1
|
Pang S, Xie B, Feng B, Xu G, Ye Q, Chen X, Ruan L, Chen H, Pan SL, Xue C, Li W. miR-542-5p targets GREM1 to affect the progression of renal fibrosis. J Biochem Mol Toxicol 2024; 38:e23818. [PMID: 39180371 DOI: 10.1002/jbt.23818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 07/11/2024] [Accepted: 08/13/2024] [Indexed: 08/26/2024]
Abstract
Renal fibrosis (RF) is a typical pathological presentation of end-stage chronic kidney disease (CKD) and autosomal dominant polycystic kidney disease (ADPKD). However, the precise regulatory mechanisms governing this re-expression process remain unclear. Differentially expressed microRNAs (miRNAs) associated with RF were screened by microarray analysis using the Gene Expression Omnibus (GEO) database. The miRNAs upstream of the genes in question were predicted using the miRWalk database. The miRNAs involved in the two GEO data sets were intersected to identify key miRNAs; their regulatory pathways were investigated using Gene Ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis. Subsequently, the effects and the underlying mechanisms of target miRNA on RF were examined in a unilateral ureteral obstruction (UUO)-induced mice renal fibrotic model and a transforming growth factor-β1 (TGF-β1)-induced tubular epithelium (HK-2) fibrotic cell model. In total, 109 and 32 differentially expressed miRNAs were identified in the GSE133530 and GSE80247 data sets, respectively. GREM1 was identified as a hub gene, where its 2196 upstream miRNAs were predicted; miR-574-5p was found to be downregulated and closely related to fibrosis after data set intersection and enrichment analyses, thus was selected for further investigation. A differential expression heatmap (GSE162794) showed that miR-542-5p was downregulated. The expression of GREM1 mRNA was upregulated, whereas that of miR-542-5p was downregulated in UUO mice and fibrotic HK-2 cells as compared with the relevant controls. The binding site of miR-542-5p was predicted at the 3'UTR region of GREM1 and was confirmed by subsequent dual luciferase reporter gene assay. Western blot analysis showed that Gremlin-1 and Fibronectin were significantly upregulated after induction of TGF-β1; when miR-542-5p was overexpressed or GREM1 mRNA was interfered, the upregulations of Gremlin-1 and Fibronectin were significantly reduced. Our research demonstrates that miR-542-5p plays a critical role in the progression of RF, and thus may be a promising therapeutic target for CKD and ADPKD.
Collapse
Affiliation(s)
- Shuting Pang
- Department of Nephrology, The Second Affiliated Hospital of Guangxi Medical University, Guangxi Zhuang Autonomous Region, Nanning, China
| | - Boji Xie
- Department of Nephrology, The Second Affiliated Hospital of Guangxi Medical University, Guangxi Zhuang Autonomous Region, Nanning, China
| | - Bingmei Feng
- Department of Nephrology, The Second Affiliated Hospital of Guangxi Medical University, Guangxi Zhuang Autonomous Region, Nanning, China
| | - Guiling Xu
- Department of Nephrology, The Second Affiliated Hospital of Guangxi Medical University, Guangxi Zhuang Autonomous Region, Nanning, China
| | - Qinglin Ye
- Department of Nephrology, The Second Affiliated Hospital of Guangxi Medical University, Guangxi Zhuang Autonomous Region, Nanning, China
| | - Xuesong Chen
- Department of Nephrology, The Second Affiliated Hospital of Guangxi Medical University, Guangxi Zhuang Autonomous Region, Nanning, China
| | - Liangping Ruan
- Department of Nephrology, The Second Affiliated Hospital of Guangxi Medical University, Guangxi Zhuang Autonomous Region, Nanning, China
| | - Hong Chen
- Department of Nephrology, The Second Affiliated Hospital of Guangxi Medical University, Guangxi Zhuang Autonomous Region, Nanning, China
| | - Shang-Ling Pan
- Department of Pathophysiology, School of Preclinical Medicine, Guangxi Zhuang Autonomous Region, Guangxi Medical University, Nanning, China
| | - Chao Xue
- Department of Nephrology, The Second Affiliated Hospital of Guangxi Medical University, Guangxi Zhuang Autonomous Region, Nanning, China
| | - Wei Li
- Department of Nephrology, The Second Affiliated Hospital of Guangxi Medical University, Guangxi Zhuang Autonomous Region, Nanning, China
| |
Collapse
|
2
|
Wang T, Li C, Wang X, Liu F. MAGI2 ameliorates podocyte apoptosis of diabetic kidney disease through communication with TGF-β-Smad3/nephrin pathway. FASEB J 2023; 37:e23305. [PMID: 37950637 DOI: 10.1096/fj.202301058r] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 09/15/2023] [Accepted: 10/27/2023] [Indexed: 11/13/2023]
Abstract
Podocytes, the key component of the glomerular filtration barrier (GFB), are gradually lost during the progression of diabetic kidney disease (DKD), severely compromising kidney functionality. The molecular mechanisms regulating the survival of podocytes in DKD are incompletely understood. Here, we show that membrane-associated guanylate kinase inverted 2 (MAGI2) is specifically expressed in renal podocytes, and promotes podocyte survival in DKD. We found that MAGI2 expression was downregulated in podocytes cultured with high-glucose in vitro, and in kidneys of db/db mice as well as DKD patients. Conversely, we found enforced expression of MAGI2 via AAV transduction protected podocytes from apoptosis, with concomitant improvement of renal functions. Mechanistically, we found that MAGI2 deficiency induced by high glucose levels activates TGF-β signaling to decrease the expression of anti-apoptotic proteins. These results indicate that MAGI2 protects podocytes from cell death, and can be harnessed therapeutically to improve renal function in diabetic kidney disease.
Collapse
Affiliation(s)
- Tingli Wang
- Department of Nephrology, Kidney Research Institute, West China Hospital, Sichuan University, Chengdu, China
| | - Chen Li
- Centre for Translational Research in Cancer, Sichuan Cancer Hospital & Institute, School of medicine, University of Electronic Science and Technology of China, Chengdu, China
- West China Hospital, Sichuan University, Chengdu, China
| | - Xiaofei Wang
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Fang Liu
- Department of Nephrology, Kidney Research Institute, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Diabetic Kidney Disease, Centre of Diabetes and Metabolism Research, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
3
|
Jiang S, Su H. Cellular crosstalk of mesangial cells and tubular epithelial cells in diabetic kidney disease. Cell Commun Signal 2023; 21:288. [PMID: 37845726 PMCID: PMC10577991 DOI: 10.1186/s12964-023-01323-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 09/17/2023] [Indexed: 10/18/2023] Open
Abstract
Diabetic kidney disease (DKD) is a major cause of end-stage renal disease and imposes a heavy global economic burden; however, little is known about its complicated pathophysiology. Investigating the cellular crosstalk involved in DKD is a promising avenue for gaining a better understanding of its pathogenesis. Nonetheless, the cellular crosstalk of podocytes and endothelial cells in DKD is better understood than that of mesangial cells (MCs) and renal tubular epithelial cells (TECs). As the significance of MCs and TECs in DKD pathophysiology has recently become more apparent, we reviewed the existing literature on the cellular crosstalk of MCs and TECs in the context of DKD to acquire a comprehensive understanding of their cellular communication. Insights into the complicated mechanisms underlying the pathophysiology of DKD would improve its early detection, care, and prognosis. Video Abstract.
Collapse
Affiliation(s)
- Shan Jiang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Hua Su
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
4
|
Chen F, Zou Y, Wang J, Huang C. Bone Marrow Mesenchymal Stem Cells (BMSCs)-Exosomes Carrying MicroRNA-965 Attenuates Allogeneic Renal Transplant Rejection Through Regulation of Janus Kinase/Signal Transducers and Activators of Transcription 3 (JAK/STAT3). J BIOMATER TISS ENG 2022. [DOI: 10.1166/jbt.2022.3081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
This study intends to evaluate the potential effect of BMSC-derived exosomes (exo) on the rejection of allogeneic kidney transplantation in a rat model. BMSCs were cultured and their exos were collected for characterization, in which the expression of miR-965 was detected by PCR. Rats
received orthotopic kidney transplantation and treated with exos or PBS followed by analysis of serum creatinine and BUN, inflammatory cell infiltration, renal fibrosis and vascular wall fibrosis by immunohistochemistry staining, JAK2/STAT3 phosphorylation by Western-blot, the inflammatory
factor level by ELISA kit, and CD4+ cells differentiation by flow cytometry. miR-965 was enriched in BMSC-derived exo. Treatment with exo ameliorated the allograft rejection, improved renal function, and reduced the histological changes of kidney. In addition, exosomal treatment decreased
the level of serum inflammatory cytokines, and altered T cell subpopulations. Meanwhile, fibrosis and neointima formation was reduced as demonstrated by related protein expression and signaling pathways was inactivated in the presence of exos. In conclusion, the miR-965 derived from BMSC-exos
mitigated the renal allograft rejection through JAK/STAT3 signaling.
Collapse
Affiliation(s)
- Fang Chen
- Department of Multi-Organ Transplant Center, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China; Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital,
Chengdu, Sichuan, 610072, China
| | - Yang Zou
- Department of Renal Department, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, 610071, China; Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, 610072,
China
| | - Jiansong Wang
- Department of Urology, Hunan Provincial People’s Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, 410005, China
| | - Chuyang Huang
- Department of Urology, Shaoyang Central Hospital of Hunan, Shaoyang, Hunan, 22099, China
| |
Collapse
|
5
|
Epigenetic Modulation of Gremlin-1/NOTCH Pathway in Experimental Crescentic Immune-Mediated Glomerulonephritis. Pharmaceuticals (Basel) 2022; 15:ph15020121. [PMID: 35215234 PMCID: PMC8876310 DOI: 10.3390/ph15020121] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/11/2022] [Accepted: 01/13/2022] [Indexed: 12/20/2022] Open
Abstract
Crescentic glomerulonephritis is a devastating autoimmune disease that without early and properly treatment may rapidly progress to end-stage renal disease and death. Current immunosuppressive treatment provides limited efficacy and an important burden of adverse events. Epigenetic drugs are a source of novel therapeutic tools. Among them, bromodomain and extraterminal domain (BET) inhibitors (iBETs) block the interaction between bromodomains and acetylated proteins, including histones and transcription factors. iBETs have demonstrated protective effects on malignancy, inflammatory disorders and experimental kidney disease. Recently, Gremlin-1 was proposed as a urinary biomarker of disease progression in human anti-neutrophil cytoplasmic antibody (ANCA)-associated crescentic glomerulonephritis. We have now evaluated whether iBETs could regulate Gremlin-1 in experimental anti-glomerular basement membrane nephritis induced by nephrotoxic serum (NTS) in mice, a model resembling human crescentic glomerulonephritis. In NTS-injected mice, the iBET JQ1 inhibited renal Gremlin-1 overexpression and diminished glomerular damage, restoring podocyte numbers. Chromatin immunoprecipitation assay demonstrated BRD4 enrichment of the Grem-1 gene promoter in injured kidneys, consistent with Gremlin-1 epigenetic regulation. Moreover, JQ1 blocked BRD4 binding and inhibited Grem-1 gene transcription. The beneficial effect of iBETs was also mediated by modulation of NOTCH pathway. JQ1 inhibited the gene expression of the NOTCH effectors Hes-1 and Hey-1 in NTS-injured kidneys. Our results further support the role for epigenetic drugs, such as iBETs, in the treatment of rapidly progressive crescentic glomerulonephritis.
