 3'-UTR target nucleotide sequence (UGCUGCUA) but did not decrease Map2k1 containing a mutated control sequence (AAAAAAAA). Phosphorylation of downstream signaling molecules, extracellular signal-regulated protein kinase 1/2 (ERK1/2) and Elk1, was also decreased by DOX-induced miR-15a/16 expression. In addition to MEK1, ERK1 was subsequently found to be targeted by miR-15a/16, with DOX-induced miR-15a/16 reducing total ERK1 levels in T cells. These findings show that TCR stimulation reduces miR-15a/16 levels at early stages of T-cell activation to facilitate increased MEK1 and ERK1, which promotes the sustained MEK1-ERK1/2-Elk1 signaling required for optimal proliferation.
Collapse
Affiliation(s)
- Frank Urena
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii, USA; Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, Hawaii, USA
| | - Chi Ma
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii, USA
| | - FuKun W Hoffmann
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii, USA
| | - Lance G A Nunes
- Department of Anatomy, Physiology and Biochemistry, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii, USA
| | - Johann Urschitz
- Department of Anatomy, Physiology and Biochemistry, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii, USA
| | - Stefan Moisyadi
- Department of Anatomy, Physiology and Biochemistry, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii, USA
| | - Vedbar S Khadka
- Department of Quantitative Health Sciences, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii, USA
| | - Youping Deng
- Department of Quantitative Health Sciences, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii, USA
| | - Peter R Hoffmann
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii, USA.
| |
Collapse
|
10
|
Rømer AMA, Thorseth ML, Madsen DH. Immune Modulatory Properties of Collagen in Cancer. Front Immunol 2021; 12:791453. [PMID: 34956223 PMCID: PMC8692250 DOI: 10.3389/fimmu.2021.791453] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 11/22/2021] [Indexed: 12/22/2022] Open
Abstract
During tumor growth the extracellular matrix (ECM) undergoes dramatic remodeling. The normal ECM is degraded and substituted with a tumor-specific ECM, which is often of higher collagen density and increased stiffness. The structure and collagen density of the tumor-specific ECM has been associated with poor prognosis in several types of cancer. However, the reason for this association is still largely unknown. Collagen can promote cancer cell growth and migration, but recent studies have shown that collagens can also affect the function and phenotype of various types of tumor-infiltrating immune cells such as tumor-associated macrophages (TAMs) and T cells. This suggests that tumor-associated collagen could have important immune modulatory functions within the tumor microenvironment, affecting cancer progression as well as the efficacy of cancer immunotherapy. The effects of tumor-associated collagen on immune cells could help explain why a high collagen density in tumors is often correlated with a poor prognosis. Knowledge about immune modulatory functions of collagen could potentially identify targets for improving current cancer therapies or for development of new treatments. In this review, the current knowledge about the ability of collagen to influence T cell activity will be summarized. This includes direct interactions with T cells as well as induction of immune suppressive activity in other immune cells such as macrophages. Additionally, the potential effects of collagen on the efficacy of cancer immunotherapy will be discussed.
Collapse
Affiliation(s)
- Anne Mette Askehøj Rømer
- National Center for Cancer Immune Therapy, Department of Oncology, Copenhagen University Hospital - Herlev and Gentofte, Herlev, Denmark.,Department of Science and Environment, Roskilde University, Roskilde, Denmark
| | - Marie-Louise Thorseth
- National Center for Cancer Immune Therapy, Department of Oncology, Copenhagen University Hospital - Herlev and Gentofte, Herlev, Denmark.,Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Daniel Hargbøl Madsen
- National Center for Cancer Immune Therapy, Department of Oncology, Copenhagen University Hospital - Herlev and Gentofte, Herlev, Denmark.,Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
11
|
Ma R, Xie X, Zhao L, Wu Y, Wang J. Discoidin domain receptors (DDRs): Potential implications in periodontitis. J Cell Physiol 2021; 237:189-198. [PMID: 34431091 DOI: 10.1002/jcp.30560] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 08/01/2021] [Accepted: 08/09/2021] [Indexed: 02/05/2023]
Abstract
Periodontitis is a chronic inflammatory disease leading to the destruction of periodontal tissues associated with high prevalence and significant economic burden. As special collagen-binding tyrosine kinase receptors, the discoidin domain receptors (DDRs) can control cell migration, adhesion, proliferation, and extracellular matrix remodeling. DDRs are constitutively expressed and widely distributed in periodontal tissues which are rich in collagen. Ddr1/2 knockout mice showed significant periodontal defects including connective tissue destruction, alveolar bone loss, and even tooth loss. It has been demonstrated that bone homeostasis, inflammation, matrix metalloproteinases, and autophagy are crucial characteristics involved in the pathogenesis of periodontitis. Of note, DDRs have been reported to participate in the above pathophysiological processes, implicating the potential roles of DDRs in periodontitis. In this review article, we aim to illustrate the possible roles of DDRs in periodontitis in an attempt to explore their potential value as therapeutic targets for periodontitis.
Collapse
Affiliation(s)
- Rui Ma
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xudong Xie
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Lei Zhao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yafei Wu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jun Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
12
|
Elkamhawy A, Lu Q, Nada H, Woo J, Quan G, Lee K. The Journey of DDR1 and DDR2 Kinase Inhibitors as Rising Stars in the Fight Against Cancer. Int J Mol Sci 2021; 22:ijms22126535. [PMID: 34207360 PMCID: PMC8235339 DOI: 10.3390/ijms22126535] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/07/2021] [Accepted: 06/13/2021] [Indexed: 12/12/2022] Open
Abstract
Discoidin domain receptor (DDR) is a collagen-activated receptor tyrosine kinase that plays critical roles in regulating essential cellular processes such as morphogenesis, differentiation, proliferation, adhesion, migration, invasion, and matrix remodeling. As a result, DDR dysregulation has been attributed to a variety of human cancer disorders, for instance, non-small-cell lung carcinoma (NSCLC), ovarian cancer, glioblastoma, and breast cancer, in addition to some inflammatory and neurodegenerative disorders. Since the target identification in the early 1990s to date, a lot of efforts have been devoted to the development of DDR inhibitors. From a medicinal chemistry perspective, we attempted to reveal the progress in the development of the most promising DDR1 and DDR2 small molecule inhibitors covering their design approaches, structure-activity relationship (SAR), biological activity, and selectivity.
Collapse
Affiliation(s)
- Ahmed Elkamhawy
- College of Pharmacy, Dongguk University-Seoul, Goyang 10326, Korea or (A.E.); (Q.L.); (H.N.); (J.W.); (G.Q.)
