1
|
Wu S, Liu Y, Zhu L, Han D, Bello Bodinga M, Yang X. Hepatic metabolomic profiling changes along with postnatal liver maturation in breeder roosters. Biol Open 2018; 7:7/1/bio028944. [PMID: 29358164 PMCID: PMC5829496 DOI: 10.1242/bio.028944] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
To understand the hepatic metabolic changes during postnatal liver maturation process in breeder roosters, we investigated the hepatic metabolites composition of 1-day-old, 42-day-old, and 35-week-old breeder roosters using gas chromatography-mass spectrometer (GC-MS). Comprehensive multivariate data analyses were applied to identify the distinguishing metabolites of liver. 84 different kinds of distinguishing metabolites were identified between the livers of 1-day-old and 42-day-old breeder roosters, and 58 different kinds of distinguishing metabolites were identified between the livers from 42-day-old and 35-week-old breeder roosters. Further pathway annotations revealed that the hepatic metabolism was extensively remodeled during the postnatal liver maturation process. The antioxidant capacity of the liver and metabolism of carbohydrates, proteins, amino acids, fats, cholesterols, nucleic acids, and vitamins were all significantly changed at different growing periods after birth. Specifically, we found that the hepatic amino acid metabolic function was continuously enhanced from 1-day-old to 35-week-old roosters. However, the glucose and lipid metabolic functions were weakened from 1-day-old to 42-day-old roosters and then elevated from 42-day-old to 35-week-old roosters. In conclusion, the present study revealed that the metabolomic changes are related to the adaption of liver functions in breeder roosters. Summary: This study revealed that hepatic metabolomic changes are related to functional adaption in breeder roosters, which contribute to a better understanding of the hepatic metabolites composition differences during different periods.
Collapse
Affiliation(s)
- Shengru Wu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, P. R. of China
| | - Yanli Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, P. R. of China
| | - Liqin Zhu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, P. R. of China
| | - Di Han
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, P. R. of China
| | - Musa Bello Bodinga
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, P. R. of China
| | - Xiaojun Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, P. R. of China
| |
Collapse
|
2
|
Foetal hepatic progenitor cells assume a cholangiocytic cell phenotype during two-dimensional pre-culture. Sci Rep 2016; 6:28283. [PMID: 27335264 PMCID: PMC4917868 DOI: 10.1038/srep28283] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 05/23/2016] [Indexed: 01/29/2023] Open
Abstract
Liver consists of parenchymal hepatocytes and other cells. Liver progenitor cell (LPC) is the origin of both hepatocytes and cholangiocytic cells. The analyses of mechanism regulating differentiation of LPCs into these functional cells are important for liver regenerative therapy using progenitor cells. LPCs in adult livers were found to form cysts with cholangiocytic characteristics in 3D culture. In contrast, foetal LPCs cannot form these cholangiocytic cysts in the same culture. Thus, the transition of foetal LPCs into cholangiocytic progenitor cells might occur during liver development. Primary CD45−Ter119−Dlk1+ LPCs derived from murine foetal livers formed ALBUMIN (ALB)+CYTOKERATIN (CK)19− non-cholangiocytic cysts within 3D culture. In contrast, when foetal LPCs were pre-cultured on gelatine-coated dishes, they formed ALB−CK19+ cholangiocytic cysts. When hepatocyte growth factor or oncostatin M, which are inducers of hepatocytic differentiation, was added to pre-culture, LPCs did not form cholangiocytic cysts. These results suggest that the pre-culture on gelatine-coated dishes changed the characteristics of foetal LPCs into cholangiocytic cells. Furthermore, neonatal liver progenitor cells were able to form cholangiocytic cysts in 3D culture without pre-culture. It is therefore possible that the pre-culture of mid-foetal LPCs in vitro functioned as a substitute for the late-foetal maturation step in vivo.