Collapse
|
6
|
Guan X, He Y, Li Y, Shi C, Wei Z, Zhao R, Han Y, Pan L, Yang J, Hou TZ. Gremlin aggravates periodontitis via activating the NF-κB signaling pathway. J Periodontol 2022; 93:1589-1602. [PMID: 34993960 DOI: 10.1002/jper.21-0474] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 10/27/2021] [Accepted: 11/20/2021] [Indexed: 11/06/2022]
Abstract
BACKGROUND Gremlin has been reported to regulate inflammation and osteogenesis. Periodontitis is a destructive disease degenerating periodontal tissues, therefore leads to alveolar bone resorption and tooth loss. Based on the importance of Gremlin's bio-activity, the aim of this study is to, in vivo and in vitro, unveil the function of Gremlin in regulating the development of periodontitis and its consequent effects on alveolar bone loss. METHODS Clinical specimens were used to determine the expression of Gremlin in periodontal tissues by immunohistochemical staining and western blot. Then utilizing the rat periodontitis model to investigate the function of gremlin-regulated nuclear factor-kappa B (NF-κB) pathway during the development of periodontal inflammation and the alveolar bone loss. Lastly, the regulation of the osteogenesis of human periodontal ligament stem cells (hPDLSCs) by Gremlin under inflamed condition was analyzed by alkaline phosphatase (ALP) and alizarin red staining (ARS). RESULTS We found clinically and experimentally that the expression of Gremlin is markedly increased in periodontitis tissues. Interestingly, we revealed that Gremlin regulated the progress of periodontitis via regulating the activities of NF-κB pathway and interleukin-1β (IL-1β). Notably, we observed that Gremlin influenced the osteogenesis of hPDLSCs. Thus, our present study identified Gremlin as a new key regulator for development of periodontitis. CONCLUSIONS Our current study illustrated that Gremlin acts as a crucial mediator and possibly serves as a potential diagnostic marker for periodontitis. Discovery of new factors involved in the pathophysiology of periodontitis could contribute to the development of novel therapeutic treatment for the disease. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Xiaoyue Guan
- The Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China.,Department of Endodontics, Stomatological Hospital, College of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China
| | - Yani He
- The Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China.,Department of Endodontics, Stomatological Hospital, College of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China
| | - Yingxue Li
- The Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China.,Department of Endodontics, Stomatological Hospital, College of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China
| | - Chen Shi
- The Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China.,Department of Endodontics, Stomatological Hospital, College of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China
| | - Zhichen Wei
- The Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China.,Department of Endodontics, Stomatological Hospital, College of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China
| | - Rui Zhao
- The Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China.,Department of Endodontics, Stomatological Hospital, College of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China
| | - Yue Han
- The Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China.,Department of Endodontics, Stomatological Hospital, College of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China
| | - Lifei Pan
- The Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China.,Department of Endodontics, Stomatological Hospital, College of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China
| | - Jianmin Yang
- The Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Tie Zhou Hou
- The Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China.,Department of Endodontics, Stomatological Hospital, College of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China
| |
Collapse
|
7
|
O’Reilly S. Circulating Gremlin-1 is elevated in systemic sclerosis patients. JOURNAL OF SCLERODERMA AND RELATED DISORDERS 2021; 6:286-289. [PMID: 35382498 PMCID: PMC8922663 DOI: 10.1177/23971983211036571] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 07/12/2021] [Indexed: 11/15/2022]
Abstract
Introduction: Systemic sclerosis is an autoimmune connective tissue disease in which there
is activation of the immune system, vascular disease and fibrosis.
Activation of quiescent fibroblasts to myofibroblasts is key to disease
pathogenesis. Gremlin-1 is a bone morphogenetic protein antagonist which is
important in development and we recently reported in skin fibrosis. The aim
of this study was to determine the serum circulating levels of Gremlin-1 in
early diffuse systemic sclerosis. Methods: Twenty-one early diffuse systemic sclerosis patients (less than 2 years from
first non-Raynaud’s symptom) were included and age and sex-matched healthy
controls. Serum was isolated from blood and measured with a specific
enzyme-linked immunoassay for Gremlin-1. Clinical variables were also
measured. Results: Significantly elevated Gremlin-1 was found in sera of early diffuse systemic
sclerosis patients (p < 0.001). In patients with
interstitial lung disease, this compared to systemic sclerosis without
evidence of interstitial lung disease, Gremlin-1 was significantly elevated
(p < 0.0007). A correlation was found between
circulating Gremlin-1 and modified Rodnan Skin Score, albeit weak. Discussion: In early diffuse systemic sclerosis patients, elevated Gremlin-1 is found in
serum. This is particularly prominent in systemic sclerosis–associated
interstitial lung disease. This suggests that Gremlin-1 may be a biomarker
for systemic sclerosis interstitial lung disease.
Collapse
|
8
|
Shihan MH, Kanwar M, Wang Y, Jackson EE, Faranda AP, Duncan MK. Fibronectin has multifunctional roles in posterior capsular opacification (PCO). Matrix Biol 2020; 90:79-108. [PMID: 32173580 DOI: 10.1016/j.matbio.2020.02.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 02/10/2020] [Accepted: 02/25/2020] [Indexed: 12/26/2022]
Abstract
Fibrotic posterior capsular opacification (PCO), one of the major complications of cataract surgery, occurs when lens epithelial cells (LCs) left behind post cataract surgery (PCS) undergo epithelial to mesenchymal transition, migrate into the optical axis and produce opaque scar tissue. LCs left behind PCS robustly produce fibronectin, although its roles in fibrotic PCO are not known. In order to determine the function of fibronectin in PCO pathogenesis, we created mice lacking the fibronectin gene (FN conditional knock out -FNcKO) from the lens. While animals from this line have normal lenses, upon lens fiber cell removal which models cataract surgery, FNcKO LCs exhibit a greatly attenuated fibrotic response from 3 days PCS onward as assessed by a reduction in surgery-induced cell proliferation, and fibrotic extracellular matrix (ECM) production and deposition. This is correlated with less upregulation of Transforming Growth Factor β (TGFβ) and integrin signaling in FNcKO LCs PCS concomitant with sustained Bone Morphogenetic Protein (BMP) signaling and elevation of the epithelial cell marker E cadherin. Although the initial fibrotic response of FNcKO LCs was qualitatively normal at 48 h PCS as measured by the upregulation of fibrotic marker protein αSMA, RNA sequencing revealed that the fibrotic response was already quantitatively attenuated at this time, as measured by the upregulation of mRNAs encoding molecules that control, and are controlled by, TGFβ signaling, including many known markers of fibrosis. Most notably, gremlin-1, a known regulator of TGFβ superfamily signaling, was upregulated sharply in WT LCs PCS, while this response was attenuated in FNcKO LCs. As exogenous administration of either active TGFβ1 or gremlin-1 to FNcKO lens capsular bags rescued the attenuated fibrotic response of fibronectin null LCs PCS including the loss of SMAD2/3 phosphorylation, this suggests that fibronectin plays multifunctional roles in fibrotic PCO development.
Collapse
Affiliation(s)
- Mahbubul H Shihan
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Mallika Kanwar
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Yan Wang
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Erin E Jackson
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Adam P Faranda
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Melinda K Duncan
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA.
| |
Collapse
|
9
|
Jiang L, Cui H, Ding J. Smad3 signalling affects high glucose-induced podocyte injury via regulation of the cytoskeletal protein transgelin. Nephrology (Carlton) 2020; 25:659-666. [PMID: 32034833 PMCID: PMC7496067 DOI: 10.1111/nep.13701] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 09/24/2019] [Accepted: 01/27/2020] [Indexed: 12/15/2022]
Abstract
Aim The aim of the present study was to characterize the role of Smad3 signalling on high glucose‐induced podocyte injury. Methods Synchronized conditionally immortalized mouse podocyte cell line (MPC5) cells were treated with either D‐glucose alone or D‐glucose plus the Smad3 inhibitor SIS3. The distribution of F‐actin and transgelin in a high glucose‐induced model of podocyte injury were examined by immunofluorescence. Levels of transgelin and Smad3 signalling proteins in MPC5 cells were determined by Western blot. Results A disordered distribution of F‐actin, as well as co‐localization of F‐actin and transgelin, was observed in podocytes exposed to high glucose. Increased levels of transgelin were first observed 10 minutes after treatment with glucose, suggesting that this protein is sensitive to hyperglycaemic injury. Levels of phosphorylated Smad3 and cleaved caspase 3 increased significantly with glucose stimulation. Moreover, expression of the downstream protein c‐Myc, but not JAK1/STAT3, was induced in conditions of high glucose. The Smad3‐specific inhibitor SIS3 prevented the effects of high glucose on Smad3 phosphorylation, expression of transgelin and c‐Myc, caspase 3 cleavage and cytoskeletal organization. Expression of the tumour suppressor protein p15INK4B increased after podocyte injury but was unaffected by Smad3 inhibition, suggesting that Smad3 regulation of high glucose‐induced podocyte injury occurs through a p15INK4B‐independent mechanism. Conclusion Smad3 signalling plays a critical role in the modulation of hyperglycaemic injury. Targeted inhibition of the Smad3 pathway may offer a novel route for treatment of podocyte damage, especially in cases of diabetic nephropathy. Podocyte damage is characteristic of diabetic kidney disease. This study showed that inhibition of Smad‐3 signalling using the specific inhibitor SIS3 in vitro, could alleviate podocyte abnormalities induced by high glucose including actin cytoskeletal rearrangement and actviation of cell death pathways.
