1
|
Nakayama K, Shachar S, Finn EH, Sato H, Hirakawa A, Misteli T. Large-scale mapping of positional changes of hypoxia-responsive genes upon activation. Mol Biol Cell 2022; 33:ar72. [PMID: 35476603 PMCID: PMC9635277 DOI: 10.1091/mbc.e21-11-0593] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Chromosome structure and nuclear organization are important factors in the regulation of gene expression. Transcription of a gene is influenced by local and global chromosome features such as chromatin condensation status. The relationship between the 3D position of a gene in the nucleus and its activity is less clear. Here we used high-throughput imaging to perform a large-scale analysis of the spatial location of nearly 100 hypoxia-responsive genes to determine whether their location and activity state are correlated. Radial distance analysis demonstrated that the majority of Hypoxia-Inducible Factor (HIF)- and CREB-dependent hypoxia-responsive genes are located in the intermediate region of the nucleus, and some of them changed their radial position in hypoxia. Analysis of the relative distances among a subset of HIF target genes revealed that some gene pairs altered their relative location to each other on hypoxic treatment, suggesting higher-order chromatin rearrangements. While these changes in location occurred in response to hypoxic activation of the target genes, they did not correlate with the extent of their activation. These results suggest that induction of the hypoxia-responsive gene expression program is accompanied by spatial alterations of the genome, but that radial and relative gene positions are not directly related to gene activity.
Collapse
Affiliation(s)
- Koh Nakayama
- Oxygen Biology Laboratory, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Bunkyo-ku, Tokyo 113-8510, Japan.,Department of Pharmacology, School of Medicine, Asahikawa Medical University, Asahikawa, Hokkaido 078-8510, Japan.,Cell Biology of Genomes Group, Center for Cancer Research, National Cancer Institute NIH, Bethesda, 20892
| | - Sigal Shachar
- Cell Biology of Genomes Group, Center for Cancer Research, National Cancer Institute NIH, Bethesda, 20892
| | - Elizabeth H Finn
- Cell Biology of Genomes Group, Center for Cancer Research, National Cancer Institute NIH, Bethesda, 20892
| | - Hiroyuki Sato
- Department of Clinical Biostatistics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Bunkyo-ku, Tokyo 113-8510, Japan
| | - Akihiro Hirakawa
- Department of Clinical Biostatistics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Bunkyo-ku, Tokyo 113-8510, Japan
| | - Tom Misteli
- Cell Biology of Genomes Group, Center for Cancer Research, National Cancer Institute NIH, Bethesda, 20892
| |
Collapse
|
2
|
See K, Kiseleva AA, Smith CL, Liu F, Li J, Poleshko A, Epstein JA. Histone methyltransferase activity programs nuclear peripheral genome positioning. Dev Biol 2020; 466:90-98. [PMID: 32712024 DOI: 10.1016/j.ydbio.2020.07.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 07/13/2020] [Accepted: 07/14/2020] [Indexed: 11/26/2022]
Abstract
Spatial organization of the genome in the nucleus plays a critical role in development and regulation of transcription. A genomic region that resides at the nuclear periphery is part of the chromatin layer marked with histone H3 lysine 9 dimethyl (H3K9me2), but chromatin reorganization during cell differentiation can cause movement in and out of this nuclear compartment with patterns specific for individual cell fates. Here we describe a CRISPR-based system that allows visualization coupled with forced spatial relocalization of a target genomic locus in live cells. We demonstrate that a specified locus can be tethered to the nuclear periphery through direct binding to a dCas9-Lap2β fusion protein at the nuclear membrane, or via targeting of a histone methyltransferase (HMT), G9a fused to dCas9, that promotes H3K9me2 labeling and localization to the nuclear periphery. The enzymatic activity of the HMT is sufficient to promote this repositioning, while disruption of the catalytic activity abolishes the localization effect. We further demonstrate that dCas9-G9a-mediated localization to the nuclear periphery is independent of nuclear actin polymerization. Our data suggest a function for epigenetic histone modifying enzymes in spatial chromatin organization and provide a system for tracking and labeling targeted genomic regions in live cells.