Collapse
|
3
|
Chikada H, Ito K, Yanagida A, Nakauchi H, Kamiya A. The basic helix-loop-helix transcription factor, Mist1, induces maturation of mouse fetal hepatoblasts. Sci Rep 2015; 5:14989. [PMID: 26456005 PMCID: PMC4601036 DOI: 10.1038/srep14989] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 09/07/2015] [Indexed: 12/14/2022] Open
Abstract
Hepatic stem/progenitor cells, hepatoblasts, have a high proliferative ability and can differentiate into mature hepatocytes and cholangiocytes. Therefore, these cells are considered to be useful for regenerative medicine and drug screening for liver diseases. However, it is problem that in vitro maturation of hepatoblasts is insufficient in the present culture system. In this study, a novel regulator to induce hepatic differentiation was identified and the molecular function of this factor was examined in embryonic day 13 hepatoblast culture with maturation factor, oncostatin M and extracellular matrices. Overexpression of the basic helix-loop-helix type transcription factor, Mist1, induced expression of mature hepatocytic markers such as carbamoyl-phosphate synthetase1 and several cytochrome P450 (CYP) genes in this culture system. In contrast, Mist1 suppressed expression of cholangiocytic markers such as Sox9, Sox17, Ck19, and Grhl2. CYP3A metabolic activity was significantly induced by Mist1 in this hepatoblast culture. In addition, Mist1 induced liver-enriched transcription factors, CCAAT/enhancer-binding protein α and Hepatocyte nuclear factor 1α, which are known to be involved in liver functions. These results suggest that Mist1 partially induces mature hepatocytic expression and function accompanied by the down-regulation of cholangiocytic markers.
Collapse
Affiliation(s)
- Hiromi Chikada
- Department of Molecular Life Sciences, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa 259-1193, Japan
| | - Keiichi Ito
- Division of Stem Cell Therapy, Center for Stem Cell and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, 4-6-4 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Ayaka Yanagida
- Division of Stem Cell Therapy, Center for Stem Cell and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, 4-6-4 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Hiromitsu Nakauchi
- Division of Stem Cell Therapy, Center for Stem Cell and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, 4-6-4 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, 265 Campus Drive, Stanford, California 94305-5461, USA
| | - Akihide Kamiya
- Department of Molecular Life Sciences, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa 259-1193, Japan
| |
Collapse
|
4
|
Abstract
PURPOSE OF REVIEW Pluripotent stem cells, such as embryonic stem cells and inducible pluripotent stem (iPS) cells, have high proliferative multipotency for differentiation into mature functional cells that are useful for treatment and basic research on several diseases. Cholangiocytes are differentiated from fetal hepatic progenitor cells (hepatoblasts) and are important for transport of bile acids that are synthesized by mature hepatocytes in the liver. However, the molecular mechanisms of development and function of human cholangiocytes remain unknown. This review mentions the potential of human cholangiocytic culture from pluripotent stem cells to contribute to the analyses of the human bile duct system and diseases. RECENT FINDINGS Recent studies found that human hepatic cholangiocytic cells can be differentiated from human embryonic stem and iPS cells in a suitable culture condition. Cholangiocytic cysts have epithelial cell polarity formed in a three-dimensional cell culture system using extracellular matrices. SUMMARY Disease pathogenesis was elucidated in vitro using differentiated cells from disease-related iPS cells. Using genome-editing enzymes, iPS cells with disease-specific gene mutations can be easily and rapidly established. These disease-related iPS cells and cholangiocytic culture system may be useful for analyses and drug screening of human bile duct diseases.
Collapse
|
5
|
Kamiya A, Inagaki Y. Stem and progenitor cell systems in liver development and regeneration. Hepatol Res 2015; 45:29-37. [PMID: 24773763 DOI: 10.1111/hepr.12349] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 04/13/2014] [Accepted: 04/24/2014] [Indexed: 12/15/2022]
Abstract
The liver comprises two stem/progenitor cell systems: fetal and adult liver stem/progenitor cells. Fetal hepatic progenitor cells, derived from foregut endoderm, differentiate into mature hepatocytes and cholangiocytes during liver development. Adult hepatic progenitor cells contribute to regeneration after severe and chronic liver injuries. However, the characteristics of these somatic hepatic stem/progenitor cells remain unknown. Culture systems that can be used to analyze these cells were recently established and hepatic stem/progenitor cell-specific surface markers including delta-like 1 homolog (DLK), cluster of differentiation (CD) 13, CD133, and LIV2 were identified. Cells purified using antibodies against these markers proliferate for an extended period and differentiate into mature cells both in vitro and in vivo. Methods to force the differentiation of human embryonic stem and induced pluripotent stem (iPS) cells into hepatic progenitor cells have been recently established. We demonstrated that the CD13(+) CD133(+) fraction of human iPS-derived cells contained numerous hepatic progenitor-like cells. These analyses of hepatic stem/progenitor cells derived from somatic tissues and pluripotent stem cells will contribute to the development of new therapies for severe liver diseases.