Collapse
Affiliation(s)
- Lina Jiang
- Pediatric Department, Beijing Friendship Hospital, Capital University of Medical Sciences, Beijing, China
| | - Hong Cui
- Pediatric Department, Beijing Friendship Hospital, Capital University of Medical Sciences, Beijing, China
| | - Jie Ding
- Pediatric Department, Peking University First Hospital, Beijing, China
| |
Collapse
|
10
|
VEGFR2 Blockade Improves Renal Damage in an Experimental Model of Type 2 Diabetic Nephropathy. J Clin Med 2020; 9:jcm9020302. [PMID: 31973092 PMCID: PMC7074274 DOI: 10.3390/jcm9020302] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 01/14/2020] [Accepted: 01/16/2020] [Indexed: 12/29/2022] Open
Abstract
The absence of optimal treatments for Diabetic Nephropathy (DN) highlights the importance of the search for novel therapeutic targets. The vascular endothelial growth factor receptor 2 (VEGFR2) pathway is activated in experimental and human DN, but the effects of its blockade in experimental models of DN is still controversial. Here, we test the effects of a therapeutic anti-VEGFR2 treatment, using a VEGFR2 kinase inhibitor, on the progression of renal damage in the BTBR ob/ob (leptin deficiency mutation) mice. This experimental diabetic model develops histological characteristics mimicking the key features of advanced human DN. A VEGFR2 pathway-activation blockade using the VEGFR2 kinase inhibitor SU5416, starting after kidney disease development, improves renal function, glomerular damage (mesangial matrix expansion and basement membrane thickening), tubulointerstitial inflammation and tubular atrophy, compared to untreated diabetic mice. The downstream mechanisms involved in these beneficial effects of VEGFR2 blockade include gene expression restoration of podocyte markers and downregulation of renal injury biomarkers and pro-inflammatory mediators. Several ligands can activate VEGFR2, including the canonical ligands VEGFs and GREMLIN. Activation of a GREMLIN/VEGFR2 pathway, but not other ligands, is correlated with renal damage progression in BTBR ob/ob diabetic mice. RNA sequencing analysis of GREMLIN-regulated genes confirm the modulation of proinflammatory genes and related-molecular pathways. Overall, these data show that a GREMLIN/VEGFR2 pathway activation is involved in diabetic kidney disease and could potentially be a novel therapeutic target in this clinical condition.
Collapse
|
11
|
Zhang L, Wen Z, Han L, Zheng Y, Wei Y, Wang X, Wang Q, Fang X, Zhao L, Tong X. Research Progress on the Pathological Mechanisms of Podocytes in Diabetic Nephropathy. J Diabetes Res 2020; 2020:7504798. [PMID: 32695831 PMCID: PMC7368941 DOI: 10.1155/2020/7504798] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 06/03/2020] [Accepted: 06/23/2020] [Indexed: 02/06/2023] Open
Abstract
Diabetic nephropathy (DN) is not only an important microvascular complication of diabetes but also the main cause of end-stage renal disease. Studies have shown that the occurrence and development of DN are closely related to morphological and functional changes in podocytes. A series of morphological changes after podocyte injury in DN mainly include podocyte hypertrophy, podocyte epithelial-mesenchymal transdifferentiation, podocyte detachment, and podocyte apoptosis; functional changes mainly involve podocyte autophagy. More and more studies have shown that multiple signaling pathways play important roles in the progression of podocyte injury in DN. Here, we review research progress on the pathological mechanism of morphological and functional changes in podocytes associated with DN, to provide a new target for delaying the occurrence and development of this disorder.
Collapse
Affiliation(s)
- Lili Zhang
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Zhige Wen
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Lin Han
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Yujiao Zheng
- Graduate College, Beijing University of Traditional Chinese Medicine, Beijing 100029, China
| | - Yu Wei
- Graduate College, Beijing University of Traditional Chinese Medicine, Beijing 100029, China
| | - Xinmiao Wang
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Qing Wang
- Graduate College, Beijing University of Traditional Chinese Medicine, Beijing 100029, China
| | - Xinyi Fang
- Graduate College, Beijing University of Traditional Chinese Medicine, Beijing 100029, China
| | - Linhua Zhao
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Xiaolin Tong
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| |
Collapse
|
12
|
Mezzano S, Droguett A, Lavoz C, Krall P, Egido J, Ruiz-Ortega M. Gremlin and renal diseases: ready to jump the fence to clinical utility? Nephrol Dial Transplant 2019; 33:735-741. [PMID: 28992340 DOI: 10.1093/ndt/gfx194] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 04/18/2017] [Indexed: 12/31/2022] Open
Abstract
The current therapeutic strategy for the treatment of chronic kidney diseases only ameliorates disease progression. During renal injury, developmental genes are re-expressed and could be potential therapeutic targets. Among those genes reactivated in the adult damaged kidney, Gremlin is of particular relevance since recent data suggest that it could be a mediator of diabetic nephropathy and other progressive renal diseases. Earlier studies have shown that Gremlin is upregulated in trans-differentiated renal proximal tubular cells and in several chronic kidney diseases associated with fibrosis. However, not much was known about the mechanisms by which Gremlin acts in renal pathophysiology. The role of Gremlin as a bone morphogenetic protein antagonist has clearly been demonstrated in organogenesis and in fibrotic-related disorders. Gremlin binds to vascular endothelial growth factor receptor 2 (VEGFR2) in endothelial and tubular epithelial cells. Activation of the Gremlin-VEGFR2 axis was found in several human nephropathies. We have recently described that Gremlin activates the VEGFR2 signaling pathway in the kidney, eliciting a downstream mechanism linked to renal inflammatory response. Gremlin deletion improves experimental renal damage, diminishing fibrosis. Overall, the available data identify the Gremlin-VEGFR2 axis as a novel therapeutic target for kidney inflammation and fibrosis and provide a rationale for unveiling new concepts to investigate in several clinical conditions.
Collapse
Affiliation(s)
- Sergio Mezzano
- Division of Nephrology, School of Medicine, Universidad Austral de Chile, Valdivia, Chile
| | - Alejandra Droguett
- Division of Nephrology, School of Medicine, Universidad Austral de Chile, Valdivia, Chile
| | - Carolina Lavoz
- Division of Nephrology, School of Medicine, Universidad Austral de Chile, Valdivia, Chile
| | - Paola Krall
- Division of Nephrology, School of Medicine, Universidad Austral de Chile, Valdivia, Chile
| | - Jesús Egido
- Division of Nephrology and Hypertension, University Hospital, Fundación Jiménez Díaz-Universidad Autónoma, CIBERDEM, Instituto Renal Reina Sofía, Madrid, Spain
| | - Marta Ruiz-Ortega
- Cellular Biology in Renal Diseases Laboratory, Universidad Autónoma Madrid, IIS-Fundación Jiménez Díaz, RedinRen, Madrid, Spain
| |
Collapse
|
13
|
Ma B, Jing R, Liu J, Qi T, Pei C. Gremlin is a potential target for posterior capsular opacification. Cell Cycle 2019; 18:1714-1726. [PMID: 31234714 DOI: 10.1080/15384101.2019.1632125] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Objective: The present study was conducted to determine the role of gremlin during the development of posterior capsular opacification (PCO) via in vitro and in vivo experiments. Methods: The activation, roles and relationships of the BMPs/Smad1/5, MAPK, FAK and AKT signaling pathways in human lens epithelial cells (HLECs) after gremlin induction were detected by western blotting and real-time PCR. Wound-healing, transwell, capsular bag models and rat PCO models assays were used to test the effects of gremlin on HLECs' migration, proliferation, EMT-specific protein α-smooth muscle actin(α-SMA)and development of PCO in rats. Results: Our data showed that knockdown of the gremlin inhibited the development of PCO and reduced expression of α-SMA in rats. While gremlin did not alter the migration of HLECs, it increased the expression of p-ERK and p-AKT. Knockout of Smad2 or Smad3 inhibited the expression of p-ERK and p-AKT proteins induced by gremlin. Gremlin also reduced BMP4-induced expression of the p-Smad1/5 protein. Finally, knockout of Smad1/5 increased gremlin-induced expression of α-SMA, fibronectin and type I collagen (COL-1) in HLECs. Conclusion: These results suggested that gremlin contributed to the development of PCO by promoting LEC proliferation, activation of TGF-β/Smad, ERK and AKT signaling and inhibition of BMPs/Smad1/5 signaling. Furthermore, inhibiting gremlin effectively impaired both PCO development in rats and EMT in the lens capsule. Thus, our data suggest that gremlin might be a potential target for PCO.