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Qili Lu
- College of Pharmacy, Dongguk University-Seoul, Goyang 10326, Korea or (A.E.); (Q.L.); (H.N.); (J.W.); (G.Q.)
| | - Hossam Nada
- College of Pharmacy, Dongguk University-Seoul, Goyang 10326, Korea or (A.E.); (Q.L.); (H.N.); (J.W.); (G.Q.)
| | - Jiyu Woo
- College of Pharmacy, Dongguk University-Seoul, Goyang 10326, Korea or (A.E.); (Q.L.); (H.N.); (J.W.); (G.Q.)
| | - Guofeng Quan
- College of Pharmacy, Dongguk University-Seoul, Goyang 10326, Korea or (A.E.); (Q.L.); (H.N.); (J.W.); (G.Q.)
| | - Kyeong Lee
- College of Pharmacy, Dongguk University-Seoul, Goyang 10326, Korea or (A.E.); (Q.L.); (H.N.); (J.W.); (G.Q.)
- Correspondence:
| |
Collapse
|
13
|
Gao Y, Zhou J, Li J. Discoidin domain receptors orchestrate cancer progression: A focus on cancer therapies. Cancer Sci 2021; 112:962-969. [PMID: 33377205 PMCID: PMC7935774 DOI: 10.1111/cas.14789] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/23/2020] [Accepted: 12/26/2020] [Indexed: 12/18/2022] Open
Abstract
Discoidin domain receptors (DDR), including DDR1 and DDR2, are special types of the transmembrane receptor tyrosine kinase superfamily. DDR are activated by binding to the triple-helical collagen and, in turn, DDR can activate signal transduction pathways that regulate cell-collagen interactions involved in multiple physiological and pathological processes such as cell proliferation, migration, apoptosis, and cytokine secretion. Recently, DDR have been found to contribute to various diseases, including cancer. In addition, aberrant expressions of DDR have been reported in various human cancers, which indicates that DDR1 and DDR2 could be new targets for cancer treatment. Considerable effort has been made to design DDR inhibitors and several molecules have shown therapeutic effects in pre-clinical models. In this article, we review the recent literature on the role of DDR in cancer progression, the development status of DDR inhibitors, and the clinical potential of targeting DDR in cancer therapies.
Collapse
Affiliation(s)
- Yuan Gao
- Tongji University School of Medicine, Shanghai, China
| | - Jiuli Zhou
- Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jin Li
- Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
14
|
Gordon-Weeks A, Yuzhalin AE. Cancer Extracellular Matrix Proteins Regulate Tumour Immunity. Cancers (Basel) 2020; 12:E3331. [PMID: 33187209 PMCID: PMC7696558 DOI: 10.3390/cancers12113331] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 10/22/2020] [Accepted: 10/26/2020] [Indexed: 02/06/2023] Open
Abstract
The extracellular matrix (ECM) plays an increasingly recognised role in the development and progression of cancer. Whilst significant progress has been made in targeting aspects of the tumour microenvironment such as tumour immunity and angiogenesis, there are no therapies that address the cancer ECM. Importantly, immune function relies heavily on the structure, physics and composition of the ECM, indicating that cancer ECM and immunity are mechanistically inseparable. In this review we highlight mechanisms by which the ECM shapes tumour immunity, identifying potential therapeutic targets within the ECM. These data indicate that to fully realise the potential of cancer immunotherapy, the cancer ECM requires simultaneous consideration.
Collapse
Affiliation(s)
- Alex Gordon-Weeks
- Nuffield Department of Surgical Sciences, University of Oxford, Room 6607, Level 6 John Radcliffe Hospital, Headington, Oxford OX3 9DU, UK
| | - Arseniy E. Yuzhalin
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| |
Collapse
|
15
|
Chavez MB, Kolli TN, Tan MH, Zachariadou C, Wang C, Embree MC, Lira Dos Santos EJ, Nociti FH, Wang Y, Tatakis DN, Agarwal G, Foster BL. Loss of Discoidin Domain Receptor 1 Predisposes Mice to Periodontal Breakdown. J Dent Res 2019; 98:1521-1531. [PMID: 31610730 DOI: 10.1177/0022034519881136] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The discoidin domain receptors, DDR1 and DDR2, are nonintegrin collagen receptors and tyrosine kinases. DDRs regulate cell functions, and their extracellular domains affect collagen fibrillogenesis and mineralization. Based on the collagenous nature of dentoalveolar tissues, we hypothesized that DDR1 plays an important role in dentoalveolar development and function. Radiography, micro-computed tomography (micro-CT), histology, histomorphometry, in situ hybridization (ISH), immunohistochemistry (IHC), and transmission electron microscopy (TEM) were used to analyze Ddr1 knockout (Ddr1-/-) mice and wild-type (WT) controls at 1, 2, and 9 mo, and ISH and quantitative polymerase chain reaction (qPCR) were employed to assess Ddr1/DDR1 messenger RNA expression in mouse and human tissues. Radiographic images showed normal molars but abnormal mandibular condyles, as well as alveolar bone loss in Ddr1-/- mice versus WT controls at 9 mo. Histological, histomorphometric, micro-CT, and TEM analyses indicated no differences in enamel or dentin Ddr1-/- versus WT molars. Total volumes (TVs) and bone volumes (BVs) of subchondral and ramus bone of Ddr1-/- versus WT condyles were increased and bone volume fraction (BV/TV) was reduced at 1 and 9 mo. There were no differences in alveolar bone volume at 1 mo, but at 9 mo, severe periodontal defects and significant alveolar bone loss (14%; P < 0.0001) were evident in Ddr1-/- versus WT mandibles. Histology, ISH, and IHC revealed disrupted junctional epithelium, connective tissue destruction, bacterial invasion, increased neutrophil infiltration, upregulation of cytokines including macrophage colony-stimulating factor, and 3-fold increased osteoclast numbers (P < 0.05) in Ddr1-/- versus WT periodontia at 9 mo. In normal mouse tissues, ISH and qPCR revealed Ddr1 expression in basal cell layers of the oral epithelia and in immune cells. We confirmed a similar expression pattern in human oral epithelium by ISH and qPCR. We propose that DDR1 plays an important role in periodontal homeostasis and that absence of DDR1 predisposes mice to periodontal breakdown.
