1
|
El azzouzi M, El ahanidi H, Hafidi Alaoui C, Chaoui I, Benbacer L, Tetou M, Hassan I, Bensaid M, Oukabli M, Ameur A, Al bouzidi A, El mzibri M, Attaleb M. Exploring urine sediments as a non-invasive method for DNA methylation detection in bladder cancer. AFRICAN JOURNAL OF UROLOGY 2022. [DOI: 10.1186/s12301-022-00298-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
The main epigenetic event occurring during the bladder carcinogenesis process is DNA methylation, affecting genes involved in various metabolic pathways and cell regulation. The use of biological fluids such as urine sediments could be used as a non-invasive approach to enhance bladder cancer management. In this study, we aim to determine the promoter methylation status of a panel of genes in bladder cancer on tumor biopsies and urine sediments to evaluate the usefulness of urine samples as a non-invasive approach for methylation status assessment.
Methods
Using the methylation-specific PCR technique, we explored the promoter methylation status of hTERT, TWIST1, VIM and NID2 genes in 40 tumor biopsies and their paired urine samples from Moroccan bladder cancer patients.
Results
In this study, bladder tumors showed promoter hypermethylation frequency of individual genes as 90%, 85%, 62.5% and 72.5% in TWIST1, hTERT, NID2 and VIM genes, respectively.
Interestingly, the specificity of methylation detection in urine samples was 100% and the sensitivity to detect hypermethylation of TWIST1, hTERT, NID2 and VIM genes reached 91.7%; 97.1%; 84% and 82.8%, respectively.
Conclusions
Our results clearly show that the assessment of promoter hypermethylation in urine samples is highly specific and has high sensitivity. Furthermore, urine sediments would be a useful approach to detect the DNA methylation status of genes and its potential association with bladder cancer development.
Collapse
|
2
|
Zhu L, Liu Y, Wu X, Ren Y, Zhang Q, Ren L, Guo Y. Cerebroprotein hydrolysate-I protects senescence-induced by D-galactose in PC12 cells and mice. Food Sci Nutr 2021; 9:3722-3731. [PMID: 34262731 PMCID: PMC8269606 DOI: 10.1002/fsn3.2333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 04/14/2021] [Accepted: 05/01/2021] [Indexed: 11/25/2022] Open
Abstract
Cerebroprotein hydrolysate-I (CH-I),a mixture of peptides extracted from porcine brain tissue,has shown a neuroprotective effect, but its role in brain senescence is unclear. In the present study, we established a senescence model of PC12 cells and mice to investigate the effect of CH-I on brain senescence via JAK2/STAT3 pathway. The results showed that CH-I could improve cell viability, inhibit the apoptosis of cells, and reduce the senescence-positive cells induced by D-galactose. In vivo, CH-I improved the learning ability and memory of aging mice, reduced neuronal damage in mice hippocampus. Mechanism studies showed that CH-I could adjust BDNF protein expressions, activate JAK2/STAT3 pathway, and finally enhance telomerase activity. All these findings indicated that CH-I showed a neuroprotective effect against brain senescence. These results might provide further reference and support for the application of CH-I in delaying aging.