Collapse
Affiliation(s)
- Bo Ma
- a Department of Ophthalmology , The First Affiliated Hospital of Xi'an Jiaotong University , Xi'an , Shaanxi , China
| | - Ruihua Jing
- a Department of Ophthalmology , The First Affiliated Hospital of Xi'an Jiaotong University , Xi'an , Shaanxi , China
| | - Jie Liu
- a Department of Ophthalmology , The First Affiliated Hospital of Xi'an Jiaotong University , Xi'an , Shaanxi , China
| | - Tiantian Qi
- a Department of Ophthalmology , The First Affiliated Hospital of Xi'an Jiaotong University , Xi'an , Shaanxi , China
| | - Cheng Pei
- a Department of Ophthalmology , The First Affiliated Hospital of Xi'an Jiaotong University , Xi'an , Shaanxi , China
| |
Collapse
|
14
|
Wen H, Kumar V, Mishra A, Song S, Aslam R, Hussain A, Wang H, Zhou X, He X, Wu G, Luo H, Lan X, Malhotra A, Singhal PC. Grem2 mediates podocyte apoptosis in high glucose milieu. Biochimie 2019; 160:113-121. [PMID: 30831151 DOI: 10.1016/j.biochi.2019.02.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 02/25/2019] [Indexed: 11/15/2022]
Abstract
BACKGROUND Increased DAN protein (Grem1, Grem2, Grem3, Cerberus, NBL1, SOST, and USAG1) levels are often associated with severe disease-states in adult kidneys. Grem1, SOST, and USAG1 have been demonstrated to be upregulated and play a critical role in the progression of diabetic nephropathy (DN); however, the expression and the role of other DAN family members in DN have not been reported yet. In this study, we investigated the expression and the role of Grem2 in the development of renal lesions in mice with type 2 DN. METHODS Fourteen-week-old BTBRob/ob (a mouse model of type 2 diabetes mellitus) and control (BTBR, wild type) mice were evaluated for renal functional and structural biomarkers. Urine was collected for protein content assay, and renal tissues were harvested for molecular analysis with real-time PCR, Western blotting, and immunohistochemistry. In vitro studies, human podocytes were transfected with Grem2 plasmid and were evaluated for apoptosis (morphologic assay and Western blotting). To evaluate the Grem2-mediated downstream signaling, the phosphorylation status of Smad2/3 and Smad1/5/8 was assessed. To establish a causal relationship, the effect of SIS3 (an inhibitor for Samd2/3) and BMP-7 (an agonist for Smad1/5/8) was evaluated on Germ2-induced podocyte apoptosis. RESULTS BTBRob/ob mice showed elevated urinary protein levels. Renal tissues of BTBRob/ob mice showed an increased expression of Grem2; both glomerular and tubular cells displayed enhanced Grem2 expression. In vitro studies, high glucose increased Grem2 expression in cultured human podocytes, whereas, Grem2 silencing partially protected podocyte from high glucose-induced apoptosis. Overexpression of Grem2 in podocytes not only increased Bax/Bcl2 expression ratio but also promoted podocyte apoptosis; moreover, an overexpression of Grem2 increased the phosphorylation of Smad2/3 and decreased the phosphorylation of Smad1/5/8; furthermore, SIS3 and BMP-7 attenuated Grem2-induced podocyte apoptosis. CONCLUSIONS High glucose increases Grem2 expression in kidney cells. Grem2 mediates podocyte apoptosis through Smads.
Collapse
Affiliation(s)
- Hongxiu Wen
- Key Laboratory for Aging and Regenerative Medicine, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China; Feinstein Institute for Medical Research and Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, United States
| | - Vinod Kumar
- Feinstein Institute for Medical Research and Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, United States
| | - Abheepsa Mishra
- Feinstein Institute for Medical Research and Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, United States
| | - Su Song
- Feinstein Institute for Medical Research and Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, United States
| | - Rukhsana Aslam
- Feinstein Institute for Medical Research and Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, United States
| | - Ali Hussain
- Feinstein Institute for Medical Research and Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, United States
| | - Haichao Wang
- Feinstein Institute for Medical Research and Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, United States; Department of Emergency Medicine, North Shore University Hospital, Manhasset, NY, United States
| | - Xiaogang Zhou
- Key Laboratory for Aging and Regenerative Medicine, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Xiaoming He
- Key Laboratory for Aging and Regenerative Medicine, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Guisheng Wu
- Key Laboratory for Aging and Regenerative Medicine, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Huairong Luo
- Key Laboratory for Aging and Regenerative Medicine, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Xiqian Lan
- Key Laboratory for Aging and Regenerative Medicine, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China; Feinstein Institute for Medical Research and Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, United States.
| | - Ashwani Malhotra
- Feinstein Institute for Medical Research and Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, United States
| | - Pravin C Singhal
- Feinstein Institute for Medical Research and Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, United States.
| |
Collapse
|
15
|
Fan W, Peng Y, Liang Z, Yang Y, Zhang J. A negative feedback loop of H19/miR‐675/EGR1 is involved in diabetic nephropathy by downregulating the expression of the vitamin D receptor. J Cell Physiol 2019; 234:17505-17513. [PMID: 30815865 DOI: 10.1002/jcp.28373] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 01/23/2019] [Accepted: 01/24/2019] [Indexed: 01/08/2023]
Affiliation(s)
- WenXing Fan
- Department of Nephrology the First Affiliated Hospital of Kunming Medical University Kunming Yunnan China
- Yunnan Key Laboratory of Laboratory Medicine, the First Affiliated Hospital of Kunming Medical University Kunming Yunnan China
| | - YunZhu Peng
- Department of Cardiology the First Affiliated Hospital of Kunming Medical University Kunming Yunnan China
| | - Zhang Liang
- Department of Science and Technology Kunming Medical University Kunming Yunnan China
| | - YueNa Yang
- Teaching Quality Monitoring and Assessment Center, Kunming Medical University Kunming Yunnan China
| | - Jing Zhang
- Department of Nephrology the First Affiliated Hospital of Kunming Medical University Kunming Yunnan China
| |
Collapse
|
16
|
Cui FQ, Tang L, Gao YB, Wang YF, Meng Y, Shen C, Shen ZL, Liu ZQ, Zhao WJ, Liu WJ. Effect of Baoshenfang Formula on Podocyte Injury via Inhibiting the NOX-4/ROS/p38 Pathway in Diabetic Nephropathy. J Diabetes Res 2019; 2019:2981705. [PMID: 31179339 PMCID: PMC6501129 DOI: 10.1155/2019/2981705] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 12/29/2018] [Accepted: 01/15/2019] [Indexed: 01/04/2023] Open
Abstract
Diabetic nephropathy (DN) is a serious kidney-related complication of type 1 and type 2 diabetes. The Chinese herbal formula Baoshenfang (BSF) shows therapeutic potential in attenuating oxidative stress and apoptosis in podocytes in DN. This study evaluated the effects of BSF on podocyte injury in vivo and in vitro and explored the possible involvement of the nicotinamide adenine dinucleotide phosphate-oxidase-4/reactive oxygen species- (NOX-4/ROS-) activated p38 pathway. In the identified compounds by mass spectrometry, some active constituents of BSF were reported to show antioxidative activity. In addition, we found that BSF significantly decreased 24-hour urinary protein, serum creatinine, and blood urea nitrogen in DN patients. BSF treatment increased the nephrin expression, alleviated oxidative cellular damage, and inhibited Bcl-2 family-associated podocyte apoptosis in high-glucose cultured podocytes and/or in diabetic rats. More importantly, BSF also decreased phospho-p38, while high glucose-mediated apoptosis was blocked by p38 mitogen-activated protein kinase inhibitor in cultured podocytes, indicating that the antiapoptotic effect of BSF is p38 pathway-dependent. High glucose-induced upexpression of NOX-4 was normalized by BSF, and NOX-4 siRNAs inhibited the phosphorylation of p38, suggesting that the activated p38 pathway is at least partially mediated by NOX-4. In conclusion, BSF can decrease proteinuria and protect podocytes from injury in DN, in part through inhibiting the NOX-4/ROS/p38 pathway.
Collapse
Affiliation(s)
- Fang-qiang Cui
- Department of Nephrology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, 23 Meishuguanhou Street, Dongcheng District, Beijing 100010, China
- Beijing Key Lab of TCM Collateral Disease Theory Research, No. 10, Youanmenwai, Xitoutiao, Fengtai District, Beijing 100069, China
| | - Long Tang
- Department of Nephrology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, 23 Meishuguanhou Street, Dongcheng District, Beijing 100010, China
- Beijing Key Lab of TCM Collateral Disease Theory Research, No. 10, Youanmenwai, Xitoutiao, Fengtai District, Beijing 100069, China
| | - Yan-bin Gao
- Beijing Key Lab of TCM Collateral Disease Theory Research, No. 10, Youanmenwai, Xitoutiao, Fengtai District, Beijing 100069, China
- School of Traditional Chinese Medicine, Capital Medical University, No. 10, Youanmenwai, Xitoutiao, Fengtai District, Beijing 100069, China
| | - Yue-fen Wang
- Department of Nephrology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, 23 Meishuguanhou Street, Dongcheng District, Beijing 100010, China
| | - Yuan Meng
- Department of Nephrology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, 23 Meishuguanhou Street, Dongcheng District, Beijing 100010, China
| | - Cun Shen
- Department of Nephrology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, 23 Meishuguanhou Street, Dongcheng District, Beijing 100010, China
| | - Zi-long Shen
- Department of Nephrology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, 23 Meishuguanhou Street, Dongcheng District, Beijing 100010, China
| | - Zhi-qiang Liu
- Department of Nephrology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, 23 Meishuguanhou Street, Dongcheng District, Beijing 100010, China
| | - Wen-jing Zhao
- Department of Nephrology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, 23 Meishuguanhou Street, Dongcheng District, Beijing 100010, China
- Beijing Key Lab of TCM Collateral Disease Theory Research, No. 10, Youanmenwai, Xitoutiao, Fengtai District, Beijing 100069, China
| | - Wei Jing Liu
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing 100700, China
| |
Collapse
|
17
|
Marquez-Exposito L, Lavoz C, Rodrigues-Diez RR, Rayego-Mateos S, Orejudo M, Cantero-Navarro E, Ortiz A, Egido J, Selgas R, Mezzano S, Ruiz-Ortega M. Gremlin Regulates Tubular Epithelial to Mesenchymal Transition via VEGFR2: Potential Role in Renal Fibrosis. Front Pharmacol 2018; 9:1195. [PMID: 30386246 PMCID: PMC6199372 DOI: 10.3389/fphar.2018.01195] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 09/28/2018] [Indexed: 12/27/2022] Open
Abstract
Chronic kidney disease (CKD) is emerging as an important health problem due to the increase number of CKD patients and the absence of an effective curative treatment. Gremlin has been proposed as a novel therapeutic target for renal inflammatory diseases, acting via Vascular Endothelial Growth Factor Receptor-2 (VEGFR2). Although many evidences suggest that Gremlin could regulate renal fibrosis, the receptor involved has not been yet clarified. Gremlin, as other TGF-β superfamily members, regulates tubular epithelial to mesenchymal transition (EMT) and, therefore, could contribute to renal fibrosis. In cultured tubular epithelial cells Gremlin binding to VEGFR2 is linked to proinflammatory responses. Now, we have found out that in these cells VEGFR2 is also involved in the profibrotic actions of Gremlin. VEGFR2 blockade by a pharmacological kinase inhibitor or gene silencing diminished Gremlin-mediated gene upregulation of profibrotic factors and restored changes in EMT-related genes. Moreover, VEGFR2 inhibition blocked EMT phenotypic changes and dampened the rate of wound healing in response to Gremlin. The role of VEGFR2 in experimental fibrosis was evaluated in experimental unilateral ureteral obstruction. VEFGR2 inhibition diminished the upregulation of profibrotic genes and EMT changes, as well as the accumulation of extracellular matrix proteins, such as fibronectin and collagens in the obstructed kidneys. Notch pathway activation participates in renal damage progression by regulating cell growth/proliferation, regeneration and inflammation. In cultured tubular epithelial cells, Notch inhibition markedly downregulated Gremlin-induced EMT changes and wound healing speed. These results show that Gremlin regulates the EMT process via VEGFR2 and Notch pathway activation, suggesting that the Gremlin/VEGFR2 axis could be a potential therapeutic target for CKD.