Collapse
Affiliation(s)
- Akihide Kamiya
- Laboratory of Stem Cell Therapy, Institute of Innovative Science and Technology, Tokai University School of Medicine, Isehara, Japan
| | | |
Collapse
|
6
|
Chapple RH, Tizioto PC, Wells KD, Givan SA, Kim J, McKay SD, Schnabel RD, Taylor JF. Characterization of the rat developmental liver transcriptome. Physiol Genomics 2013; 45:301-11. [PMID: 23429212 DOI: 10.1152/physiolgenomics.00128.2012] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Gene regulation and transcriptome studies have been enabled by the development of RNA-Seq applications for high-throughput sequencing platforms. Next generation sequencing is remarkably efficient and avoids many issues inherent in hybridization-based microarray methodologies including the exon-specific dependence of probe design. Biologically relevant transcripts including messenger and regulatory RNAs may now be quantified and annotated regardless of whether they have previously been observed. We used RNA-Seq to investigate global patterns of gene expression in early developing rat liver. Liver samples from timed-pregnant Lewis rats were collected at six fetal and neonatal stages [embryonic day (E)14, E16, E18, E20, postnatal day (P)1, P7], transcripts were sequenced using an Illumina HiSeq 2000, and data analysis was performed with the Tuxedo software suite. Genes and isoforms differing in abundance were queried for enrichment within functionally related gene groups using the Functional Annotation Tool of the DAVID Bioinformatics Database. While hematopoietic gene expression is initiated by E14, hepatocyte maturation is a gradual process involving clusters of genes responsible for response to nutrients and enzymes responsible for glycolysis and fatty acid catabolism. Following birth, a large cluster of differentially abundant genes was enriched for mitochondrial gene expression and cholesterol synthesis indicating that by 1 wk of age, the liver is engaged in lipid sensing and bile production. Clustering results for differentially abundant genes and isoforms were similar with the greatest difference for the E14/E16 comparison. Finally, a bioinformatic approach was used to annotate 1,307 novel liver transcripts assembled from sequences that aligned to intergenic regions of the rat genome.
Collapse
Affiliation(s)
- Richard H Chapple
- Division of Animal Sciences, University of Missouri-Columbia, Columbia, MO 65211, USA
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Niimi S, Hyuga M, Harashima M, Seki T, Ariga T, Kawanishi T, Hayakawa T. Isolated Small Rat Hepatocytes Express both Annexin III and Terminal Differentiated Hepatocyte Markers, Tyrosine Aminotransferase and Tryptophan Oxygenase, at the mRNA Level. Biol Pharm Bull 2004; 27:1864-6. [PMID: 15516738 DOI: 10.1248/bpb.27.1864] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We recently showed that annexin III is expressed in isolated small rat hepatocytes but, not in parenchymal hepatocytes. In the present study, we used reverse transcription polymerase chain analysis to examine the annexin III mRNA level in isolated small rat hepatocytes and parenchymal hepatocytes. Annexin III mRNA was detected in isolated small hepatocytes, but not in isolated parenchymal hepatocytes, confirming the presence of annexin III expression in isolated small rat hepatocytes at the mRNA level and indicating that the absence of annexin III expression in isolated parenchymal hepatocytes is due to the absence of annexin III mRNA. Furthermore, we examined the mRNA level of tyrosine aminotransferase and tryptophan oxygenase, two terminally differentiated hepatocyte markers. mRNA for these markers was detected in both parenchymal hepatocytes and small hepatocytes.