Collapse
Affiliation(s)
- M B Chavez
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH, USA
| | - T N Kolli
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH, USA
| | - M H Tan
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH, USA
| | - C Zachariadou
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH, USA
| | - C Wang
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH, USA
| | - M C Embree
- TMJ Biology and Regenerative Medicine Laboratory, College of Dental Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - E J Lira Dos Santos
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH, USA.,Department of Prosthodontics and Periodontics, Division of Periodontics, Piracicaba Dental School, University of Campinas-UNICAMP, Piracicaba, SP, Brazil
| | - F H Nociti
- Department of Prosthodontics and Periodontics, Division of Periodontics, Piracicaba Dental School, University of Campinas-UNICAMP, Piracicaba, SP, Brazil
| | - Y Wang
- Division of Periodontology, College of Dentistry, The Ohio State University, Columbus, OH, USA
| | - D N Tatakis
- Division of Periodontology, College of Dentistry, The Ohio State University, Columbus, OH, USA
| | - G Agarwal
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, USA
| | - B L Foster
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
16
|
Chou ST, Peng HY, Mo KC, Hsu YM, Wu GH, Hsiao JR, Lin SF, Wang HD, Shiah SG. MicroRNA-486-3p functions as a tumor suppressor in oral cancer by targeting DDR1. J Exp Clin Cancer Res 2019; 38:281. [PMID: 31253192 PMCID: PMC6599238 DOI: 10.1186/s13046-019-1283-z] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 06/17/2019] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Discoidin domain receptor-1 (DDR1) tyrosine kinase is highly expressed in a variety of human cancers and involved in various steps of tumorigenesis. However, the precise mechanisms underlying the abnormal expression of DDR1 in oral squamous cell carcinoma (OSCC) has not been well investigated. METHODS The expression of DDR1 on OSCC patients was determine by quantitative real-time PCR (qRT-PCR) and immunohistochemistry. Specific targeting by miRNAs was determined by software prediction, luciferase reporter assay, and correlation with target protein expression. The functions of miR-486-3p and DDR1 were accessed by MTT and Annexin V analyses using gain- and loss-of-function approaches. Chromatin immunoprecipitation (ChIP) and methylation specific PCR (MSP) were performed to explore the molecular mechanisms by arecoline treatment. RESULTS Here, we reported that DDR1 was significantly upregulated in OSCC tissues and its levels were inversely correlated with miR-486-3p expression. The experimental results in vitro confirmed that miR-486-3p decreased DDR1 expression by targeting the 3'-UTR of DDR1 mRNA. Overexpression of miR-486-3p led to growth inhibition and apoptosis induction with a similar function by knockdown of DDR1. Aberrant methylation of ANK1 promoter was a highly prevalent in OSCC and contributes to oral carcinogenesis by epigenetic silencing of ANK1 and miR-486-3p. We found that miR-486-3p can be transcriptionally co-regulated with its host gene ANK1 through epigenetic repression. DNA methylation inhibitor treatment re-expressed ANK1 and miR-486-3p. Importantly, arecoline, a major betel nut alkaloid, recruited DNMT3B binding to ANK1 promoter for DNA methylation and then attenuated the expression of miR-486-3p in OSCC. CONCLUSION This study was the first to demonstrate that betel nut alkaloid may recruit DNMT3B to regulate miR-486-3p/DDR1 axis in oral cancer andmiR-486-3p and DDR1 may serve as potential therapeutic targets of oral cancer.
Collapse
Affiliation(s)
- Sung-Tau Chou
- National Institute of Cancer Research, National Health Research Institutes, No. 35 Keyan Road, Zhunan Town, Miaoli County 35053 Taiwan
- Institute of Biotechnology, National Tsing Hua University, Hsinchu, Taiwan
| | - Hsuan-Yu Peng
- National Institute of Cancer Research, National Health Research Institutes, No. 35 Keyan Road, Zhunan Town, Miaoli County 35053 Taiwan
| | - Kuan-Chi Mo
- National Institute of Cancer Research, National Health Research Institutes, No. 35 Keyan Road, Zhunan Town, Miaoli County 35053 Taiwan
| | - Yuan-Ming Hsu
- National Institute of Cancer Research, National Health Research Institutes, No. 35 Keyan Road, Zhunan Town, Miaoli County 35053 Taiwan
| | - Guan-Hsun Wu
- National Institute of Cancer Research, National Health Research Institutes, No. 35 Keyan Road, Zhunan Town, Miaoli County 35053 Taiwan
| | - Jenn-Ren Hsiao
- Department of Otolaryngology, Head and Neck Collaborative Oncology Group, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Su-Fang Lin
- National Institute of Cancer Research, National Health Research Institutes, No. 35 Keyan Road, Zhunan Town, Miaoli County 35053 Taiwan
| | - Horng-Dar Wang
- Institute of Biotechnology, National Tsing Hua University, Hsinchu, Taiwan
| | - Shine-Gwo Shiah
- National Institute of Cancer Research, National Health Research Institutes, No. 35 Keyan Road, Zhunan Town, Miaoli County 35053 Taiwan
- Program in Environmental and Occupational Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
17
|
Argun-Kurum G, Kaya-Dagistanli F, Ozturk M. DPP4 inhibitor induces beta cell regeneration and DDR-1 protein expression as an endocrine progenitor cell marker in neonatal STZ-diabetic rats. Pharmacol Rep 2019; 71:721-731. [PMID: 31207434 DOI: 10.1016/j.pharep.2019.03.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 02/25/2019] [Accepted: 03/14/2019] [Indexed: 12/25/2022]
Abstract
BACKGROUND We aim to investigate the effects of dipeptidyl-peptidase-4 inhibitor (Vildagliptin-VG) on DDR-1 as a marker for endocrine progenitor cells, β-cell regeneration, and apoptosis in neonatal streptozotocin (n2-STZ) diabetics. METHODS Neonatal rats were divided into two main groups as short- and long-term treatment, each consisted of four groups; (1) Control, (2) n2-STZ diabetic (single dose of 100 mg/kg STZ at 2nd day of birth), (3) n2-STZ + VG (60 mg/kg/day VG orally; for 8 and 28 days), (4) VG (60 mg/kg/day orally; for 8 and 28 days). Blood glucose levels and body weights were measured, and the tissue sections were immunostained using insulin, glucagon, somatostatin, PCNA, Pdx-1 and DDR-1 antibodies. The TUNEL method was used for apoptosis. RESULTS The number of β cells in islets of the n2-STZ + VG group increased compared to the n2-STZ group; insulin (+) cells were observed individually or as small clusters in exocrine tissue, between pancreatic duct epithelial cells, and around the ducts. The number of Pdx-1 and DDR-1 positive cells in islet and extra-islet pancreas tissue was elevated as a result of VG application compared to the STZ diabetic group; the number of double positive cells for DDR-1 and insulin increased in n2-STZ + VG rats. CONCLUSION We showed that vildagliptin promotes β cell neogenesis and regeneration, stimulates DDR-1 expression as an endocrine cell progenitor marker, suppresses apoptosis, induces islet cell proliferation and rearranges islet morphology in the n2-STZ diabetes model.