Collapse
Affiliation(s)
- Laura Marquez-Exposito
- Cellular Biology in Renal Diseases Laboratory, IIS-Fundación Jiménez Díaz, Universidad Autónoma de Madrid, Madrid, Spain.,Red de Investigación Renal, Madrid, Spain
| | - Carolina Lavoz
- Division of Nephrology, School of Medicine, Universidad Austral, Valdivia, Chile
| | - Raul R Rodrigues-Diez
- Red de Investigación Renal, Madrid, Spain.,Laboratory of Nephrology, Fundación para la Investigación Biomédica del Hospital Universitario la Paz, Universidad Autónoma de Madrid, Madrid, Spain
| | - Sandra Rayego-Mateos
- Red de Investigación Renal, Madrid, Spain.,Vascular and Renal Translational Research Group, Institut de Recerca Biomédica de Lleida, Lleida, Spain
| | - Macarena Orejudo
- Cellular Biology in Renal Diseases Laboratory, IIS-Fundación Jiménez Díaz, Universidad Autónoma de Madrid, Madrid, Spain.,Red de Investigación Renal, Madrid, Spain
| | - Elena Cantero-Navarro
- Cellular Biology in Renal Diseases Laboratory, IIS-Fundación Jiménez Díaz, Universidad Autónoma de Madrid, Madrid, Spain.,Red de Investigación Renal, Madrid, Spain
| | - Alberto Ortiz
- Red de Investigación Renal, Madrid, Spain.,Division of Nephrology and Hypertension, IIS-Fundación Jiménez Díaz, Universidad Autónoma de Madrid, Madrid, Spain
| | - Jesús Egido
- Division of Nephrology and Hypertension, IIS-Fundación Jiménez Díaz, Universidad Autónoma de Madrid, Madrid, Spain.,Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders, Madrid, Spain
| | - Rafael Selgas
- Red de Investigación Renal, Madrid, Spain.,Laboratory of Nephrology, Fundación para la Investigación Biomédica del Hospital Universitario la Paz, Universidad Autónoma de Madrid, Madrid, Spain
| | - Sergio Mezzano
- Division of Nephrology, School of Medicine, Universidad Austral, Valdivia, Chile
| | - Marta Ruiz-Ortega
- Cellular Biology in Renal Diseases Laboratory, IIS-Fundación Jiménez Díaz, Universidad Autónoma de Madrid, Madrid, Spain.,Red de Investigación Renal, Madrid, Spain
| |
Collapse
|
18
|
Wang XB, Zhu H, Song W, Su JH. Gremlin Regulates Podocyte Apoptosis via Transforming Growth Factor-β (TGF-β) Pathway in Diabetic Nephropathy. Med Sci Monit 2018; 24:183-189. [PMID: 29315280 PMCID: PMC5771160 DOI: 10.12659/msm.905758] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Gremlin has been reported to be up-regulated in glomerular mesangial cells in diabetic nephropathy (DN). However, the regulation of gremlin in podocytes is still rarely reported. This study aimed to investigate the underlying mechanisms by which gremlin mediates the pathogenesis of DN via transforming growth factor-β (TGF-β) signaling pathways. MATERIAL AND METHODS Lentiviral and RNAi transfection were performed to increase and decrease gremlin expression in high-glucose conditions. Expression at the mRNA and protein level was detected by RT-qPCR and Western blotting. RESULTS The expression of gremlin was significantly higher in high-glucose (HG, 30mM) than normal-glucose (NG, 5.5 mM) conditions. The gremlin overexpression significantly suppressed the expression of nephrin and synaptopodin. The phosphorylation of canonical TGF-b signaling pathway components, including Smad2/3 and MKK, was increased in the gremlin-overexpressing group. In addition, the expression levels of Bax and cleaved caspase-3 were also higher in the gremlin-overexpressing group. TGF-β pathway inhibitor (SB505124) significantly inhibited TGF-β pathway activity and enhanced the expression of nephrin and synaptopodin. CONCLUSIONS These results indicate that gremlin can aggravate podocyte lesions through the TGF-β signaling pathway, providing a novel therapeutic target for DN.
Collapse
Affiliation(s)
- Xiao-Bing Wang
- Department of Nephrology, Taizhou Second People’s Hospital Affiliated Yangzhou University, Taizhou, Jiangsu, P.R. China
| | - Hong Zhu
- Department of Nephrology, Taizhou Second People’s Hospital Affiliated Yangzhou University, Taizhou, Jiangsu, P.R. China
| | - Wei Song
- Department of Gastroenterology, Huai’an First People’s Hospital, Nanjing Medical University, Huai’an, Jiangsu, P.R. China
| | - Jian-Hua Su
- Department of Geriatric Medicine, Wuxi No. 2 People’s Hospital, Nanjing Medical University, Nanjing, Jiangsu, P.R. China
- Corresponding Author: Jian-Hua Su, e-mail:
| |
Collapse
|
19
|
Tumelty KE, Higginson-Scott N, Fan X, Bajaj P, Knowlton KM, Shamashkin M, Coyle AJ, Lu W, Berasi SP. Identification of direct negative cross-talk between the SLIT2 and bone morphogenetic protein-Gremlin signaling pathways. J Biol Chem 2018; 293:3039-3055. [PMID: 29317497 DOI: 10.1074/jbc.m117.804021] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 12/06/2017] [Indexed: 12/28/2022] Open
Abstract
Slit guidance ligand 2 (SLIT2) is a large, secreted protein that binds roundabout (ROBO) receptors on multiple cell types, including neurons and kidney podocytes. SLIT2-ROBO-mediated signaling regulates neuronal migration and ureteric bud (UB) outgrowth during kidney development as well as glomerular filtration in adult kidneys. Additionally, SLIT2 binds Gremlin, an antagonist of bone morphogenetic proteins (BMPs), and BMP-Gremlin signaling also regulates UB formation. However, direct cross-talk between the ROBO2-SLIT2 and BMP-Gremlin signaling pathways has not been established. Here, we report the discovery of negative feedback between the SLIT2 and BMP-Gremlin signaling pathways. We found that the SLIT2-Gremlin interaction inhibited both SLIT2-ROBO2 signaling in neurons and Gremlin antagonism of BMP activity in myoblasts and fibroblasts. Furthermore, BMP2 down-regulated SLIT2 expression and promoter activity through canonical BMP signaling. Gremlin treatment, BMP receptor inhibition, and SMAD family member 4 (SMAD4) knockdown rescued BMP-mediated repression of SLIT2. BMP2 treatment of nephron progenitor cells derived from human embryonic stem cells decreased SLIT2 expression, further suggesting an interaction between the BMP2-Gremlin and SLIT2 pathways in human kidney cells. In conclusion, our study has revealed direct negative cross-talk between two pathways, previously thought to be unassociated, that may regulate both kidney development and adult tissue maintenance.
Collapse
Affiliation(s)
- Kathleen E Tumelty
- From the Centers for Therapeutic Innovation, Pfizer Inc., Cambridge, Massachusetts 02139
| | - Nathan Higginson-Scott
- From the Centers for Therapeutic Innovation, Pfizer Inc., Cambridge, Massachusetts 02139
| | - Xueping Fan
- the Renal Section, Department of Medicine, Boston University Medical Center, Boston, Massachusetts 02118, and
| | - Piyush Bajaj
- the Drug Safety Research and Development, Pfizer Inc., Groton, Connecticut 06340
| | - Kelly M Knowlton
- From the Centers for Therapeutic Innovation, Pfizer Inc., Cambridge, Massachusetts 02139
| | - Michael Shamashkin
- From the Centers for Therapeutic Innovation, Pfizer Inc., Cambridge, Massachusetts 02139
| | - Anthony J Coyle
- From the Centers for Therapeutic Innovation, Pfizer Inc., Cambridge, Massachusetts 02139
| | - Weining Lu
- the Renal Section, Department of Medicine, Boston University Medical Center, Boston, Massachusetts 02118, and
| | - Stephen P Berasi
- From the Centers for Therapeutic Innovation, Pfizer Inc., Cambridge, Massachusetts 02139,
| |
Collapse
|
20
|
Tatsinkam AJ, Rune N, Smith J, Norman JT, Mulloy B, Rider CC. The binding of the bone morphogenetic protein antagonist gremlin to kidney heparan sulfate: Such binding is not essential for BMP antagonism. Int J Biochem Cell Biol 2017; 83:39-46. [DOI: 10.1016/j.biocel.2016.12.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 11/03/2016] [Accepted: 12/10/2016] [Indexed: 02/08/2023]
|
21
|
Metadherin facilitates podocyte apoptosis in diabetic nephropathy. Cell Death Dis 2016; 7:e2477. [PMID: 27882943 PMCID: PMC5260885 DOI: 10.1038/cddis.2016.335] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 09/23/2016] [Accepted: 09/23/2016] [Indexed: 02/01/2023]
Abstract
Apoptosis, one of the major causes of podocyte loss, has been reported to have a vital role in diabetic nephropathy (DN) pathogenesis, and understanding the mechanisms underlying the regulation of podocyte apoptosis is crucial. Metadherin (MTDH) is an important oncogene, which is overexpressed in most cancers and responsible for apoptosis, metastasis, and poor patient survival. Here we show that the expression levels of Mtdh and phosphorylated p38 mitogen-activated protein kinase (MAPK) are significantly increased, whereas those of the microRNA-30 family members (miR-30s) are considerably reduced in the glomeruli of DN rat model and in high glucose (HG)-induced conditionally immortalized mouse podocytes (MPC5). These levels are positively correlated with podocyte apoptosis rate. The inhibition of Mtdh expression, using small interfering RNA, but not Mtdh overexpression, was shown to inhibit HG-induced MPC5 apoptosis and p38 MAPK pathway, and Bax and cleaved caspase 3 expression. This was shown to be similar to the effects of p38 MAPK inhibitor (SB203580). Furthermore, luciferase assay results demonstrated that Mtdh represents the target of miR-30s. Transient transfection experiments, using miR-30 microRNA (miRNA) inhibitors, led to the increase in Mtdh expression and induced the apoptosis of MPC5, whereas the treatment with miR-30 miRNA mimics led to the reduction in Mtdh expression and apoptosis of HG-induced MPC5 cells in comparison with their respective controls. Our results demonstrate that Mtdh is a potent modulator of podocyte apoptosis, and that it represents the target of miR-30 miRNAs, facilitating podocyte apoptosis through the activation of HG-induced p38 MAPK-dependent pathway.