Collapse
Affiliation(s)
- Shingo Niimi
- Division of Biological Chemistry and Biologicals, National Institute of Health Sciences, Tokyo, Japan.
| | | | | | | | | | | | | |
Collapse
|
8
|
Kamiya A, Inoue Y, Gonzalez FJ. Role of the hepatocyte nuclear factor 4alpha in control of the pregnane X receptor during fetal liver development. Hepatology 2003; 37:1375-84. [PMID: 12774017 DOI: 10.1053/jhep.2003.50212] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The fetal liver, the major site of hematopoiesis during embryonic development, acquires additional functions near birth. Among the important liver functions is the response to xenobiotic exposure due to expression of several cytochromes P450 (CYP) and drug efflux transporters. Expression of these genes is regulated by nuclear receptors such as the pregnane X receptor (PXR). In this study, regulation of xenobiotic responses during fetal liver development was analyzed using a fetal hepatocyte primary culture system derived from embryonic day 15 (E15) livers. Hepatocyte nuclear factor (HNF) 4alpha regulates the expression of many genes preferentially in the liver. Expression of several xenobiotic response genes as well as HNF4alpha was increased in fetal hepatocytes stimulated by the hepatic maturation factors oncostatin M (OSM) and Matrigel. To determine the contribution of HNF4alpha to xenobiotic responses in the fetal liver, fetal hepatocytes containing floxed HNF4alpha alleles were cultured and the HNF4alpha gene was inactivated by infection with an adenovirus containing the Cre gene. Expression of CYP3A11 and PXR was suppressed by inactivation of HNF4alpha. An HNF4alpha binding site was characterized in the PXR promoter and found to be required for activation of the PXR promoter in fetal hepatocytes. In conclusion, HNF4alpha is the key transcription factor regulating responses to xenobiotics through activation of the PXR gene during fetal liver development.
Collapse
Affiliation(s)
- Akihide Kamiya
- Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
9
|
Kamiya A, Kojima N, Kinoshita T, Sakai Y, Miyaijma A. Maturation of fetal hepatocytes in vitro by extracellular matrices and oncostatin M: induction of tryptophan oxygenase. Hepatology 2002; 35:1351-9. [PMID: 12029620 DOI: 10.1053/jhep.2002.33331] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Previously, we described that embryonic day 14.5 (E14.5) mouse fetal hepatocytes differentiate to express tyrosine amino transferase (TAT) and glucose-6-phosphatase, which are expressed in the perinatal liver, in response to oncostatin M (OSM) or in high-cell-density culture. However, under such conditions, fetal hepatic cells failed to express genes for adult liver-specific enzymes, such as tryptophan oxygenase (TO). Although phenobarbital (PB) and dimethylsulfoxide (DMSO) have been known to maintain the functions of adult hepatocytes in vitro, they failed to induce TO expression in fetal hepatic cells. Thus far, no system has been developed that reproduces terminal differentiation of fetal hepatocytes in vitro. Here, we describe that extracellular matrices derived from Engelbreth-Holm-Swarm sarcoma (EHS) in combination with OSM or high-cell-density culture induced expression of TO as well as cytochrome P450 genes that are involved in detoxification. However, EHS alone was insufficient to induce expression of TO, although it induced TAT expression in fetal hepatocytes. In addition, high-density culture further augmented differentiation. In conclusion, the combination of signals by cytokines, cell-cell contact, and cell-matrix interaction is required for induction of adult liver functions in fetal hepatocytes in vitro. This primary culture system will be useful for studying the mechanism of liver development.