Collapse
Affiliation(s)
- Gamze Argun-Kurum
- Istanbul University-Cerrahpasa, Cerrahpasa Medical Faculty, Department of Medical Biology, Istanbul, Turkey
| | - Fatma Kaya-Dagistanli
- Istanbul University-Cerrahpasa, Cerrahpasa Medical Faculty, Department of Medical Biology, Istanbul, Turkey
| | - Melek Ozturk
- Istanbul University-Cerrahpasa, Cerrahpasa Medical Faculty, Department of Medical Biology, Istanbul, Turkey.
| |
Collapse
|
18
|
Henriet E, Sala M, Abou Hammoud A, Tuariihionoa A, Di Martino J, Ros M, Saltel F. Multitasking discoidin domain receptors are involved in several and specific hallmarks of cancer. Cell Adh Migr 2018; 12:363-377. [PMID: 29701112 PMCID: PMC6411096 DOI: 10.1080/19336918.2018.1465156] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 03/28/2018] [Accepted: 04/03/2018] [Indexed: 12/11/2022] Open
Abstract
Discoidin domain receptors, DDR1 and DDR2, are two members of collagen receptor family that belong to tyrosine kinase receptor subgroup. Unlike other matrix receptor-like integrins, these collagen receptors have not been extensively studied. However, more and more studies are focusing on their involvement in cancer. These two receptors are present in several subcellular localizations such as intercellular junction or along type I collagen fibers. Consequently, they are involved in multiple cellular functions, for instance, cell cohesion, proliferation, adhesion, migration and invasion. Furthermore, various signaling pathways are associated with these multiple functions. In this review, we highlight and characterize hallmarks of cancer in which DDRs play crucial roles. We discuss recent data from studies that demonstrate the involvement of DDRs in tumor proliferation, cancer mutations, drug resistance, inflammation, neo-angiogenesis and metastasis. DDRs could be potential targets in cancer and we conclude this review by discussing the different ways to inhibits them.
Collapse
Affiliation(s)
- Elodie Henriet
- INSERM, UMR1053, BaRITOn Bordeaux Research in Translational Oncology,Bordeaux, France
- Université de Bordeaux, Bordeaux, France
| | - Margaux Sala
- INSERM, UMR1053, BaRITOn Bordeaux Research in Translational Oncology,Bordeaux, France
- Université de Bordeaux, Bordeaux, France
| | - Aya Abou Hammoud
- INSERM, UMR1053, BaRITOn Bordeaux Research in Translational Oncology,Bordeaux, France
- Université de Bordeaux, Bordeaux, France
| | - Adjanie Tuariihionoa
- INSERM, UMR1053, BaRITOn Bordeaux Research in Translational Oncology,Bordeaux, France
- Université de Bordeaux, Bordeaux, France
| | - Julie Di Martino
- INSERM, UMR1053, BaRITOn Bordeaux Research in Translational Oncology,Bordeaux, France
- Université de Bordeaux, Bordeaux, France
| | - Manon Ros
- INSERM, UMR1053, BaRITOn Bordeaux Research in Translational Oncology,Bordeaux, France
- Université de Bordeaux, Bordeaux, France
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos, Singapore
| | - Frédéric Saltel
- INSERM, UMR1053, BaRITOn Bordeaux Research in Translational Oncology,Bordeaux, France
- Université de Bordeaux, Bordeaux, France
| |
Collapse
|
19
|
Huang WQ, Yi KH, Li Z, Wang H, Li ML, Cai LL, Lin HN, Lin Q, Tzeng CM. DNA Methylation Profiling Reveals the Change of Inflammation-Associated ZC3H12D in Leukoaraiosis. Front Aging Neurosci 2018; 10:143. [PMID: 29875652 PMCID: PMC5974056 DOI: 10.3389/fnagi.2018.00143] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Accepted: 04/27/2018] [Indexed: 01/04/2023] Open
Abstract
Leukoaraiosis (LA) is neuroimaging abnormalities of the cerebral white matter in elderly people. However, the molecular mechanisms underlying the cerebral white matter lesions remain unclear. Here, we reported an epigenetic basis and potential pathogenesis for this complex illness. 317 differentially methylated genes were identified to distinguish the mechanism of occurrence and progression of LA. Gene-Ontology pathway analysis highlighted that those genes with epigenetic changes are mostly involved in four major signaling pathways including inflammation and immune response-associated processes (antigen processing and presentation, T cell costimulation and interferon-γ-mediated signaling pathway), synapse assembly, synaptic transmission and cell adhesion. Moreover, immune response seems to be specific to LA occurrence and subsequent disruption of nervous system functions could drive the progression of LA. The significant change of inflammation-associated ZC3H12D in promoter methylation and mRNA expression was implicated in the occurrence of LA, suggesting its potential functions in the molecular mechanism of LA. Our results suggested that inflammation-associated signaling pathways were involved in the pathogenesis of LA and ZC3H12D may contribute to such inflammatory process underlying LA, and further echoed it as a neuroinflammatory disorder in central nervous system (CNS).
Collapse
Affiliation(s)
- Wen-Qing Huang
- Translational Medicine Research Center, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China.,Key Laboratory for Cancer T-Cell Theranostics and Clinical Translation, Xiamen University, Fujian, China.,Department of Physiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Ke-Hui Yi
- Department of Neurology, The First Affiliated Hospital of Xiamen University, Xiamen, China.,Department of Neurology, The First Clinical College of Fujian Medical University, Fuzhou, China
| | - Zhi Li
- Translational Medicine Research Center, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China.,Key Laboratory for Cancer T-Cell Theranostics and Clinical Translation, Xiamen University, Fujian, China
| | - Han Wang
- Translational Medicine Research Center, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China.,Key Laboratory for Cancer T-Cell Theranostics and Clinical Translation, Xiamen University, Fujian, China
| | - Ming-Li Li
- Translational Medicine Research Center, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China.,Key Laboratory for Cancer T-Cell Theranostics and Clinical Translation, Xiamen University, Fujian, China
| | - Liang-Liang Cai
- Translational Medicine Research Center, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China.,Key Laboratory for Cancer T-Cell Theranostics and Clinical Translation, Xiamen University, Fujian, China
| | - Hui-Nuan Lin
- Translational Medicine Research Center, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China.,Key Laboratory for Cancer T-Cell Theranostics and Clinical Translation, Xiamen University, Fujian, China
| | - Qing Lin