Collapse
|
22
|
Barnes JW, Kucera ET, Tian L, Mellor NE, Dvorina N, Baldwin WW, Aldred MA, Farver CF, Comhair SAA, Aytekin M, Dweik RA. Bone Morphogenic Protein Type 2 Receptor Mutation-Independent Mechanisms of Disrupted Bone Morphogenetic Protein Signaling in Idiopathic Pulmonary Arterial Hypertension. Am J Respir Cell Mol Biol 2016; 55:564-575. [PMID: 27187737 DOI: 10.1165/rcmb.2015-0402oc] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Altered bone morphogenic protein (BMP) signaling, independent of BMPR2 mutations, can result in idiopathic pulmonary arterial hypertension (IPAH). Glucose dysregulation can regulate multiple processes in IPAH. However, the role of glucose in BMP antagonist expression in IPAH has not been characterized. We hypothesized that glucose uptake regulates BMP signaling through stimulation of BMP antagonist expression in IPAH. Using human plasma, lung tissue, and primary pulmonary arterial smooth muscle cells (PASMCs), we examined the protein expression of BMP2, BMP-regulated Smads, and Smurf-1 in patients with IPAH and control subjects. Gremlin-1 levels were elevated in patients with IPAH compared with control subjects, whereas expression of BMP2 was not different. We demonstrate increased Smad polyubiquitination in IPAH lung tissue and PASMCs that was further enhanced with proteasomal inhibition. Examination of the Smad ubiquitin-ligase, Smurf-1, showed increased protein expression in IPAH lung tissue and localization in the smooth muscle of the pulmonary artery. Glucose dose dependently increased Smurf-1 protein expression in control PASMCs, whereas Smurf-1 in IPAH PASMCs was increased and sustained. Conversely, phospho-Smad1/5/8 levels were reduced in IPAH compared with control PASMCs at physiological glucose concentrations. Interestingly, high glucose concentrations decreased phosphorylation of Smad1/5/8 in control PASMCs. Blocking glucose uptake had opposing effects in IPAH PASMCs, and inhibition of Smurf-1 activity resulted in partial rescue of Smad1/5/8 activation and cell migration rates. Collectively, these data suggest that BMP signaling can be regulated through BMPR2 mutation-independent mechanisms. Gremlin-1 (synonym: induced-in-high-glucose-2 protein) and Smurf-1 may function to inhibit BMP signaling as a consequence of the glucose dysregulation described in IPAH.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Micheala A Aldred
- 3 Genomic Medicine Institute, Cleveland Clinic, Cleveland, Ohio; and
| | | | | | - Metin Aytekin
- Departments of 1 Pathobiology and.,5 Department of Medical Biology, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Raed A Dweik
- Departments of 1 Pathobiology and.,6 Pulmonary and Critical Care Medicine, Respiratory Institute
| |
Collapse
|
23
|
Inhibition of MEF2A prevents hyperglycemia-induced extracellular matrix accumulation by blocking Akt and TGF-β1/Smad activation in cardiac fibroblasts. Int J Biochem Cell Biol 2015; 69:52-61. [DOI: 10.1016/j.biocel.2015.10.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 09/19/2015] [Accepted: 10/13/2015] [Indexed: 02/07/2023]
|
24
|
Effect of Tongxinluo on Nephrin Expression via Inhibition of Notch1/Snail Pathway in Diabetic Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:424193. [PMID: 26417374 PMCID: PMC4568378 DOI: 10.1155/2015/424193] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 08/12/2015] [Accepted: 08/12/2015] [Indexed: 11/17/2022]
Abstract
Podocyte injury is an important mechanism of diabetic nephropathy (DN). Accumulating evidence suggests that nephrin expression is decreased in podocyte in DN. Moreover, it has been demonstrated that tongxinluo (TXL) can ameliorate renal structure disruption and dysfunction in DN. However, the effect of TXL on podocyte injury in DN and its molecular mechanism is unclear. In order to explore the effect of TXL on podocyte injury and its molecular mechanism in DN, our in vivo and in vitro studies were performed. Our results showed that TXL increased nephrin expression in diabetic rats and in high glucose cultured podocyte. Meanwhile, TXL decreased ICN1 (the intracellular domain of notch), HES1, and snail expression in podocyte in vivo and in vitro. More importantly, we found that TXL protected podocyte from injury in DN. The results demonstrated that TXL inhibited the activation of notch1/snail pathway and increased nephrin expression, which may be a mechanism of protecting effect on podocyte injury in DN.
Collapse
|
25
|
Mulloy B, Rider CC. The Bone Morphogenetic Proteins and Their Antagonists. VITAMINS AND HORMONES 2015; 99:63-90. [PMID: 26279373 DOI: 10.1016/bs.vh.2015.06.004] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The bone morphogenetic proteins (BMPs) and the growth and differentiation factors comprise a single family of some 20 homologous, dimeric cytokines which share the cystine-knot domain typical of the TGF-β superfamily. They control the differentiation and activity of a range of cell types, including many outside bone and cartilage. They serve as developmental morphogens, but are also important in chronic pathologies, including tissue fibrosis and cancer. One mechanism for enabling tight spatiotemporal control of their activities is through a number of antagonist proteins, including Noggin, Follistatin, Chordin, Twisted gastrulation (TSG), and the seven members of the Cerberus and Dan family. These antagonists are secreted proteins that bind selectively to particular BMPs with high affinity, thereby blocking receptor engagement and signaling. Most of these antagonists also possess a TGF-β cystine-knot domain. Here, we discuss current knowledge and understanding of the structures and activities of the BMPs and their antagonists, with a particular focus on the latter proteins. Recent advances in structural biology of BMP antagonists have begun the process of elucidating the molecular basis of their activity, displaying a surprising variety between the modes of action of these closely related proteins. We also discuss the interactions of the antagonists with the glycosaminoglycan heparan sulfate, which is found ubiquitously on cell surfaces and in the extracellular matrix.
Collapse
Affiliation(s)
- Barbara Mulloy
- Centre for Biomedical Sciences, School of Biological Sciences, Royal Holloway, University of London, Egham, Surrey, United Kingdom
| | - Chris C Rider
- Centre for Biomedical Sciences, School of Biological Sciences, Royal Holloway, University of London, Egham, Surrey, United Kingdom.
| |
Collapse
|
26
|
Marchant V, Droguett A, Valderrama G, Burgos ME, Carpio D, Kerr B, Ruiz-Ortega M, Egido J, Mezzano S. Tubular overexpression of Gremlin in transgenic mice aggravates renal damage in diabetic nephropathy. Am J Physiol Renal Physiol 2015; 309:F559-68. [PMID: 26155842 DOI: 10.1152/ajprenal.00023.2015] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 06/30/2015] [Indexed: 12/12/2022] Open
Abstract
Diabetic nephropathy (DN) is currently a leading cause of end-stage renal failure worldwide. Gremlin was identified as a gene differentially expressed in mesangial cells exposed to high glucose and in experimental diabetic kidneys. We have described that Gremlin is highly expressed in biopsies from patients with diabetic nephropathy, predominantly in areas of tubulointerstitial fibrosis. In streptozotocin (STZ)-induced experimental diabetes, Gremlin deletion using Grem1 heterozygous knockout mice or by gene silencing, ameliorates renal damage. To study the in vivo role of Gremlin in renal damage, we developed a diabetic model induced by STZ in transgenic (TG) mice expressing human Gremlin in proximal tubular epithelial cells. The albuminuria/creatinuria ratio, determined at week 20 after treatment, was significantly increased in diabetic mice but with no significant differences between transgenic (TG/STZ) and wild-type mice (WT/STZ). To assess the level of renal damage, kidney tissue was analyzed by light microscopy (periodic acid-Schiff and Masson staining), electron microscopy, and quantitative PCR. TG/STZ mice had significantly greater thickening of the glomerular basement membrane, increased mesangial matrix, and podocytopenia vs. WT/STZ. At the tubulointerstitial level, TG/STZ showed increased cell infiltration and mild interstitial fibrosis. In addition, we observed a decreased expression of podocin and overexpression of monocyte chemoattractant protein-1 and fibrotic-related markers, including transforming growth factor-β1, Col1a1, and α-smooth muscle actin. Together, these results show that TG mice overexpressing Gremlin in renal tubules develop greater glomerular and tubulointerstitial injury in response to diabetic-mediated damage and support the involvement of Gremlin in diabetic nephropathy.