Collapse
Affiliation(s)
- Akihide Kamiya
- Stem Cell Regulation Project, Kanagawa Academy of Science and Technology, Miyamae-ku, Kawasaki, Kanagawa, Japan
| | | | | | | | | |
Collapse
|
10
|
Kamiya A, Kinoshita T, Miyajima A. Oncostatin M and hepatocyte growth factor induce hepatic maturation via distinct signaling pathways. FEBS Lett 2001; 492:90-4. [PMID: 11248243 DOI: 10.1016/s0014-5793(01)02140-8] [Citation(s) in RCA: 135] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Liver development is regulated by soluble factors as well as cell-cell contacts. We previously reported that oncostatin M (OSM) induced hepatic maturation in a primary culture of embryonic day 14 liver cells. While OSM expression in the liver starts in mid gestation and decreases in postnatal stages, hepatocyte growth factor (HGF) is mainly expressed in the liver in the first few days after birth. In this study, we compared the effect of OSM and HGF on the differentiation of fetal hepatic cells in vitro. Like OSM, HGF in the presence of dexamethasone induced expression of glucose-6-phosphatase, tyrosine amino transferase and carbamoyl-phosphate synthase, and accumulation of glycogen in fetal hepatic cells, although to a lesser extent than OSM. Interestingly, while both OSM and HGF up-regulated production of albumin, secretion of albumin occurred only in response to OSM. In addition, although hepatic maturation induced by OSM depends on STAT3, HGF failed to activate STAT3 and HGF-induced differentiation was independent of STAT3. These results indicate that OSM and HGF induce hepatic maturation through different signaling pathways.
Collapse
Affiliation(s)
- A Kamiya
- Stem Cell Regulation, Kanagawa Academy of Science and Technology, Teikyo University Biotechnology Research Center 1F, Kawasaki, Japan.
| | | | | |
Collapse
|
11
|
Kinoshita T, Sekiguchi T, Xu MJ, Ito Y, Kamiya A, Tsuji K, Nakahata T, Miyajima A. Hepatic differentiation induced by oncostatin M attenuates fetal liver hematopoiesis. Proc Natl Acad Sci U S A 1999; 96:7265-70. [PMID: 10377403 PMCID: PMC22074 DOI: 10.1073/pnas.96.13.7265] [Citation(s) in RCA: 134] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Embryonic liver is a transient site for definitive hematopoiesis. Along with maturation of the bone marrow and spleen, hematopoietic cells relocate from the liver to their final destinations while the liver starts organizing its own structure and develops numerous metabolic functions toward adult. Recently, it was demonstrated that the signal exerted by oncostatin M (OSM) through gp130 plays a pivotal role in the maturation process of the liver both in vitro and in vivo. However, the molecular basis underlying the termination of embryonic hematopoiesis remains unknown. In this study, we report that primary culture of fetal hepatic cells from embryonic day 14.5 murine embryos supported expansion of blood cells from Lin-Sca-1(+)c-Kit+ cells, giving rise to myeloid, lymphoid, and erythroid lineages. Of interest, promotion of hepatic development by OSM and glucocorticoid strongly suppressed in vitro hematopoiesis. Consistent with these results, hepatic culture from the embryonic day 18.5 liver no longer supported hematopoiesis. These data together with the previous observations suggest that the signals exerted by OSM and glucocorticoid induce hepatic differentiation, which in turn terminate embryonic hematopoiesis and promote relocation of hematopoietic cells.
Collapse
Affiliation(s)
- T Kinoshita
- Institute of Molecular and Cellular Bioscience, University of Tokyo, Bunkyo-ku, Tokyo 113-0032, Japan
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Onoagbe IO, Dickson AJ. Effects of glucagon and an analogue of cAMP on tyrosine aminotransferase in isolated chick embryo hepatocytes. Exp Cell Res 1992; 201:514-6. [PMID: 1353457 DOI: 10.1016/0014-4827(92)90302-o] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Hepatocytes were isolated from 17-day-old chick embryos by the use of collagenase. Glucagon and dibutyryl cAMP (bt2cAMP), individually or in combination, stimulated tyrosine aminotransferase (TAT) activity and synthesis in the isolated hepatocytes; maximal stimulation occurred 4 h after exposure of hepatocytes to the inducers. The stimulatory effects produced by glucagon and bt2cAMP were abolished by treatment of hepatocytes with cordycepin or cycloheximide. The effects of the hormone and the cyclic nucleotide were not additive. The induction of the enzyme by glucagon suggests a physiological role for the hormone in the expression of TAT activity during chick embryonic development.