- Translational Medicine Research Center, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China.,Department of Neurology, The First Affiliated Hospital of Xiamen University, Xiamen, China.,Department of Neurology, The First Clinical College of Fujian Medical University, Fuzhou, China
| | - Chi-Meng Tzeng
- Translational Medicine Research Center, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China.,Key Laboratory for Cancer T-Cell Theranostics and Clinical Translation, Xiamen University, Fujian, China.,INNOVA Cell: TDx/Clinics and TRANSLA Health Group, Yangzhou, China.,College of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, China.,Jiansu Provincial Institute of Translation Medicine and Women-Child Health Care Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|
20
|
Noé G, Bellesoeur A, Thomas-Schoemann A, Rangarajan S, Naji F, Puszkiel A, Huillard O, Saidu N, Golmard L, Alexandre J, Goldwasser F, Blanchet B, Vidal M. Clinical and kinomic analysis identifies peripheral blood mononuclear cells as a potential pharmacodynamic biomarker in metastatic renal cell carcinoma patients treated with sunitinib. Oncotarget 2018; 7:67507-67520. [PMID: 27589830 PMCID: PMC5341893 DOI: 10.18632/oncotarget.11686] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 07/10/2016] [Indexed: 12/31/2022] Open
Abstract
Background Sunitinib is a protein tyrosine kinase (PTK) inhibitor that has immune-modulating properties. In this context, peripheral blood mononuclear cells (PBMC), mainly constituted by lymphocytes, could be a perfect surrogate tissue for identifying and assaying pharmacodynamic biomarkers of sunitinib. In this study, we investigated the changes in lymphocytes count as pharmacodynamic biomarker in metastatic renal cell carcinoma (mRCC) patients under sunitinib therapy. Thereafter, we studied the ex vivo effect of sunitinib and SU12262 (active metabolite) on PBMC from naïve mRCC patients using a high throughput kinomic profiling method. Methods The prognostic value of total lymphocytes count between Day 0 and Day 21 (expressed as a ratio D21/D0) was retrospectively investigated in 88 mRCC patients under sunitinib therapy. PTK PamChip® microarrays were used to explore prospectively the ex vivo effect of sunitinib and SU12662 on PTK activity in PBMC from 21 naïve mRCC patients. Results In this retrospective study, D21/D0 lymphocytes ratio (Hazard Ratio, 1.83; CI95%, 1.24-2.71; p=0.0023) was independently associated with PFS. Interestingly, kinomic analysis showed that D21/D0 lymphocytes ratio and Heng prognostic model was statistically associated with the ex vivo sunitinib and SU12662 effect in PBMC. Conclusion The present study highlights that D21/D0 total lymphocytes ratio could be a promising pharmacodynamic biomarker in mRCC patients treated with sunitinib. Additionally, it paves the way to investigate the kinomic profile in PBMC as a prognostic factor in a larger cohort of mRCC patients under sunitinib therapy.
Collapse
Affiliation(s)
- Gaёlle Noé
- Assistance Publique Hôpitaux de Paris, Hôpital Cochin, UF Pharmacocinétique et Pharmacochimie, Paris, France.,UMR8638 CNRS, Faculté de Pharmacie, Université Paris Descartes, PRES Sorbonne Paris Cité, Paris, France
| | - Audrey Bellesoeur
- Assistance Publique Hôpitaux de Paris, Hôpital Cochin, UF Pharmacocinétique et Pharmacochimie, Paris, France.,UMR8638 CNRS, Faculté de Pharmacie, Université Paris Descartes, PRES Sorbonne Paris Cité, Paris, France.,Assistance Publique Hôpitaux de Paris, Hôpital Cochin, Service de Cancérologie Médicale, Paris, France
| | - Audrey Thomas-Schoemann
- Assistance Publique Hôpitaux de Paris, Hôpital Cochin, UF Pharmacocinétique et Pharmacochimie, Paris, France.,UMR8638 CNRS, Faculté de Pharmacie, Université Paris Descartes, PRES Sorbonne Paris Cité, Paris, France
| | | | - Faris Naji
- PamGene International BV, 's-Hertogenbosch, The Netherlands
| | - Alicja Puszkiel
- Assistance Publique Hôpitaux de Paris, Hôpital Cochin, UF Pharmacocinétique et Pharmacochimie, Paris, France
| | - Olivier Huillard
- Assistance Publique Hôpitaux de Paris, Hôpital Cochin, Service de Cancérologie Médicale, Paris, France
| | - Nathaniel Saidu
- U1016 INSERM, UMR 8104 CNRS, UMR-S1016, CARPEM, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Lisa Golmard
- Institut Curie, Département de Biopathologie, Paris, France
| | - Jerome Alexandre
- Assistance Publique Hôpitaux de Paris, Hôpital Cochin, Service de Cancérologie Médicale, Paris, France.,U1016 INSERM, UMR 8104 CNRS, UMR-S1016, CARPEM, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Francois Goldwasser
- Assistance Publique Hôpitaux de Paris, Hôpital Cochin, Service de Cancérologie Médicale, Paris, France.,U1016 INSERM, UMR 8104 CNRS, UMR-S1016, CARPEM, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Benoit Blanchet
- Assistance Publique Hôpitaux de Paris, Hôpital Cochin, UF Pharmacocinétique et Pharmacochimie, Paris, France
| | - Michel Vidal
- Assistance Publique Hôpitaux de Paris, Hôpital Cochin, UF Pharmacocinétique et Pharmacochimie, Paris, France.,UMR8638 CNRS, Faculté de Pharmacie, Université Paris Descartes, PRES Sorbonne Paris Cité, Paris, France
| |
Collapse
|
21
|
El Azreq MA, Kadiri M, Boisvert M, Pagé N, Tessier PA, Aoudjit F. Discoidin domain receptor 1 promotes Th17 cell migration by activating the RhoA/ROCK/MAPK/ERK signaling pathway. Oncotarget 2018; 7:44975-44990. [PMID: 27391444 PMCID: PMC5216699 DOI: 10.18632/oncotarget.10455] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 06/13/2016] [Indexed: 12/20/2022] Open
Abstract
Effector T cell migration through the tissue extracellular matrix (ECM) is an important step of the adaptive immune response and in the development of inflammatory diseases. However, the mechanisms involved in this process are still poorly understood. In this study, we addressed the role of a collagen receptor, the discoidin domain receptor 1 (DDR1), in the migration of Th17 cells. We showed that the vast majority of human Th17 cells express DDR1 and that silencing DDR1 or using the blocking recombinant receptor DDR1:Fc significantly reduced their motility and invasion in three-dimensional (3D) collagen. DDR1 promoted Th17 migration by activating RhoA/ROCK and MAPK/ERK signaling pathways. Interestingly, the RhoA/ROCK signaling module was required for MAPK/ERK activation. Finally, we showed that DDR1 is important for the recruitment of Th17 cells into the mouse dorsal air pouch containing the chemoattractant CCL20. Collectively, our results indicate that DDR1, via the activation of RhoA/ROCK/MAPK/ERK signaling axis, is a key pathway of effector T cell migration through collagen of perivascular tissues. As such, DDR1 can contribute to the development of Th17-dependent inflammatory diseases.