Collapse
Affiliation(s)
- Vanessa Marchant
- Nephrology Division, School of Medicine, Universidad Austral de Chile, Valdivia, Chile
| | - Alejandra Droguett
- Nephrology Division, School of Medicine, Universidad Austral de Chile, Valdivia, Chile
| | - Graciela Valderrama
- Nephrology Division, School of Medicine, Universidad Austral de Chile, Valdivia, Chile
| | - M Eugenia Burgos
- Nephrology Division, School of Medicine, Universidad Austral de Chile, Valdivia, Chile
| | - Daniel Carpio
- Nephrology Division, School of Medicine, Universidad Austral de Chile, Valdivia, Chile
| | | | - Marta Ruiz-Ortega
- Cellular Biology in Renal Diseases Laboratory, Universidad Autónoma de Madrid (UAM), Instituto de Investigación Sanitaria (IIS)-Fundación Jimenez Diaz, Madrid, Spain; and
| | - Jesús Egido
- Division of Nephrology and Hypertension, IIS-Fundación Jiménez Díaz-UAM/Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, Instituto Reina Sofía de Investigación Nefrológica, Madrid, Spain
| | - Sergio Mezzano
- Nephrology Division, School of Medicine, Universidad Austral de Chile, Valdivia, Chile;
| |
Collapse
|
27
|
Mapping the heparin-binding site of the BMP antagonist gremlin by site-directed mutagenesis based on predictive modelling. Biochem J 2015; 470:53-64. [PMID: 26251446 DOI: 10.1042/bj20150228] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 06/11/2015] [Indexed: 12/20/2022]
Abstract
Gremlin is a member of the CAN (cerberus and DAN) family of secreted BMP (bone morphogenetic protein) antagonists and also an agonist of VEGF (vascular endothelial growth factor) receptor-2. It is critical in limb skeleton and kidney development and is re-expressed during tissue fibrosis. Gremlin binds strongly to heparin and heparan sulfate and, in the present study, we sought to investigate its heparin-binding site. In order to explore a putative non-contiguous binding site predicted by computational molecular modelling, we substituted a total of 11 key arginines and lysines located in three basic residue sequence clusters with homologous sequences from cerberus and DAN (differential screening selected gene abberative in neuroblastoma), CAN proteins which lack basic residues in these positions. A panel of six Myc-tagged gremlin mutants, MGR-1-MGR-6 (MGR, mutant gremlin), each containing different combinations of targeted substitutions, all showed markedly reduced affinity for heparin as demonstrated by their NaCl elution on heparin affinity chromatography, thus verifying our predictions. Both MGR-5 and MGR-6 retained BMP-4-binding activity comparable to that of wild-type gremlin. Low-molecular-mass heparin neither promoted nor inhibited BMP-4 binding. Finally, glutaraldehyde cross-linking demonstrated that gremlin forms non-covalent dimers, similar behaviour to that of DAN and also PRDC (protein related to cerberus and DAN), another CAN protein. The resulting dimer would possess two heparin-binding sites, each running along an exposed surface on the second β-strand finger loop of one of the monomers.
Collapse
|
28
|
Lavoz C, Alique M, Rodrigues-Diez R, Pato J, Keri G, Mezzano S, Egido J, Ruiz-Ortega M. Gremlin regulates renal inflammation via the vascular endothelial growth factor receptor 2 pathway. J Pathol 2015; 236:407-20. [PMID: 25810250 DOI: 10.1002/path.4537] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Revised: 03/17/2015] [Accepted: 03/18/2015] [Indexed: 01/03/2023]
Abstract
Inflammation is a main feature of progressive kidney disease. Gremlin binds to bone morphogenetic proteins (BMPs), acting as an antagonist and regulating nephrogenesis and fibrosis among other processes. Gremlin also binds to vascular endothelial growth factor receptor-2 (VEGFR2) in endothelial cells to induce angiogenesis. In renal cells, gremlin regulates proliferation and fibrosis, but there are no data about inflammatory-related events. We have investigated the direct effects of gremlin in the kidney, evaluating whether VEGFR2 is a functional gremlin receptor. Administration of recombinant gremlin to murine kidneys induced rapid and sustained activation of VEGFR2 signalling, located in proximal tubular epithelial cells. Gremlin bound to VEGFR2 in these cells in vitro, activating this signalling pathway independently of its action as an antagonist of BMPs. In vivo, gremlin caused early renal damage, characterized by activation of the nuclear factor (NF)-κB pathway linked to up-regulation of pro-inflammatory factors and infiltration of immune inflammatory cells. VEGFR2 blockade diminished gremlin-induced renal inflammatory responses. The link between gremlin/VEGFR2 and NF-κB/inflammation was confirmed in vitro. Gremlin overexpression was associated with VEGFR2 activation in human renal disease and in the unilateral ureteral obstruction experimental model, where VEGFR2 kinase inhibition diminished renal inflammation. Our data show that a gremlin/VEGFR2 axis participates in renal inflammation and could be a novel target for kidney disease.
Collapse
Affiliation(s)
- Carolina Lavoz
- Cellular Biology in Renal Diseases Laboratory, IIS-Fundación Jiménez Díaz, Universidad Autónoma Madrid, REDINREN, Spain
| | - Matilde Alique
- Cellular Biology in Renal Diseases Laboratory, IIS-Fundación Jiménez Díaz, Universidad Autónoma Madrid, REDINREN, Spain
| | - Raquel Rodrigues-Diez
- Cellular Biology in Renal Diseases Laboratory, IIS-Fundación Jiménez Díaz, Universidad Autónoma Madrid, REDINREN, Spain
| | | | - Gyorgy Keri
- VichemChemie Ltd, Budapest, Hungary.,MTA-SE Pathobiochemistry Research Group, Department of Medical Chemistry, Semmelweis University, Budapest, Hungary
| | - Sergio Mezzano
- Division of Nephrology, School of Medicine, Universidad Austral, Valdivia, Chile
| | - Jesús Egido
- Division of Nephrology and Hypertension. IIS-Fundación Jiménez Díaz, Universidad Autónoma Madrid, CIBERDEM, Madrid, Spain
| | - Marta Ruiz-Ortega
- Cellular Biology in Renal Diseases Laboratory, IIS-Fundación Jiménez Díaz, Universidad Autónoma Madrid, REDINREN, Spain
| |
Collapse
|
29
|
Brazil DP, Church RH, Surae S, Godson C, Martin F. BMP signalling: agony and antagony in the family. Trends Cell Biol 2015; 25:249-64. [DOI: 10.1016/j.tcb.2014.12.004] [Citation(s) in RCA: 183] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 12/01/2014] [Accepted: 12/02/2014] [Indexed: 01/14/2023]
|
30
|
Gremlin1 preferentially binds to bone morphogenetic protein-2 (BMP-2) and BMP-4 over BMP-7. Biochem J 2015; 466:55-68. [DOI: 10.1042/bj20140771] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Gremlin1 has a distinct preference for which bone morphogenetic protein it binds to in kidney epithelial cells. Grem1–BMP-2 complexes are favoured over other BMPs, and this may play an important role in fibrotic kidney disease.
Collapse
|
31
|
Lin H, Ye S, Xu J, Wang W. The alpha-lipoic acid decreases urinary podocalyxin excretion in type 2 diabetics by inhibiting oxidative stress in vivo. J Diabetes Complications 2015; 29:64-7. [PMID: 25312599 DOI: 10.1016/j.jdiacomp.2014.09.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Revised: 09/17/2014] [Accepted: 09/20/2014] [Indexed: 12/20/2022]
Abstract
OBJECTIVE To observe the effects of Alpha-lipoic acid (ALA) on oxidative stress (OS) in vivo and urinary podocalyxin (PCX, the glomerular podocyte marker protein) excretion in type 2 diabetics and explore its possible protective mechanisms on glomerular podocytes. METHODS Thirty-six type 2 diabetics were recruited as observation group and treated with ALA on the basis of initial therapy for six months, and 30 healthy subjects were selected as control group. FBG, HbA1c, serum glutathione peroxidase (SGSH-Px), superoxide dismutase (SSOD) activity, urinary malondialdehyde (UMDA), 8-hydroxy-deoxyguanosine (U8-OHdG), albumin (UALB), creatinine (UCr) and urinary PCX (UPCX) were determined at baseline and after six months' observation. RESULTS Compared with the control group, the ratios of UMDA/UCr (UMCR), U8-OHdG/UCr (U8CR), UALB/UCr (UACR) and UPCX/UCr (UPCR) increased markedly, SGSH-Px and SSOD decreased significantly in the diabetics (P<0.01); after sixth month treatment, the levels of UMCR, U8CR, UACR and UPCR reduced and SGSH-Px and SSOD increased markedly in the observation group (P<0.05) with no significant changes in FBG and HbA1c. UPCR had positive correlation with UACR, UMCR and U8CR (r=0.720, r=0.661, r=0.698, P<0.01), and negative correlation with SGSH-Px and SSOD in the diabetics (r=-0.608, r=-0.559, P<0.01). CONCLUSION ALA can provide some protection against glomerular podocyte injury in type 2 diabetics, which may be related partly to its effects in alleviating enhanced OS and strengthening antioxidant ability in vivo.
Collapse
Affiliation(s)
- Haiyan Lin
- Department of Endocrinology, Anhui Provincial Hospital Affiliated to Anhui Medical University, Hefei, Anhui, China; Department of Internal Medicine, Maanshan Maternal and Child Health Care Center, Maanshan, Anhui, China
| | - Shandong Ye
- Department of Endocrinology, Anhui Provincial Hospital Affiliated to Anhui Medical University, Hefei, Anhui, China.
| | - Jiang Xu
- Department of Endocrinology, Anhui Provincial Hospital Affiliated to Anhui Medical University, Hefei, Anhui, China
| | - Wei Wang
- Department of Endocrinology, Anhui Provincial Hospital Affiliated to Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
32
|
Siddique I, Curran SP, Ghayur A, Liu L, Shi W, Hoff CM, Gangji AS, Brimble KS, Margetts PJ. Gremlin promotes peritoneal membrane injury in an experimental mouse model and is associated with increased solute transport in peritoneal dialysis patients. THE AMERICAN JOURNAL OF PATHOLOGY 2014; 184:2976-84. [PMID: 25194662 DOI: 10.1016/j.ajpath.2014.07.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Revised: 07/10/2014] [Accepted: 07/14/2014] [Indexed: 11/29/2022]
Abstract
The peritoneal membrane becomes damaged in patients on peritoneal dialysis (PD). Gremlin 1 (GREM1) inhibits bone morphogenic proteins (BMPs) and plays a role in kidney development and fibrosis. We evaluated the role of gremlin in peritoneal fibrosis and angiogenesis. In a cohort of 32 stable PD patients, GREM1 concentration in the peritoneal effluent correlated with measures of peritoneal membrane damage. AdGrem1, an adenovirus to overexpress gremlin in the mouse peritoneum, induced submesothelial thickening, fibrosis, and angiogenesis in C57BL/6 mice, which was associated with decreased expression of BMP4 and BMP7. There was evidence of mesothelial cell transition to a mesenchymal phenotype with increased α smooth muscle actin expression and suppression of E-cadherin. Some of the GREM1 effects may be reversed with recombinant BMP7 or a pan-specific transforming growth factor β (TGF-β) antibody. Neovascularization was not inhibited with a TGF-β antibody, suggesting a TGF-β-independent angiogenic mechanism. Swiss/Jackson Laboratory (SJL) mice, which are resistant to TGF-β-induced peritoneal fibrosis, responded in a similar fashion to AdGrem1 as did C57BL/6 mice with fibrosis, angiogenesis, and mesothelial-to-mesenchymal transition. GREM1 was associated with up-regulated TGF-β expression in both SJL and C57BL/6 mice, but SJL mice demonstrated a defective TGF-β-induced GREM1 expression. In summary, GREM1 induces fibrosis and angiogenesis in mouse peritoneum and is associated with increased solute transport in these PD patients.