Collapse
Affiliation(s)
- Kelvin See
- Department of Medicine and Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Anna A Kiseleva
- Department of Medicine and Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Cheryl L Smith
- Department of Medicine and Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Feiyan Liu
- Department of Medicine and Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jun Li
- Department of Medicine and Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Andrey Poleshko
- Department of Medicine and Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jonathan A Epstein
- Department of Medicine and Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
3
|
Crasto S, My I, Di Pasquale E. The Broad Spectrum of LMNA Cardiac Diseases: From Molecular Mechanisms to Clinical Phenotype. Front Physiol 2020; 11:761. [PMID: 32719615 PMCID: PMC7349320 DOI: 10.3389/fphys.2020.00761] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 06/11/2020] [Indexed: 12/13/2022] Open
Abstract
Mutations of Lamin A/C gene (LMNA) cause laminopathies, a group of disorders associated with a wide spectrum of clinically distinct phenotypes, affecting different tissues and organs. Heart involvement is frequent and leads to cardiolaminopathy LMNA-dependent cardiomyopathy (LMNA-CMP), a form of dilated cardiomyopathy (DCM) typically associated with conduction disorders and arrhythmias, that can manifest either as an isolated event or as part of a multisystem phenotype. Despite the recent clinical and molecular developments in the field, there is still lack of knowledge linking specific LMNA gene mutations to the distinct clinical manifestations. Indeed, the severity and progression of the disease have marked interindividual variability, even amongst members of the same family. Studies conducted so far have described Lamin A/C proteins involved in diverse biological processes, that span from a structural role in the nucleus to the regulation of response to mechanical stress and gene expression, proposing various mechanistic hypotheses. However, none of those is per se able to fully justify functional and clinical phenotypes of LMNA-CMP; therefore, the role of Lamin A/C in cardiac pathophysiology still represents an open question. In this review we provide an update on the state-of-the-art studies on cardiolaminopathy, in the attempt to draw a line connecting molecular mechanisms to clinical manifestations. While investigators in this field still wonder about a clear genotype/phenotype correlation in LMNA-CMP, our intent here is to recapitulate common mechanistic hypotheses that link different mutations to similar clinical presentations.
Collapse
Affiliation(s)
- Silvia Crasto
- Humanitas Clinical and Research Center - IRCCS, Rozzano, Italy.,Institute of Genetic and Biomedical Research (IRGB) - UOS of Milan, National Research Council (CNR), Milan, Italy
| | - Ilaria My
- Humanitas Clinical and Research Center - IRCCS, Rozzano, Italy
| | - Elisa Di Pasquale
- Humanitas Clinical and Research Center - IRCCS, Rozzano, Italy.,Institute of Genetic and Biomedical Research (IRGB) - UOS of Milan, National Research Council (CNR), Milan, Italy
| |
Collapse
|
4
|
Abstract
This paper provides a brief introductory review of the most recent advances in our knowledge about the structural and functional aspects of two transcriptional regulators: MeCP2, a protein whose mutated forms are involved in Rett syndrome; and CTCF, a constitutive transcriptional insulator. This is followed by a description of the PTMs affecting these two proteins and an analysis of their known interacting partners. A special emphasis is placed on the recent studies connecting these two proteins, focusing on the still poorly understood potential structural and functional interactions between the two of them on the chromatin substrate. An overview is provided for some of the currently known genes that are dually regulated by these two proteins. Finally, a model is put forward to account for their possible involvement in their regulation of gene expression.