Collapse
Affiliation(s)
- Lin Zhu
- Institute of Cerebrovascular DiseasesTaishan Scholars Construction Project Excellent Innovative Team of Shandong ProvinceMedical Research CenterThe Affiliated Hospital of Qingdao UniversityQingdaoChina
| | - Yingjuan Liu
- Institute of Cerebrovascular DiseasesTaishan Scholars Construction Project Excellent Innovative Team of Shandong ProvinceMedical Research CenterThe Affiliated Hospital of Qingdao UniversityQingdaoChina
| | - Xiaolin Wu
- Institute of Cerebrovascular DiseasesTaishan Scholars Construction Project Excellent Innovative Team of Shandong ProvinceMedical Research CenterThe Affiliated Hospital of Qingdao UniversityQingdaoChina
| | - Yuqian Ren
- Institute of Cerebrovascular DiseasesTaishan Scholars Construction Project Excellent Innovative Team of Shandong ProvinceMedical Research CenterThe Affiliated Hospital of Qingdao UniversityQingdaoChina
| | - Qinghua Zhang
- Department of NeurologyShandong Second Provincial General HospitalJinanChina
| | - Leiming Ren
- Institute of Chinese Integrative MedicineHebei Medical UniversityShijiazhuangChina
| | - Yunliang Guo
- Institute of Cerebrovascular DiseasesTaishan Scholars Construction Project Excellent Innovative Team of Shandong ProvinceMedical Research CenterThe Affiliated Hospital of Qingdao UniversityQingdaoChina
| |
Collapse
|
3
|
Kong X, Gong Z, Zhang L, Sun X, Ou Z, Xu B, Huang J, Long D, He X, Lin X, Li Q, Xu L, Xuan A. JAK2/STAT3 signaling mediates IL-6-inhibited neurogenesis of neural stem cells through DNA demethylation/methylation. Brain Behav Immun 2019; 79:159-173. [PMID: 30763768 DOI: 10.1016/j.bbi.2019.01.027] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 01/10/2019] [Accepted: 01/30/2019] [Indexed: 10/27/2022] Open
Abstract
Neuroinflammation, considered as a pathological hallmark of Alzheimer's disease (AD), has been demonstrated to affect hippocampal neurogenesis and cognitive function. Interleukin-6 (IL-6) is a proinflammatory cytokine known to modulate neurogenesis. However, the mechanisms are still largely unknown. Here, we reported that IL-6 suppressed neurogenesis via a JAK2/STAT3 signaling in neural stem cells (NSCs). Importantly, we found that NeuroD1 (Neurogenic differentiation 1) gene expression, which drives NSCs neurodifferentiation, was regulated by TET3 and DNMT1 in a JAK2/STAT3-dependent manner. We further found that JAK2/STAT3 inhibition enhanced demethylation of NeuroD1 regulatory elements in IL-6-treated cells, which is related to the significant upregulation of TET3 expression as well as the decreased expression of DNMT1. Furthermore, Inhibiting JAK2/STAT3 significantly rescued the memory deficits and hippocampal neurogenesis dysfunction in APP/PS1 mice. Our data suggest that JAK2/STAT3 signaling plays a vital role in suppressing neurogenesis of NSCs exposed to IL-6 at the epigenetic level, by regulating DNA methylation/demethylation.
Collapse
Affiliation(s)
- Xuejian Kong
- Institute of Neuroscience of the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China; Department of Neurology of the Sixth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511518, China
| | - Zhuo Gong
- Institute of Neuroscience of the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China
| | - Le Zhang
- Institute of Neuroscience of the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China
| | - Xiangdong Sun
- Institute of Neuroscience of the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China
| | - Zhenri Ou
- Institute of Neuroscience of the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China
| | - Biao Xu
- Institute of Neuroscience of the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China
| | - Jingyi Huang
- Institute of Neuroscience of the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China
| | - Dahong Long
- Institute of Neuroscience of the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China
| | - Xiaosong He
- Institute of Neuroscience of the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China
| | - Xiaohong Lin
- Institute of Neuroscience of the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China
| | - Qingqing Li
- Institute of Neuroscience of the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China
| | - Liping Xu
- Institute of Neuroscience of the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China
| | - Aiguo Xuan
- Institute of Neuroscience of the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China.
| |
Collapse
|
4
|
Charostad J, Astani A, Goudarzi H, Faghihloo E. DNA methyltransferases in virus-associated cancers. Rev Med Virol 2018; 29:e2022. [PMID: 30511446 DOI: 10.1002/rmv.2022] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Revised: 10/24/2018] [Accepted: 10/24/2018] [Indexed: 12/19/2022]
Abstract
Human tumor viruses are either casually linked or contribute in the development of human cancers. Viruses can stimulate oncogenesis through affecting diverse biological pathways in human cells. Growing data have demonstrated frequent involvement of one of the most characteristic parts of cellular epigenetic machinery, DNA methylation, in the oncogenesis. DNA methylation of cellular genes is catalyzed by DNA methyltransferases (DNMTs) as a key effector enzyme in this process. Dysregulation of DNMTs can cause aberrant gene methylation in promoter of cancer-related genes including tumor suppressor genes, resulting in gene silencing. In this regard, the role of tumor viruses is remarkable. Here, in this review, we used published information to elucidate whether tumor viruses are able to manipulate DNMT regulation, and if so, what are its consequences in the process of oncogenesis. This essay also aims to shed light on which cellular pathways have been engaged by viruses to induce DNMTs.
