1
|
Ventura AC, Bush A, Vasen G, Goldín MA, Burkinshaw B, Bhattacharjee N, Folch A, Brent R, Chernomoretz A, Colman-Lerner A. Utilization of extracellular information before ligand-receptor binding reaches equilibrium expands and shifts the input dynamic range. Proc Natl Acad Sci U S A 2014; 111:E3860-9. [PMID: 25172920 PMCID: PMC4169960 DOI: 10.1073/pnas.1322761111] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Cell signaling systems sense and respond to ligands that bind cell surface receptors. These systems often respond to changes in the concentration of extracellular ligand more rapidly than the ligand equilibrates with its receptor. We demonstrate, by modeling and experiment, a general "systems level" mechanism cells use to take advantage of the information present in the early signal, before receptor binding reaches a new steady state. This mechanism, pre-equilibrium sensing and signaling (PRESS), operates in signaling systems in which the kinetics of ligand-receptor binding are slower than the downstream signaling steps, and it typically involves transient activation of a downstream step. In the systems where it operates, PRESS expands and shifts the input dynamic range, allowing cells to make different responses to ligand concentrations so high as to be otherwise indistinguishable. Specifically, we show that PRESS applies to the yeast directional polarization in response to pheromone gradients. Consideration of preexisting kinetic data for ligand-receptor interactions suggests that PRESS operates in many cell signaling systems throughout biology. The same mechanism may also operate at other levels in signaling systems in which a slow activation step couples to a faster downstream step.
Collapse
Affiliation(s)
- Alejandra C Ventura
- Institute of Physiology, Molecular Biology, and Neuroscience (IFIBYNE), University of Buenos Aires (UBA)-National Scientific and Technical Research Council (CONICET), Department of Physiology, Molecular, and Cell Biology, School of Exact and Natural Sciences (FCEN)
| | - Alan Bush
- Institute of Physiology, Molecular Biology, and Neuroscience (IFIBYNE), University of Buenos Aires (UBA)-National Scientific and Technical Research Council (CONICET), Department of Physiology, Molecular, and Cell Biology, School of Exact and Natural Sciences (FCEN)
| | - Gustavo Vasen
- Institute of Physiology, Molecular Biology, and Neuroscience (IFIBYNE), University of Buenos Aires (UBA)-National Scientific and Technical Research Council (CONICET), Department of Physiology, Molecular, and Cell Biology, School of Exact and Natural Sciences (FCEN)
| | - Matías A Goldín
- Institute of Physiology, Molecular Biology, and Neuroscience (IFIBYNE), University of Buenos Aires (UBA)-National Scientific and Technical Research Council (CONICET), Department of Physiology, Molecular, and Cell Biology, School of Exact and Natural Sciences (FCEN)
| | - Brianne Burkinshaw
- Institute of Physiology, Molecular Biology, and Neuroscience (IFIBYNE), University of Buenos Aires (UBA)-National Scientific and Technical Research Council (CONICET), Department of Physiology, Molecular, and Cell Biology, School of Exact and Natural Sciences (FCEN)
| | | | - Albert Folch
- Department of Bioengineering, University of Washington, Seattle, WA 98195; and
| | - Roger Brent
- Fundación Instituto Leloir, C1405BWE Buenos Aires, Argentina
| | - Ariel Chernomoretz
- Physics Institute of Buenos Aires (IFIBA), CONICET, and Department of Physics, FCEN, UBA, C1428EGA Buenos Aires, Argentina; Fundación Instituto Leloir, C1405BWE Buenos Aires, Argentina
| | - Alejandro Colman-Lerner
- Institute of Physiology, Molecular Biology, and Neuroscience (IFIBYNE), University of Buenos Aires (UBA)-National Scientific and Technical Research Council (CONICET), Department of Physiology, Molecular, and Cell Biology, School of Exact and Natural Sciences (FCEN),
| |
Collapse
|
2
|
Abstract
It has been an honor for me to write the prefatory article for Volume 4 of the Annual Review of Pathology: Mechanisms of Disease. I decided to describe the first 50 years of my career in research, which started with my entry into medical school. I have tried to outline the numerous scientific mentors who played such an important role in my development as an independent scientific investigator. In general, I have tried to avoid mention in the text of the many, many colleagues who carried out the scientific work, as I would inevitably fail to cite many of them. Rather, I have cited what I think are my most important publications, which identify many of these scientific colleagues. I am now engaged nearly full-time in research and look forward to the next period of research progress.