Collapse
Affiliation(s)
- Juan Ausió
- a Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC V8W 3P6, Canada.,b Center for Biomedical Research, University of Victoria, Victoria, BC V8W 3N5, Canada
| | - Philippe T Georgel
- c Department of Biological Sciences, Marshall University, Huntington, WV 25755, USA.,d Cell Differentiation and Development Center, Marshall University, Huntington, WV 25755, USA
| |
Collapse
|
5
|
Abstract
The eukaryotic genome is organized in a manner that allows folding of the genetic material in the confined space of the cell nucleus, while at the same time enabling its physiological function. A major principle of spatial genome organization is the non-random position of genomic loci relative to other loci and to nuclear bodies. The mechanisms that determine the spatial position of a locus, and how position affects function, are just beginning to be characterized. Initial results suggest that there are multiple, gene-specific mechanisms and the involvement of a wide range of cellular machineries. In this Commentary, we review recent findings from candidate approaches and unbiased screening methods that provide initial insight into the cellular mechanisms of positioning and their functional consequences. We highlight several specific mechanisms, including tethering of genome regions to the nuclear periphery, passage through S-phase and histone modifications, that contribute to gene positioning in yeast, plants and mammals.
Collapse
Affiliation(s)
- Sigal Shachar
- National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Tom Misteli
- National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
6
|
Muck J. CTCF regulates positioning of the human cystic fibrosis gene in association with a histone deacetylase. GENOMICS DATA 2015; 2:82-4. [PMID: 26484076 PMCID: PMC4535900 DOI: 10.1016/j.gdata.2014.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/12/2014] [Accepted: 05/02/2014] [Indexed: 11/16/2022]
Abstract
The nuclear positioning of mammalian genes often correlates with their functional state. For instance, the human cystic fibrosis transmembrane conductance regulator (CFTR) gene associates with the nuclear periphery in its inactive state, but occupies interior positions when active. Treatment with the histone deacetylase inhibitor trichostatin a (TSA) changes the radial positioning of the CFTR gene in HeLa S3 cells. The gene relocates from the nuclear periphery to the nuclear interior. In Calu-3 cells the gene is located in the nuclear interior. To identify potential regulatory elements for the positioning of CFTR, the histone H3 and H4 acetylation patterns of untreated and TSA-treated HeLa S3 and untreated Calu-3 cells were determined by ChIP–chip. Here is a detailed description of the datasets associated with the study by Muck et al. published in the Journal of Cellular Biochemistry in 2012.
Collapse
Affiliation(s)
- Joscha Muck
- Institute of Bioengineering and Nanotechnology (IBN), Department of Cell and Tissue Engineering, 31 Biopolis Way, The Nanos, 138669, Singapore
| |
Collapse
|
7
|
Butin-Israeli V, Adam SA, Jain N, Otte GL, Neems D, Wiesmüller L, Berger SL, Goldman RD. Role of lamin b1 in chromatin instability. Mol Cell Biol 2015; 35:884-98. [PMID: 25535332 PMCID: PMC4323489 DOI: 10.1128/mcb.01145-14] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 10/01/2014] [Accepted: 12/18/2014] [Indexed: 01/14/2023] Open
Abstract
Nuclear lamins play important roles in the organization and structure of the nucleus; however, the specific mechanisms linking lamin structure to nuclear functions are poorly defined. We demonstrate that reducing nuclear lamin B1 expression by short hairpin RNA-mediated silencing in cancer cell lines to approximately 50% of normal levels causes a delay in the cell cycle and accumulation of cells in early S phase. The S phase delay appears to be due to the stalling and collapse of replication forks. The double-strand DNA breaks resulting from replication fork collapse were inefficiently repaired, causing persistent DNA damage signaling and the assembly of extensive repair foci on chromatin. The expression of multiple factors involved in DNA replication and repair by both nonhomologous end joining and homologous repair is misregulated when lamin B1 levels are reduced. We further demonstrate that lamin B1 interacts directly with the promoters of some genes associated with DNA damage response and repair, including BRCA1 and RAD51. Taken together, the results suggest that the maintenance of lamin B1 levels is required for DNA replication and repair through regulation of the expression of key factors involved in these essential nuclear functions.