Collapse
Affiliation(s)
- Mohammed-Amine El Azreq
- Axe de Recherche sur les Maladies Infectieuses et Immunitaires, Centre de Recherche du Centre Hospitalier Universitaire de Québec, Québec, QC, Canada
| | - Maleck Kadiri
- Axe de Recherche sur les Maladies Infectieuses et Immunitaires, Centre de Recherche du Centre Hospitalier Universitaire de Québec, Québec, QC, Canada
| | - Marc Boisvert
- Axe de Recherche sur les Maladies Infectieuses et Immunitaires, Centre de Recherche du Centre Hospitalier Universitaire de Québec, Québec, QC, Canada
| | - Nathalie Pagé
- Axe de Recherche sur les Maladies Infectieuses et Immunitaires, Centre de Recherche du Centre Hospitalier Universitaire de Québec, Québec, QC, Canada
| | - Philippe A Tessier
- Axe de Recherche sur les Maladies Infectieuses et Immunitaires, Centre de Recherche du Centre Hospitalier Universitaire de Québec, Québec, QC, Canada.,Département de Microbiologie-Immunologie, Faculté de Médecine, Université Laval, Québec, QC, Canada
| | - Fawzi Aoudjit
- Axe de Recherche sur les Maladies Infectieuses et Immunitaires, Centre de Recherche du Centre Hospitalier Universitaire de Québec, Québec, QC, Canada.,Département de Microbiologie-Immunologie, Faculté de Médecine, Université Laval, Québec, QC, Canada
| |
Collapse
|
22
|
Barisione G, Fabbi M, Cutrona G, De Cecco L, Zupo S, Leitinger B, Gentile M, Manzoni M, Neri A, Morabito F, Ferrarini M, Ferrini S. Heterogeneous expression of the collagen receptor DDR1 in chronic lymphocytic leukaemia and correlation with progression. Blood Cancer J 2017; 6:e513. [PMID: 28060374 PMCID: PMC5301030 DOI: 10.1038/bcj.2016.121] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Affiliation(s)
- G Barisione
- IRCCS AOU San Martino-IST Istituto Nazionale per la Ricerca sul Cancro, Genoa, Italy
| | - M Fabbi
- IRCCS AOU San Martino-IST Istituto Nazionale per la Ricerca sul Cancro, Genoa, Italy
| | - G Cutrona
- IRCCS AOU San Martino-IST Istituto Nazionale per la Ricerca sul Cancro, Genoa, Italy
| | - L De Cecco
- Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy
| | - S Zupo
- IRCCS AOU San Martino-IST Istituto Nazionale per la Ricerca sul Cancro, Genoa, Italy
| | - B Leitinger
- Section of Molecular Medicine, National Heart and Lung Institute, Imperial College London, UK
| | - M Gentile
- Hematology Unit Azienda Ospedaliera of Cosenza, Cosenza, Italy
| | - M Manzoni
- Department of Oncology and Hemato-oncology, University of Milan, Milan, Italy.,Hematology Unit, Fondazione Cà Granda IRCCS Ospedale Maggiore Policlinico, Milan, Italy
| | - A Neri
- Department of Oncology and Hemato-oncology, University of Milan, Milan, Italy.,Hematology Unit, Fondazione Cà Granda IRCCS Ospedale Maggiore Policlinico, Milan, Italy
| | - F Morabito
- Hematology Unit Azienda Ospedaliera of Cosenza, Cosenza, Italy.,Biotechnology Research Unit, Aprigliano, ASP of Cosenza, Cosenza, Italy
| | - M Ferrarini
- IRCCS AOU San Martino-IST Istituto Nazionale per la Ricerca sul Cancro, Genoa, Italy
| | - S Ferrini
- IRCCS AOU San Martino-IST Istituto Nazionale per la Ricerca sul Cancro, Genoa, Italy
| |
Collapse
|
23
|
Ezzoukhry Z, Henriet E, Piquet L, Boyé K, Bioulac-Sage P, Balabaud C, Couchy G, Zucman-Rossi J, Moreau V, Saltel F. TGF-β1 promotes linear invadosome formation in hepatocellular carcinoma cells, through DDR1 up-regulation and collagen I cross-linking. Eur J Cell Biol 2016; 95:503-512. [DOI: 10.1016/j.ejcb.2016.09.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 08/31/2016] [Accepted: 09/20/2016] [Indexed: 02/07/2023] Open
|
24
|
Kerroch M, Alfieri C, Dorison A, Boffa JJ, Chatziantoniou C, Dussaule JC. Protective effects of genetic inhibition of Discoidin Domain Receptor 1 in experimental renal disease. Sci Rep 2016; 6:21262. [PMID: 26880216 PMCID: PMC4754689 DOI: 10.1038/srep21262] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 01/20/2016] [Indexed: 11/09/2022] Open
Abstract
Chronic kidney disease is a progressive incurable pathology affecting millions of people. Intensive investigations aim to identify targets for therapy. We have previously demonstrated that abnormal expression of the Discoidin Domain Receptor 1 (DDR1) is a key factor of renal disease by promoting inflammation and fibrosis. The present study investigates whether blocking the expression of DDR1 after the initiation of renal disease can delay or arrest the progression of this pathology. Severe renal disease was induced by either injecting nephrotoxic serum (NTS) or performing unilateral ureteral obstruction in mice, and the expression of DDR1 was inhibited by administering antisense oligodeoxynucleotides either at 4 or 8 days after NTS (corresponding to early or more established phases of disease, respectively), or at day 2 after ligation. DDR1 antisense administration at day 4 stopped the increase of proteinuria and protected animals against the progression of glomeruloneprhitis, as evidenced by functional, structural and cellular indexes. Antisense administration at day 8 delayed progression -but to a smaller degree- of renal disease. Similar beneficial effects on renal structure and inflammation were observed with the antisense administration of DDR1 after ureteral ligation. Thus, targeting DDR1 can be a promising strategy in the treatment of chronic kidney disease.