Collapse
Affiliation(s)
- Peter A Ward
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109-5602, USA.
| |
Collapse
|
3
|
Affiliation(s)
- Daniel E Koshland
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720-3206, USA.
| | | |
Collapse
|
4
|
Pizard A, Marchetti J, Allegrini J, Alhenc-Gelas F, Rajerison RM. Negative cooperativity in the human bradykinin B2 receptor. J Biol Chem 1998; 273:1309-15. [PMID: 9430662 DOI: 10.1074/jbc.273.3.1309] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
A human kidney bradykinin (BK) B2 receptor cDNA was transfected in CHO-K1 cells to establish cell lines that express stably and at high density a receptor exhibiting B2 receptor properties in terms of coupling to cell signaling effectors, desensitization, and internalization. A cell line with a density of 1.3 x 10(6) receptors/cell allowed us to carry out a detailed study of BK-receptor interaction over a wide range of BK concentrations. A model assuming that BK binds to two receptor affinity states (depending on guanine nucleotide-sensitive coupling) was not sufficient to account for the kinetics of BK binding. Equilibrium kinetic analysis and studies of the effects of receptor occupancy by agonists or antagonists on the kinetics of BK-receptor complex dissociation revealed features typical of negative cooperative binding. The negative cooperativity phenomenon was also observed in isolated membranes in both the presence and absence of guanine nucleotide. Thus, following the interaction with BK, B2 receptor molecules likely interact with each other, resulting in an acceleration of bound ligand dissociation and a decrease in the apparent affinity of the receptor for BK. This phenomenon can participate in the desensitization process.
Collapse
Affiliation(s)
- A Pizard
- INSERM Unité 367, Physiologie et Pathologie Expérimentale Vasculaires, Paris, France
| | | | | | | | | |
Collapse
|
5
|
Kermode JC, Freer RJ, Becker EL. The significance of functional receptor heterogeneity in the biological responses of the rabbit neutrophil to stimulation by chemotactic formyl peptides. Biochem J 1991; 276 ( Pt 3):715-23. [PMID: 2064609 PMCID: PMC1151063 DOI: 10.1042/bj2760715] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The characteristics of binding to the chemotactic receptors on rabbit peritoneal neutrophils were examined for seven formyl peptide analogues. These receptor-binding characteristics were compared with the abilities of the analogues to induce the biological responses of degranulation and chemotaxis. Five of the analogues showed distinct functional heterogeneity in their receptor-binding patterns, whereas the two most potent compounds displayed homogeneous binding patterns. The relative potencies of the formyl peptide analogues for stimulation of degranulation correlated well with their relative potencies for high-affinity, but not low-affinity, binding. The biphasic patterns for stimulation of chemotactic migration were similar for the less potent analogues, and their potencies paralleled those for both degranulation and receptor binding. In contrast, the most potent analogues induced a greater maximal extent of chemotactic migration than the other compounds, but displayed a lower than expected potency (i.e. they required higher than expected concentrations). These anomalies in the patterns of the chemotactic response cannot be reconciled with a simple receptor model comprising two independent classes of receptors. Instead, a model comprising interconvertible states of different affinities is proposed. The state of higher affinity appears to play a central role in initiation of both degranulation and chemotaxis. The more potent formyl peptide analogues are thought to stabilize an activated, higher-affinity, state of the receptor; this can explain their greater efficacy in stimulating chemotaxis. The proposed model may also be applicable to other receptors that are coupled by a guanine-nucleotide-binding regulatory protein to their associated effector.