Collapse
Affiliation(s)
- Javad Charostad
- Department of Virology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Akram Astani
- Zoonotic Diseases Research Center, School of Public Health, Sahid Sadoughi University of Medical Sciences, Yazd, Iran.,Department of Microbiology, Shahid Sadoghi University of Medical Science, Yazd, Iran
| | - Hossein Goudarzi
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ebrahim Faghihloo
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Transcription Regulation of the Human Telomerase Reverse Transcriptase (hTERT) Gene. Genes (Basel) 2016; 7:genes7080050. [PMID: 27548225 PMCID: PMC4999838 DOI: 10.3390/genes7080050] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 07/23/2016] [Accepted: 08/01/2016] [Indexed: 12/11/2022] Open
Abstract
Embryonic stem cells and induced pluripotent stem cells have the ability to maintain their telomere length via expression of an enzymatic complex called telomerase. Similarly, more than 85%–90% of cancer cells are found to upregulate the expression of telomerase, conferring them with the potential to proliferate indefinitely. Telomerase Reverse Transcriptase (TERT), the catalytic subunit of telomerase holoenzyme, is the rate-limiting factor in reconstituting telomerase activity in vivo. To date, the expression and function of the human Telomerase Reverse Transcriptase (hTERT) gene are known to be regulated at various molecular levels (including genetic, mRNA, protein and subcellular localization) by a number of diverse factors. Among these means of regulation, transcription modulation is the most important, as evident in its tight regulation in cancer cell survival as well as pluripotent stem cell maintenance and differentiation. Here, we discuss how hTERT gene transcription is regulated, mainly focusing on the contribution of trans-acting factors such as transcription factors and epigenetic modifiers, as well as genetic alterations in hTERT proximal promoter.
Collapse
|
6
|
Hepatitis C virus core protein epigenetically silences SFRP1 and enhances HCC aggressiveness by inducing epithelial-mesenchymal transition. Oncogene 2013; 33:2826-35. [PMID: 23770846 DOI: 10.1038/onc.2013.225] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Revised: 04/19/2013] [Accepted: 04/22/2013] [Indexed: 02/07/2023]
Abstract
Hepatocellular carcinoma (HCC) is one of the most deadly cancers. Aberrant oncogenic activation of the Wnt/β-catenin signaling pathway contributes to hepatocellular carcinogenesis. Various epigenetic modifications of the Wnt antagonist secreted frizzled-related protein (SFRP) family have been implicated in regulating Wnt signaling. Here, we report that Hepatitis C virus (HCV) core protein downregulates SFRP1 expression when it is expressed in Huh7 and HepG2 cells. SFRP1 expression can be effectively restored by using either a DNA methylation inhibitor alone or in combination with a histone deacetylase inhibitor. DNA methylation analysis of the SFRP1 promoter revealed that cytosine-phosphate-guanine (CpG) islands close to the transcriptional start site (TSS) in the SFRP1 promoter were hypermethylated in core-expressing Huh7 cells, suggesting that HCV core protein may downregulate SFRP1 expression by inducing hypermethylation of the SFRP1 promoter. Chromatin immunoprecipitation revealed that HCV core protein markedly increased the expression level and binding of DNA methyltransferase-1 (Dnmt1) and histone deacetylase-1 (HDAC1) to the TSS of the SFRP1 promoter region, resulting in repression of acetyl-histone H3-binding capacity to SFRP1 promoter and the eventual epigenetic silencing of SFRP1 expression. Furthermore, the core protein-promoted cell proliferation, migration and invasiveness were effectively abrogated either by Dnmt1 knockdown or restoration of SFRP1 expression in hepatoma cells. Dnmt1 knockdown or SFRP1 overexpression also inhibited HCV core-induced epithelial-mesenchymal transition (EMT) and significantly decreased the expression levels of activated β-catenin and Wnt/β-catenin target genes, c-Myc and cyclin D1. We further showed that knockdown of Dnmt1 and restoration of SFRP1 inhibited core-induced in vivo tumor growth and aggressiveness in a xenograft HCC model. Taken together, our results strongly suggest that the HCV core-induced epigenetic silencing of SFRP1 may lead to the activation of the Wnt signaling pathway and thus contribute to HCC aggressiveness through induction of EMT.
Collapse
|