Collapse
Affiliation(s)
- Monique Kerroch
- INSERM UMR S 1155, Hôpital Tenon, 75020 Paris, France.,Sorbonne Universités, UPMC Univ Paris 06, Paris, France
| | - Carlo Alfieri
- INSERM UMR S 1155, Hôpital Tenon, 75020 Paris, France.,Department of Medicine and Medical Specialties, Unit of Nephrology, Dialysis, and Renal Transplant, Fondazione Istituto di Ricerca e Cura a Carattere Scientifico Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Aude Dorison
- INSERM UMR S 1155, Hôpital Tenon, 75020 Paris, France.,Sorbonne Universités, UPMC Univ Paris 06, Paris, France
| | - Jean-Jacques Boffa
- INSERM UMR S 1155, Hôpital Tenon, 75020 Paris, France.,Sorbonne Universités, UPMC Univ Paris 06, Paris, France.,Service de Néphrologie et Dialyses, Hôpital Tenon, AP-HP, Paris, France
| | - Christos Chatziantoniou
- INSERM UMR S 1155, Hôpital Tenon, 75020 Paris, France.,Sorbonne Universités, UPMC Univ Paris 06, Paris, France
| | - Jean-Claude Dussaule
- INSERM UMR S 1155, Hôpital Tenon, 75020 Paris, France.,Sorbonne Universités, UPMC Univ Paris 06, Paris, France.,Department of Physiology, Saint-Antoine Hospital, AP-HP, Paris, France
| |
Collapse
|
25
|
Combined inhibition of DDR1 and Notch signaling is a therapeutic strategy for KRAS-driven lung adenocarcinoma. Nat Med 2016; 22:270-7. [PMID: 26855149 DOI: 10.1038/nm.4041] [Citation(s) in RCA: 135] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 12/29/2015] [Indexed: 12/11/2022]
Abstract
Patients with advanced Kirsten rat sarcoma viral oncogene homolog (KRAS)-mutant lung adenocarcinoma are currently treated with standard chemotherapy because of a lack of efficacious targeted therapies. We reasoned that the identification of mediators of Kras signaling in early mouse lung hyperplasias might bypass the difficulties that are imposed by intratumor heterogeneity in advanced tumors, and that it might unveil relevant therapeutic targets. Transcriptional profiling of Kras(G12V)-driven mouse hyperplasias revealed intertumor diversity with a subset that exhibited an aggressive transcriptional profile analogous to that of advanced human adenocarcinomas. The top-scoring gene in this profile encodes the tyrosine kinase receptor DDR1. The genetic and pharmacological inhibition of DDR1 blocked tumor initiation and tumor progression, respectively. The concomitant inhibition of both DDR1 and Notch signaling induced the regression of KRAS;TP53-mutant patient-derived lung xenografts (PDX) with a therapeutic efficacy that was at least comparable to that of standard chemotherapy. Our data indicate that the combined inhibition of DDR1 and Notch signaling could be an effective targeted therapy for patients with KRAS-mutant lung adenocarcinoma.
Collapse
|
26
|
Discoidin domain receptors (DDRs): Potential implications in atherosclerosis. Eur J Pharmacol 2015; 751:28-33. [DOI: 10.1016/j.ejphar.2015.01.033] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2014] [Revised: 01/19/2015] [Accepted: 01/21/2015] [Indexed: 01/15/2023]
|
27
|
Leitinger B. Discoidin domain receptor functions in physiological and pathological conditions. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2014; 310:39-87. [PMID: 24725424 DOI: 10.1016/b978-0-12-800180-6.00002-5] [Citation(s) in RCA: 259] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The discoidin domain receptors, DDR1 and DDR2, are nonintegrin collagen receptors that are members of the receptor tyrosine kinase family. Both DDRs bind a number of different collagen types and play important roles in embryo development. Dysregulated DDR function is associated with progression of various human diseases, including fibrosis, arthritis, and cancer. By interacting with key components of the extracellular matrix and displaying distinct activation kinetics, the DDRs form a unique subfamily of receptor tyrosine kinases. DDR-facilitated cellular functions include cell migration, cell survival, proliferation, and differentiation, as well as remodeling of extracellular matrices. This review summarizes the current knowledge of DDR-ligand interactions, DDR-initiated signal pathways and the molecular mechanisms that regulate receptor function. Also discussed are the roles of DDRs in development and disease progression.
Collapse
Affiliation(s)
- Birgit Leitinger
- National Heart and Lung Institute, Imperial College London, London, United Kingdom.
| |
Collapse
|
28
|
The EBV oncogene LMP1 protects lymphoma cells from cell death through the collagen-mediated activation of DDR1. Blood 2013; 122:4237-45. [DOI: 10.1182/blood-2013-04-499004] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Key Points
Expression of the EBV oncogene LMP1 in primary human germinal center B cells, upregulates DDR1, a receptor tyrosine kinase activated by collagen Primary HRS cells overexpress DDR1, and its activation significantly increases lymphoma cell survival in vitro
Collapse
|
29
|
Gao M, Duan L, Luo J, Zhang L, Lu X, Zhang Y, Zhang Z, Tu Z, Xu Y, Ren X, Ding K. Discovery and optimization of 3-(2-(Pyrazolo[1,5-a]pyrimidin-6-yl)ethynyl)benzamides as novel selective and orally bioavailable discoidin domain receptor 1 (DDR1) inhibitors. J Med Chem 2013; 56:3281-95. [PMID: 23521020 DOI: 10.1021/jm301824k] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Discoidin domain receptor 1 (DDR1) is an emerging potential molecular target for new anticancer drug discovery. We have discovered a series of 3-(2-(pyrazolo[1,5-a]pyrimidin-6-yl) ethynyl)benzamides that are selective and orally bioavailable DDR1 inhibitors. The two most promising compounds (7rh and 7rj) inhibited the enzymatic activity of DDR1, with IC50 values of 6.8 and 7.0 nM, respectively, but were significantly less potent in suppressing the kinase activities of DDR2, Bcr-Abl, and c-Kit. Further study revealed that 7rh bound with DDR1 with a Kd value of 0.6 nM, while it was significantly less potent to the other 455 kinases tested. The S(35) and S(10) selectivity scores of 7rh were 0.035 and 0.008, respectively. The compounds also potently inhibited the proliferation of cancer cells expressing high levels of DDR1 and strongly suppressed cancer cell invasion, adhesion, and tumorigenicity. Preliminary pharmacokinetic studies suggested that they possessed good PK profiles, with oral bioavailabilities of 67.4% and 56.2%, respectively.
Collapse
Affiliation(s)
- Mingshan Gao
- Institute of Chemical Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, no. 190 Kaiyuan Avenue, Guangzhou 510530, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Abbonante V, Gruppi C, Rubel D, Gross O, Moratti R, Balduini A. Discoidin domain receptor 1 protein is a novel modulator of megakaryocyte-collagen interactions. J Biol Chem 2013; 288:16738-16746. [PMID: 23530036 DOI: 10.1074/jbc.m112.431528] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Growing evidence demonstrates that extracellular matrices regulate many aspects of megakaryocyte (MK) development; however, among the different extracellular matrix receptors, integrin α2β1 and glycoprotein VI are the only collagen receptors studied in platelets and MKs. In this study, we demonstrate the expression of the novel collagen receptor discoidin domain receptor 1 (DDR1) by human MKs at both mRNA and protein levels and provide evidence of DDR1 involvement in the regulation of MK motility on type I collagen through a mechanism based on the activity of SHP1 phosphatase and spleen tyrosine kinase (Syk). Specifically, we demonstrated that inhibition of DDR1 binding to type I collagen, preserving the engagement of the other collagen receptors, glycoprotein VI, α2β1, and LAIR-1, determines a decrease in MK migration due to the reduction in SHP1 phosphatase activity and consequent increase in the phosphorylation level of its main substrate Syk. Consistently, inhibition of Syk activity restored MK migration on type I collagen. In conclusion, we report the expression and function of a novel collagen receptor on human MKs, and we point out that an increasing level of complexity is necessary to better understand MK-collagen interactions in the bone marrow environment.