Collapse
Affiliation(s)
- I O Onoagbe
- Department of Biochemistry, University of Manchester, United Kingdom
| | | |
Collapse
|
13
|
Gluecksohn-Waelsch S, DeFranco D. Lethal chromosomal deletions in the mouse, a model system for the study of development and regulation of postnatal gene expression. Bioessays 1991; 13:557-61. [PMID: 1772410 DOI: 10.1002/bies.950131102] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Mechanisms involved in the regulation of development and its genetic control are receiving ever-increasing attention in studies of mammalian developmental genetics. The potential success of such studies is strongly enhanced by the availability of suitable systems of analysis. Such a system was identified in a series of radiation-induced chromosomal deletions at and around the albino (c) locus of the mouse associated with cell type-specific effects on liver differentiation. Their detailed study has aided the analysis of possible mechanisms of cell type-specific gene expression. As summarized in this review, the experimental results strongly suggest that specific trans-acting developmental regulatory genes are concerned with the differentiation of hormone-inducible expression of a cluster of hepatocyte specific structural genes mapping in different parts of the genome.
Collapse
Affiliation(s)
- S Gluecksohn-Waelsch
- Department of Molecular Genetics, Albert Einstein College of Medicine, Bronx, NY 10461
| | | |
Collapse
|
14
|
Shelly LL, Yeoh GC. Effects of dexamethasone and cAMP on tyrosine aminotransferase expression in cultured fetal rat hepatocytes. EUROPEAN JOURNAL OF BIOCHEMISTRY 1991; 199:475-81. [PMID: 1676968 DOI: 10.1111/j.1432-1033.1991.tb16146.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Fetal hepatocyte cultures were used to investigate tyrosine aminotransferase (TyrAT) expression during development. Previous studies showed that TyrAT is synthesized by hepatocytes isolated from 15-day-gestation fetuses maintained in culture for two or more day, then exposed to dexamethasone. TyrAT expression was essentially undetectable on the first day of culture of hepatocytes derived from 15-day-gestation, or less mature, fetuses. Dexamethasone and cAMP are potent inducers of TyrAT and they synergistically induce TyrAT to extremely high levels when added simultaneously to cultured fetal hepatocytes. The effects of dibutyryl-cAMP (Bt2cAMP) alone and in combination with dexamethasone on TyrAT expression are investigated. Hepatocytes isolated from 15-day-gestation fetuses exposed to both inducers possessed detectable levels of TyrAT activity and mRNA on day 1 of culture, and this increased by day 3. In contrast, hepatocytes exposed to either inducing agent alone were essentially negative on day 1, but positive on day 3. This was shown to be a consequence of transcription. When 13-day-gestation hepatocytes were maintained in culture under identical conditions detectable levels of TyrAT mRNA were evident on day 1, and this increased by day 3. Immunocytochemical studies revealed that the appearance and subsequent increase in TyrAT production elicited by dexamethasone and Bt2cAMP were due to changes in the proportion of hepatocytes expressing the enzyme. Therefore, in the presence of both dexamethasone and Bt2cAMP, TyrAT expression can be detected in some cells at an earlier stage of liver development than reported previously.
Collapse
Affiliation(s)
- L L Shelly
- Department of Physiology, University of Western Australia, Nedlands
| | | |
Collapse
|
15
|
DeFranco D, Bali D, Torres R, DePinho RA, Erickson RP, Gluecksohn-Waelsch S. The glucocorticoid hormone signal transduction pathway in mice homozygous for chromosomal deletions causing failure of cell type-specific inducible gene expression. Proc Natl Acad Sci U S A 1991; 88:5607-10. [PMID: 2062840 PMCID: PMC51926 DOI: 10.1073/pnas.88.13.5607] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Wild-type newborn mice are characterized by the ability of certain liver-specific genes encoding various enzymes and mapping on different chromosomes to respond to glucocorticoid induction. Newborn mice homozygous for deletions at and around the albino locus on chromosome 7 fail to develop this competence for hormone-inducible gene expression even through they do show normal constitutive expression of the same genes. Studies of the glucocorticoid hormone signal transduction pathway reported here show identical expression of glucocorticoid receptor mRNA and protein in deletion homozygotes and normal littermates. Furthermore, the receptor interacts normally with the 90-kDa heat shock protein hsp90. Elevated glucocorticoid hormone levels in newborn deletion homozygotes, most likely resulting from their stressed condition, provide an explanation for the reduced binding activities of receptors reported previously. The elimination of receptors and hormones as direct targets of the chromosomal deletion effects suggests that the failure of inducible gene expression might reside in defective competence of the affected structural genes to respond to the hormonal stimulus.