Collapse
Affiliation(s)
- J C Kermode
- Department of Pathology, University of Connecticut Health Center, Farmington 06032
| | | | | |
Collapse
|
6
|
Pevsner J, Hou V, Snowman AM, Snyder SH. Odorant-binding protein. Characterization of ligand binding. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(19)39300-7] [Citation(s) in RCA: 118] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
7
|
Kazura JW, Wenger JD, Salata RA, Budzynski AZ, Goldsmith GH. Modulation of polymorphonuclear leukocyte microbicidal activity and oxidative metabolism by fibrinogen degradation products D and E. J Clin Invest 1989; 83:1916-24. [PMID: 2542377 PMCID: PMC303912 DOI: 10.1172/jci114098] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Fibrinogen degradation products (FDP) D and E are typically present in blood of patients with disseminated intravascular coagulation and related conditions in which granulocyte (PMN) defense against bacterial infection may be compromised. This study was intended to determine whether FDP modify PMN functions critical to their bactericidal activity. Incubation of human PMN and Escherichia coli with 50-100 micrograms/ml FDP did not affect phagocytosis, but reduced by greater than 90% the cells' ability to inhibit bacterial colony growth compared with control PMN incubated with albumin or fibrinogen. FDP (10-100 micrograms/ml) inhibited PMN O2- release and chemotaxis stimulated by FMLP by 17-50% (P less than 0.005) and 41% (P less than 0.01), respectively. Fragment E3, and not fragment D1, was primarily responsible for inhibition of FMLP-induced PMN O2- release. Phorbol myristate acetate (10 ng/ml), 1-oleoyl-2-acetylglycerol (10(-6) M), AA (4.2 x 10(-5) M), and zymosan-activated serum-stimulated PMN O2- release were also decreased 37-63% by FDP compared with control protein. There are at least two mechanisms by which FDP may impair PMN responses. With respect to FMLP, FDP (16-100 micrograms/ml) inhibited specific binding to the cell surface over a ligand concentration range of 1.4-85 nM [3H]FMLP. In contrast, FDP did not effect the extent of phorbol ester binding to PMN but blocked activation of protein kinase C. These data suggest that elevated plasma FDP inhibit several PMN functions critical to the bactericidal role of these inflammatory cells.
Collapse
Affiliation(s)
- J W Kazura
- Department of Medicine, University Hospitals of Cleveland, OH 44106
| | | | | | | | | |
Collapse
|
8
|
Atkinson YH, Marasco WA, Lopez AF, Vadas MA. Recombinant human tumor necrosis factor-alpha. Regulation of N-formylmethionylleucylphenylalanine receptor affinity and function on human neutrophils. J Clin Invest 1988; 81:759-65. [PMID: 2830314 PMCID: PMC442523 DOI: 10.1172/jci113381] [Citation(s) in RCA: 125] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Preincubation of neutrophils with recombinant human tumor necrosis factor-alpha (rH TNF-alpha) enhanced the subsequent release of superoxide anion in response to various concentrations of N-formylmethionylleucylphenylalanine (FMLP). Enhanced superoxide anion production was evident by 5 min and had reached a plateau by 15 min. Not only was the total amount of superoxide anion released greater, but the rate of release was also enhanced threefold by rH TNF-alpha. In contrast, rH TNF-alpha reduced or abolished neutrophil locomotion under agarose in response to a gradient of FMLP. Binding studies of f-Met-Leu-[3H]Phe to purified human neutrophils revealed a heterogeneous binding to unstimulated cells. The high affinity component consisted of approximately 2,000 sites per cell and had an average Kd of 2 +/- 0.7 nM (n = 4). The low affinity component consisted of approximately 40,000 sites per cell and had an average Kd of 180 +/- 50 nM (n = 4). rH TNF-alpha caused conversion to a linear Scatchard plot showing no significant change in total binding sites but a single Kd of 40 +/- 10 nM (n = 4). These data indicate that rH TNF-alpha may influence neutrophil responses to FMLP by regulating the affinity of FMLP receptors.