Collapse
Affiliation(s)
- Vittorio Abbonante
- Biotechnology Research Laboratories, Department of Molecular Medicine, Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS) San Matteo Foundation, University of Pavia, 27100 Pavia, Italy
| | - Cristian Gruppi
- Biotechnology Research Laboratories, Department of Molecular Medicine, Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS) San Matteo Foundation, University of Pavia, 27100 Pavia, Italy
| | - Diana Rubel
- Department of Nephrology and Rheumatology, University Medical Center Goettingen, 37075 Goettingen, Germany
| | - Oliver Gross
- Department of Nephrology and Rheumatology, University Medical Center Goettingen, 37075 Goettingen, Germany
| | - Remigio Moratti
- Biotechnology Research Laboratories, Department of Molecular Medicine, Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS) San Matteo Foundation, University of Pavia, 27100 Pavia, Italy
| | - Alessandra Balduini
- Biotechnology Research Laboratories, Department of Molecular Medicine, Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS) San Matteo Foundation, University of Pavia, 27100 Pavia, Italy; Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155.
| |
Collapse
|
31
|
Xu H, Bihan D, Chang F, Huang PH, Farndale RW, Leitinger B. Discoidin domain receptors promote α1β1- and α2β1-integrin mediated cell adhesion to collagen by enhancing integrin activation. PLoS One 2012; 7:e52209. [PMID: 23284937 PMCID: PMC3527415 DOI: 10.1371/journal.pone.0052209] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Accepted: 11/09/2012] [Indexed: 11/18/2022] Open
Abstract
The discoidin domain receptors, DDR1 and DDR2, are receptor tyrosine kinases that bind to and are activated by collagens. Similar to collagen-binding β1 integrins, the DDRs bind to specific motifs within the collagen triple helix. However, these two types of collagen receptors recognize distinct collagen sequences. While GVMGFO (O is hydroxyproline) functions as a major DDR binding motif in fibrillar collagens, integrins bind to sequences containing Gxx'GEx". The DDRs are thought to regulate cell adhesion, but their roles have hitherto only been studied indirectly. In this study we used synthetic triple-helical collagen-derived peptides that incorporate either the DDR-selective GVMGFO motif or integrin-selective motifs, such as GxOGER and GLOGEN, in order to selectively target either type of receptor and resolve their contributions to cell adhesion. Our data using HEK293 cells show that while cell adhesion to collagen I was completely inhibited by anti-integrin blocking antibodies, the DDRs could mediate cell attachment to the GVMGFO motif in an integrin-independent manner. Cell binding to GVMGFO was independent of DDR receptor signalling and occurred with limited cell spreading, indicating that the DDRs do not mediate firm adhesion. However, blocking the interaction of DDR-expressing cells with collagen I via the GVMGFO site diminished cell adhesion, suggesting that the DDRs positively modulate integrin-mediated cell adhesion. Indeed, overexpression of the DDRs or activation of the DDRs by the GVMGFO ligand promoted α1β1 and α2β1 integrin-mediated cell adhesion to medium- and low-affinity integrin ligands without regulating the cell surface expression levels of α1β1 or α2β1. Our data thus demonstrate an adhesion-promoting role of the DDRs, whereby overexpression and/or activation of the DDRs leads to enhanced integrin-mediated cell adhesion as a result of higher integrin activation state.
Collapse
Affiliation(s)
- Huifang Xu
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Dominique Bihan
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Francis Chang
- Division of Cancer Biology, Institute of Cancer Research, London, United Kingdom
| | - Paul H. Huang
- Division of Cancer Biology, Institute of Cancer Research, London, United Kingdom
| | - Richard W. Farndale
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Birgit Leitinger
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
- * E-mail:
| |
Collapse
|
32
|
Abstract
Neutrophils express a variety of collagen receptors at their surface, yet their functional significance remains unclear. Although integrins are essential for neutrophil adhesion and migration on 2-dimensional (2D) surfaces, neutrophils can compensate for the absence of integrins in 3-dimensional (3D) lattices. In contrast, we demonstrate that the inhibition of the tyrosine-kinase collagen receptor discoidin domain receptor 2 (DDR2) has no impact on human primary neutrophil migration on 2D surfaces but is an important regulator of neutrophil chemotaxis in 3D collagen matrices. In this context, we show that DDR2 activation specifically regulates the directional migration of neutrophils in chemoattractant gradients. We further demonstrate that DDR2 regulates directionality through its ability to increase secretion of metalloproteinases and local generation of collagen-derived chemotactic peptide gradients. Our findings highlight the importance of collagen-derived extracellular signaling during neutrophil chemotaxis in 3D matrices.
Collapse
|
33
|
Valiathan RR, Marco M, Leitinger B, Kleer CG, Fridman R. Discoidin domain receptor tyrosine kinases: new players in cancer progression. Cancer Metastasis Rev 2012; 31:295-321. [PMID: 22366781 DOI: 10.1007/s10555-012-9346-z] [Citation(s) in RCA: 286] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Almost all human cancers display dysregulated expression and/or function of one or more receptor tyrosine kinases (RTKs). The strong causative association between altered RTK function and cancer progression has been translated into novel therapeutic strategies that target these cell surface receptors in cancer. Yet, the full spectrum of RTKs that may alter the oncogenic process is not completely understood. Accumulating evidence suggests that a unique set of RTKs known as the discoidin domain receptors (DDRs) play a key role in cancer progression by regulating the interactions of tumor cells with their surrounding collagen matrix. The DDRs are the only RTKs that specifically bind to and are activated by collagen. DDRs control cell and tissue homeostasis by acting as collagen sensors, transducing signals that regulate cell polarity, tissue morphogenesis, and cell differentiation. In cancer, DDRs are hijacked by tumor cells to disrupt normal cell-matrix communication and initiate pro-migratory and pro-invasive programs. Importantly, several cancer types exhibit DDR mutations, which are thought to alter receptor function and contribute to cancer progression. Other evidence suggests that the actions of DDRs in cancer are complex, either promoting or suppressing tumor cell behavior in a DDR type/isoform specific- and context-dependent manner. Thus, there is still a considerable gap in our knowledge of DDR actions in cancer tissues. This review summarizes and discusses the current knowledge on DDR expression and function in cancer. It is hoped that this effort will encourage more research into these poorly understood but unique RTKs, which have the potential of becoming novel therapeutic targets in cancer.
Collapse
Affiliation(s)
- Rajeshwari R Valiathan
- Department of Pathology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | | | | | | | | |
Collapse
|