Collapse
Affiliation(s)
- Veronika Butin-Israeli
- Department of Cell and Molecular Biology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Stephen A Adam
- Department of Cell and Molecular Biology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Nikhil Jain
- Department of Cell and Molecular Biology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Gabriel L Otte
- Epigenetics Program, Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Daniel Neems
- Department of Cell and Molecular Biology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Lisa Wiesmüller
- Department of Obstetrics and Gynecology, Ulm University, Ulm, Germany
| | - Shelly L Berger
- Epigenetics Program, Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Robert D Goldman
- Department of Cell and Molecular Biology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
8
|
Gosalia N, Neems D, Kerschner JL, Kosak ST, Harris A. Architectural proteins CTCF and cohesin have distinct roles in modulating the higher order structure and expression of the CFTR locus. Nucleic Acids Res 2014; 42:9612-22. [PMID: 25081205 PMCID: PMC4150766 DOI: 10.1093/nar/gku648] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Revised: 07/02/2014] [Accepted: 07/03/2014] [Indexed: 01/02/2023] Open
Abstract
Higher order chromatin structures across the genome are maintained in part by the architectural proteins CCCTC binding factor (CTCF) and the cohesin complex, which co-localize at many sites across the genome. Here, we examine the role of these proteins in mediating chromatin structure at the cystic fibrosis transmembrane conductance regulator (CFTR) gene. CFTR encompasses nearly 200 kb flanked by CTCF-binding enhancer-blocking insulator elements and is regulated by cell-type-specific intronic enhancers, which loop to the promoter in the active locus. SiRNA-mediated depletion of CTCF or the cohesin component, RAD21, showed that these two factors have distinct roles in regulating the higher order organization of CFTR. CTCF mediates the interactions between CTCF/cohesin binding sites, some of which have enhancer-blocking insulator activity. Cohesin shares this tethering role, but in addition stabilizes interactions between the promoter and cis-acting intronic elements including enhancers, which are also dependent on the forkhead box A1/A2 (FOXA1/A2) transcription factors (TFs). Disruption of the three-dimensional structure of the CFTR gene by depletion of CTCF or RAD21 increases gene expression, which is accompanied by alterations in histone modifications and TF occupancy across the locus, and causes internalization of the gene from the nuclear periphery.
Collapse
Affiliation(s)
- Nehal Gosalia
- Human Molecular Genetics Program, Lurie Children's Research Center, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Daniel Neems
- Department of Cell and Molecular Biology, Northwestern University Feinberg School of Medicine, Chicago, IL 60614, USA
| | - Jenny L Kerschner
- Human Molecular Genetics Program, Lurie Children's Research Center, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Steven T Kosak
- Department of Cell and Molecular Biology, Northwestern University Feinberg School of Medicine, Chicago, IL 60614, USA
| | - Ann Harris
- Human Molecular Genetics Program, Lurie Children's Research Center, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| |
Collapse
|
9
|
Peripheral subnuclear positioning suppresses Tcrb recombination and segregates Tcrb alleles from RAG2. Proc Natl Acad Sci U S A 2013; 110:E4628-37. [PMID: 24218622 DOI: 10.1073/pnas.1310846110] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Allelic exclusion requires that the two alleles at antigen-receptor loci attempt to recombine variable (V), diversity (D), and joining (J) gene segments [V(D)J recombination] asynchronously in nuclei of developing lymphocytes. It previously was shown that T-cell receptor β (Tcrb) alleles frequently and stochastically associate with the nuclear lamina and pericentromeric heterochromatin in CD4(-)CD8(-) thymocytes. Moreover, rearranged alleles were underrepresented at these locations. Here we used 3D immunofluorescence in situ hybridization to identify recently rearranged Tcrb alleles based on the accumulation of the DNA-repair protein 53BP1. We found that Tcrb alleles recombine asynchronously in double-negative thymocytes and that V(D)J recombination is suppressed on peripheral as compared with central Tcrb alleles. Moreover, the recombination events that did take place at the nuclear periphery preferentially occurred on Tcrb alleles that were partially dissociated from the nuclear lamina. To understand better the mechanism by which V(D)J recombination is suppressed at the nuclear periphery, we evaluated the subnuclear distribution of recombination-activating gene 2 (RAG2) protein. We found that RAG2 abundance was reduced at the nuclear periphery. Moreover, RAG2 was distributed differently from RNA polymerase II and histone H3K4 trimethylation. Our data suggest that the nuclear periphery suppresses V(D)J recombination, at least in part, by segregating Tcrb alleles from RAG proteins.