Collapse
Affiliation(s)
- Y H Atkinson
- Division of Human Immunology, Institute of Medical and Veterinary Science, Adelaide, South Australia
| | | | | | | |
Collapse
|
9
|
Zimmerli W, Seligmann B, Gallin JI. Exudation primes human and guinea pig neutrophils for subsequent responsiveness to the chemotactic peptide N-formylmethionylleucylphenylalanine and increases complement component C3bi receptor expression. J Clin Invest 1986; 77:925-33. [PMID: 3005369 PMCID: PMC423482 DOI: 10.1172/jci112391] [Citation(s) in RCA: 101] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
After circulating in the vascular system a short time, polymorphonuclear leukocytes (PMN) migrate to extravascular sites in response to chemotactic stimuli. Prestimulation of PMN in vitro by secretagogues has been shown to increase their number of N-formylmethionylleucylphenylalanine (fmet-leu-phe) and complement component C3bi (CR3) receptors. We investigated whether the same phenomenon occurred in vivo, comparing characteristics of human skin chamber and guinea pig peritoneal exudate and blood PMN. Exudate PMN of both species contained approximately 28% less of the specific granule marker vitamin B12-binding protein (P less than 0.01) but a similar amount of the azurophil granule marker beta-glucuronidase. The total number of fmet-leu-phe receptors was 5.9 times higher in guinea pig exudate than in blood PMN (P less than 0.01) and 2.9 times higher in human exudate than in blood PMN (P less than 0.02). All exudate PMN and most blood PMN preparations showed a high affinity receptor (Kd approximately 2.3 X 10(-8) M) and a low affinity receptor (approximately 1.5 X 10(-7) M). The upregulation of fmet-leu-phe receptors in exudate PMN correlated with an improved responsiveness to fmet-leu-phe induced membrane depolarization, oxidative metabolism, and chemotaxis. In addition, the concentration of fmet-leu-phe that produced a half-maximal response of chemotaxis, superoxide production, and membrane potential depolarization was 10-fold lower in exudate PMN than in blood PMN. Human exudate PMN had a twofold increased C3bi receptor expression compared with blood PMN. Thus, a preferential loss of specific granules is associated with increased number of high and low affinity fmet-leu-phe receptors and increased C3bi receptor expression not only in vitro, but also in vivo. The data indicate that exudation primes PMN for their subsequent responsiveness to fmet-leu-phe, a modification that may be crucial for efficient antimicrobial host defense.
Collapse
|
10
|
|
11
|
Kermode JC, Becker EL. Heterogeneity of binding of chemotactic formyl peptides to their receptors on rabbit neutrophils: methodological and analytical considerations in the study of complex receptor-binding patterns. JOURNAL OF RECEPTOR RESEARCH 1986; 6:247-70. [PMID: 3806497 DOI: 10.3109/10799898609074813] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The pattern of binding of chemotactic formyl peptides to their receptors on intact rabbit neutrophils was investigated using three different radiolabeled formyl peptides. The purpose of the study was both to establish suitable procedures for the analysis of complex receptor-binding data and to evaluate the heterogeneity of binding of the chemotactic formyl peptides. Radiolabeled formylmethionyl-leucyl-phenylalanine was found to require repurification by thin-layer chromatography before it was of sufficient purity for use in these studies. All three radioligands were essentially stable during the binding assay. The 'LIGAND' computer program proved suitable for a detailed and rigorous analysis of the binding data. Each of the three formyl peptides showed significant heterogeneity in its binding pattern and all appeared to interact with the same receptor sites. The degree of heterogeneity, however, was greater with formylnorleucyl-leucyl-phenylalanine than with the other two formyl peptides. The heterogeneity was close to the theoretical limit of discernibility; thus individual binding studies with one formyl peptide did not always show statistical evidence of the heterogeneity. The study also highlighted the severe uncertainty in estimates of the proportions of each type of binding site when such data are analyzed on the basis of the 'two binding site' model.
Collapse
|