Collapse
Affiliation(s)
- D DeFranco
- Department of Biological Sciences, University of Pittsburgh, PA 15260
| | | | | | | | | | | |
Collapse
|
16
|
Shelly LL, Tynan W, Schmid W, Schütz G, Yeoh GC. Hepatocyte differentiation in vitro: initiation of tyrosine aminotransferase expression in cultured fetal rat hepatocytes. J Cell Biol 1989; 109:3403-10. [PMID: 2574725 PMCID: PMC2115913 DOI: 10.1083/jcb.109.6.3403] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
A fetal rat hepatocyte culture system has been used to study the molecular mechanisms of tyrosine aminotransferase (TAT) gene expression during development. It has previously been shown that TAT activity can be detected in 19-d, but not 15-d, gestation hepatocytes on the first day of culture (Yeoh, G. C. T., F. A. Bennett, and I. T. Oliver. 1979. Biochem. J. 180:153-160). In this study enzyme activity, synthesis, and mRNA levels were determined in hepatocytes isolated from 13-, 15-, and 19-d gestation rats maintained in culture for 1, 2, or 3 d and exposed to dexamethasone. TAT expression is barely detectable in 13-d gestation hepatocytes even after 3 d in culture. Hepatocytes isolated from 15-d gestation fetuses have undetectable levels of enzyme activity and synthesis on the first day of culture; both can be assayed by days 2 and 3. TAT mRNA levels in these hepatocytes, measured by hybridization with a specific cDNA, increase substantially during culture. TAT activity, synthesis, and mRNA are evident on the first and subsequent days of culture in 19-d gestation hepatocytes. Transcription measurements in isolated nuclei indicate that the increase in TAT mRNA in 15- and 19-d gestation hepatocytes is associated with an increase in transcription of the gene. Immunocytochemical studies demonstrated that the increase in TAT expression correlated with an increase in the proportion of hepatocytes expressing the enzyme, rather than a simultaneous increase in all hepatocytes. These results support the proposal that a subpopulation of 15-d fetal hepatocytes undergo differentiation in culture with respect to TAT.
Collapse
Affiliation(s)
- L L Shelly
- Department of Physiology, University of Western Australia, Nedlands
| | | | | | | | | |
Collapse
|
17
|
Rothrock R, Lee KL, Isham KR, Kenney FT. Changes in hepatic differentiation following treatment of rat fetuses with 5-azacytidine. Arch Biochem Biophys 1988; 263:237-44. [PMID: 2454076 DOI: 10.1016/0003-9861(88)90632-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Rat fetuses of 20 days gestational age were treated in utero with 5-azacytidine. Within 14 to 18 h after treatment several significant changes in the fetal livers were observed, including a dramatic maturation of hepatocyte morphology with little alteration in hematopoietic elements. Assessment of mRNA levels by hybridization to cloned cDNAs, together with other measures of gene expression, established that the change in hepatocyte morphology was associated with strong activation of expression of genes normally activated later in development, including those coding for the liver enzymes tyrosine aminotransferase and phosphoenolcarboxykinase and a gene of unknown specificity that is regulated in liver much like the aminotransferase. Rates of transcription of two of these genes, measured in isolated nuclei, were significantly increased after 5-azacytidine treatment. Expression of alpha-fetoprotein, normally declining during the perinatal period of development, was reactivated following treatment with the drug, while albumin expression was somewhat enhanced. For the most part the changes observed reflect temporal advancement of events normally programmed to occur later in differentiation of the liver. These changes appear to be the consequence of multiple effects of 5-azacytidine, including enhanced gene transcription and stabilization of gene products.