Collapse
|
10
|
Butin-Israeli V, Adam SA, Goldman RD. Regulation of nucleotide excision repair by nuclear lamin b1. PLoS One 2013; 8:e69169. [PMID: 23894423 PMCID: PMC3722182 DOI: 10.1371/journal.pone.0069169] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Accepted: 06/11/2013] [Indexed: 12/17/2022] Open
Abstract
The nuclear lamins play important roles in the structural organization and function of the metazoan cell nucleus. Recent studies on B-type lamins identified a requirement for lamin B1 (LB1) in the regulation of cell proliferation in normal diploid cells. In order to further investigate the function of LB1 in proliferation, we disrupted its normal expression in U-2 OS human osteosarcoma and other tumor cell lines. Silencing LB1 expression induced G1 cell cycle arrest without significant apoptosis. The arrested cells are unable to mount a timely and effective response to DNA damage induced by UV irradiation. Several proteins involved in the detection and repair of UV damage by the nucleotide excision repair (NER) pathway are down-regulated in LB1 silenced cells including DDB1, CSB and PCNA. We propose that LB1 regulates the DNA damage response to UV irradiation by modulating the expression of specific genes and activating persistent DNA damage signaling. Our findings are relevant to understanding the relationship between the loss of LB1 expression, DNA damage signaling, and replicative senescence.
Collapse
Affiliation(s)
- Veronika Butin-Israeli
- The Department of Cell and Molecular Biology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
| | - Stephen A. Adam
- The Department of Cell and Molecular Biology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
| | - Robert D. Goldman
- The Department of Cell and Molecular Biology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
| |
Collapse
|
11
|
Abstract
Spatiotemporal changes in nuclear lamina composition underlie cell-type-specific chromatin organization and cell fate, suggesting that the lamina forms a dynamic framework critical for genome function, cellular identity, and developmental potential.
Collapse
|
12
|
Hübner MR, Eckersley-Maslin MA, Spector DL. Chromatin organization and transcriptional regulation. Curr Opin Genet Dev 2012; 23:89-95. [PMID: 23270812 DOI: 10.1016/j.gde.2012.11.006] [Citation(s) in RCA: 132] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Accepted: 11/08/2012] [Indexed: 11/28/2022]
Abstract
Cell type specific transcriptional regulation must be adhered to in order to maintain cell identity throughout the lifetime of an organism, yet it must be flexible enough to allow for responses to endogenous and exogenous stimuli. This regulation is mediated not only by molecular factors (e.g. cell type specific transcription factors, histone and DNA modifications), but also on the level of chromatin and genome organization. In this review we focus on recent findings that have contributed to our understanding of higher order chromatin structure and genome organization within the nucleus. We highlight new findings on the dynamic positioning of genes relative to each other, as well as to their chromosome territory and the nuclear lamina, and how the position of genes correlates with their transcriptional activity.
Collapse
Affiliation(s)
- Michael R Hübner
- Cold Spring Harbor Laboratory, One Bungtown Road, Cold Spring Harbor, NY 11724, United States
| | | | | |
Collapse
|