Collapse
Affiliation(s)
- R Rothrock
- University of Tennessee-Oak Ridge Graduate School of Biomedical Sciences
| | | | | | | |
Collapse
|
18
|
Johnson AC, Lee KL, Isham KR, Kenney FT. Gene-specific acquisition of hormonal responsiveness in rat liver during development. J Cell Biochem 1988; 37:243-53. [PMID: 2456297 DOI: 10.1002/jcb.240370211] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Cloned cDNAs were used in hybridization analyses to assess hormonal responsiveness of two similarly regulated genes in livers of late-term fetal rats. Transcription of the tyrosine aminotransferase gene and of gene 33 (Lee et al.: J Biol Chem 260:16433-16438, 1985) is enhanced by glucocorticoids and by each of the usually antagonistic hormonal agents, insulin and cAMP, in adult liver, and that of both genes is developmentally activated at or just prior to birth. The mRNA of gene 33 was found to be significantly increased by each of the hormonal regulators in livers of fetuses treated in utero. Expression of the nearly silent aminotransferase gene in fetal liver was appreciably increased by cAMP but was refractory to control by either glucocorticoids or insulin; capacity of this gene to respond to insulin was not realized until several days postpartum. The data indicate specificity in the developmental acquisition of the capacity of individual genes to respond to hormonal regulators.
Collapse
Affiliation(s)
- A C Johnson
- University of Tennessee, Oak Ridge Graduate School of Biomedical Sciences
| | | | | | | |
Collapse
|
19
|
Rothrock R, Lee KL, Isham KR, Johnson AC, Kenney FT. Different mechanisms control developmental activation of transcription of genes subject to identical hormonal regulation in adult liver. Biochem Biophys Res Commun 1987; 144:1182-7. [PMID: 2883973 DOI: 10.1016/0006-291x(87)91436-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Developmental changes in expression of two genes subject to identical hormonal controls in adult liver were examined in livers of fetal and newborn rats. Both mRNA concentrations and transcription of tyrosine aminotransferase were very low throughout gestation and increased sharply at birth. The mRNA of gene 33 (Lee et al., J. Biol. Chem. 260: 16433-16438, 1985) and its transcription were also low in fetal liver until a significant increase occurred just prior to birth, followed by a further increase at birth. In mutant mice carrying a deletion that prevents developmental activation of aminotransferase transcription, that of gene 33 was not affected. The data indicate that different mechanisms control developmental activation of these genes, in contrast to hormonal regulation of their expression.
Collapse
|
20
|
|
21
|
|
22
|
Abstract
The hepatic enzyme tyrosine aminotransferase, normally expressed in very low amounts until shortly after birth, is prematurely induced in foetal rats made diabetic by the administration of streptozotocin in utero. Similarly, the enzyme is precociously induced in foetuses if the circulating insulin concentration is artificially decreased by the administration of anti-insulin serum. These observations support the proposal that the natural decrease in plasma insulin, known to occur at birth, is a major contributor to the postnatal induction of tyrosine aminotransferase.
Collapse
|
23
|
Lee KL, Isham KR, Johnson A, Kenney FT. Insulin enhances transcription of the tyrosine aminotransferase gene in rat liver. Arch Biochem Biophys 1986; 248:597-603. [PMID: 2427029 DOI: 10.1016/0003-9861(86)90513-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The mechanism of insulin-mediated induction of tyrosine aminotransferase in rat liver was investigated using a cloned cDNA probe. The level of aminotransferase mRNA increases about fourfold following administration of the hormone. This induced mRNA accumulation does not require de novo protein synthesis. Nuclear runoff transcription assays in isolated liver nuclei demonstrate that insulin has a rapid and time-dependent stimulatory effect on aminotransferase gene transcription. The magnitude of enhanced transcription can fully account for the increase in the mRNA. We conclude that the induction of tyrosine aminotransferase in rat liver by insulin is primarily a consequence of a selective increase in the rate of transcription of the aminotransferase gene.
Collapse
|