Collapse
Affiliation(s)
- Imad Siddique
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Simon P Curran
- Division of Nephrology, University of Toronto, Toronto, Ontario, Canada
| | - Ayesha Ghayur
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Limin Liu
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Wei Shi
- Children's Hospital Los Angeles, University of Southern California, Los Angeles, California
| | | | - Azim S Gangji
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - K Scott Brimble
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Peter J Margetts
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada.
| |
Collapse
|
33
|
Droguett A, Krall P, Burgos ME, Valderrama G, Carpio D, Ardiles L, Rodriguez-Diez R, Kerr B, Walz K, Ruiz-Ortega M, Egido J, Mezzano S. Tubular overexpression of gremlin induces renal damage susceptibility in mice. PLoS One 2014; 9:e101879. [PMID: 25036148 PMCID: PMC4103765 DOI: 10.1371/journal.pone.0101879] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Accepted: 06/12/2014] [Indexed: 11/18/2022] Open
Abstract
A growing number of patients are recognized worldwide to have chronic kidney disease. Glomerular and interstitial fibrosis are hallmarks of renal progression. However, fibrosis of the kidney remains an unresolved challenge, and its molecular mechanisms are still not fully understood. Gremlin is an embryogenic gene that has been shown to play a key role in nephrogenesis, and its expression is generally low in the normal adult kidney. However, gremlin expression is elevated in many human renal diseases, including diabetic nephropathy, pauci-immune glomerulonephritis and chronic allograft nephropathy. Several studies have proposed that gremlin may be involved in renal damage by acting as a downstream mediator of TGF-β. To examine the in vivo role of gremlin in kidney pathophysiology, we generated seven viable transgenic mouse lines expressing human gremlin (GREM1) specifically in renal proximal tubular epithelial cells under the control of an androgen-regulated promoter. These lines demonstrated 1.2- to 200-fold increased GREM1 expression. GREM1 transgenic mice presented a normal phenotype and were without proteinuria and renal function involvement. In response to the acute renal damage cause by folic acid nephrotoxicity, tubule-specific GREM1 transgenic mice developed increased proteinuria after 7 and 14 days compared with wild-type treated mice. At 14 days tubular lesions, such as dilatation, epithelium flattening and hyaline casts, with interstitial cell infiltration and mild fibrosis were significantly more prominent in transgenic mice than wild-type mice. Tubular GREM1 overexpression was correlated with the renal upregulation of profibrotic factors, such as TGF-β and αSMA, and with increased numbers of monocytes/macrophages and lymphocytes compared to wild-type mice. Taken together, our results suggest that GREM1-overexpressing mice have an increased susceptibility to renal damage, supporting the involvement of gremlin in renal damage progression. This transgenic mouse model could be used as a new tool for enhancing the knowledge of renal disease progression.
Collapse
Affiliation(s)
- Alejandra Droguett
- Division Nephrology, School of Medicine, Universidad Austral de Chile, Valdivia, Chile
| | - Paola Krall
- Division Nephrology, School of Medicine, Universidad Austral de Chile, Valdivia, Chile
| | - M. Eugenia Burgos
- Division Nephrology, School of Medicine, Universidad Austral de Chile, Valdivia, Chile
| | - Graciela Valderrama
- Division Nephrology, School of Medicine, Universidad Austral de Chile, Valdivia, Chile
| | - Daniel Carpio
- Hystopathology Division, School of Medicine, Universidad Austral de Chile, Valdivia, Chile
| | - Leopoldo Ardiles
- Division Nephrology, School of Medicine, Universidad Austral de Chile, Valdivia, Chile
| | - Raquel Rodriguez-Diez
- Cellular Biology in Renal Diseases Laboratory, Universidad Autónoma Madrid, Madrid, Spain
| | | | | | - Marta Ruiz-Ortega
- Cellular Biology in Renal Diseases Laboratory, Universidad Autónoma Madrid, Madrid, Spain
| | - Jesus Egido
- Cellular Biology in Renal Diseases Laboratory, Universidad Autónoma Madrid, Madrid, Spain
| | - Sergio Mezzano
- Division Nephrology, School of Medicine, Universidad Austral de Chile, Valdivia, Chile
- * E-mail:
| |
Collapse
|
34
|
BMP-2 and -4 produced by vascular smooth muscle cells from atherosclerotic lesions induce monocyte chemotaxis through direct BMPRII activation. Atherosclerosis 2014; 235:45-55. [DOI: 10.1016/j.atherosclerosis.2014.03.030] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Revised: 03/11/2014] [Accepted: 03/24/2014] [Indexed: 11/18/2022]
|
35
|
Gremlin activates the Smad pathway linked to epithelial mesenchymal transdifferentiation in cultured tubular epithelial cells. BIOMED RESEARCH INTERNATIONAL 2014; 2014:802841. [PMID: 24949470 PMCID: PMC4052161 DOI: 10.1155/2014/802841] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Revised: 04/25/2014] [Accepted: 05/01/2014] [Indexed: 11/27/2022]
Abstract
Gremlin is a developmental gene upregulated in human chronic kidney disease and in renal cells in response to transforming growth factor-β (TGF-β). Epithelial mesenchymal transition (EMT) is one process involved in renal fibrosis. In tubular epithelial cells we have recently described that Gremlin induces EMT and acts as a downstream TGF-β mediator. Our aim was to investigate whether Gremlin participates in EMT by the regulation of the Smad pathway. Stimulation of human tubular epithelial cells (HK2) with Gremlin caused an early activation of the Smad signaling pathway (Smad 2/3 phosphorylation, nuclear translocation, and Smad-dependent gene transcription). The blockade of TGF-β, by a neutralizing antibody against active TGF-β, did not modify Gremlin-induced early Smad activation. These data show that Gremlin directly, by a TGF-β independent process, activates the Smad pathway. In tubular epithelial cells long-term incubation with Gremlin increased TGF-β production and caused a sustained Smad activation and a phenotype conversion into myofibroblasts-like cells. Smad 7 overexpression, which blocks Smad 2/3 activation, diminished EMT changes observed in Gremlin-transfected tubuloepithelial cells. TGF-β neutralization also diminished Gremlin-induced EMT changes. In conclusion, we propose that Gremlin could participate in renal fibrosis by inducing EMT in tubular epithelial cells through activation of Smad pathway and induction of TGF-β.
Collapse
|
36
|
Anil Kumar P, Welsh GI, Saleem MA, Menon RK. Molecular and cellular events mediating glomerular podocyte dysfunction and depletion in diabetes mellitus. Front Endocrinol (Lausanne) 2014; 5:151. [PMID: 25309512 PMCID: PMC4174857 DOI: 10.3389/fendo.2014.00151] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 09/10/2014] [Indexed: 12/11/2022] Open
Abstract
The essential function of the kidney is to ensure formation of a relatively protein-free ultra-filtrate, urine. The rate of filtration and composition of the primary renal filtrate is determined by the transport of fluid and solutes across the glomerular filtration barrier consisting of endothelial cells, the glomerular basement membrane, and podocyte foot processes. In diabetes mellitus (DM), components of the kidney that enable renal filtration get structurally altered and functionally compromised resulting in proteinuria that often progresses to end-stage renal disease. Histological alterations in DM include early hypertrophy of glomerular and tubular components, subsequent thickening of basement membrane in glomeruli and tubules, progressive accumulation of extracellular matrix proteins in the glomerular mesangium and loss of podocytes, together constituting a clinical condition referred to as diabetic nephropathy (DN). The glomerulus has become the focus of research investigating the mechanism of proteinuria. In particular, the progressive dysfunction and/or loss of podocytes that is contemporaneous with proteinuria in DN have attracted intense scientific attention. The absolute number of podocytes predicts glomerular function and podocyte injury is a hallmark of various glomerular diseases. This review discusses the importance of podocytes in normal renal filtration and details the molecular and cellular events that lead to podocyte dysfunction and decreased podocyte count in DN.
Collapse
Affiliation(s)
- P. Anil Kumar
- Department of Biochemistry, University of Hyderabad, Hyderabad, India
| | - Gavin I. Welsh
- Academic Renal Unit, School of Clinical Sciences, University of Bristol, Bristol, UK
| | - Moin A. Saleem
- Academic Renal Unit, School of Clinical Sciences, University of Bristol, Bristol, UK
| | - Ram K. Menon
- Pediatric Endocrinology and Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
- *Correspondence: Ram K. Menon, University of Michigan Medical School, D1205 MPB/SPC 5718, 1500 E. Medical Center Drive, Ann Arbor, MI 48109-5718, USA e-mail:
| |
Collapse
|
37
|
Corsini M, Moroni E, Ravelli C, Andrés G, Grillo E, Ali IH, Brazil DP, Presta M, Mitola S. Cyclic adenosine monophosphate-response element-binding protein mediates the proangiogenic or proinflammatory activity of gremlin. Arterioscler Thromb Vasc Biol 2013; 34:136-45. [PMID: 24233491 DOI: 10.1161/atvbaha.113.302517] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
OBJECTIVE Angiogenesis and inflammation are closely related processes. Gremlin is a novel noncanonical vascular endothelial growth factor receptor-2 (VEGFR2) ligand that induces a proangiogenic response in endothelial cells (ECs). Here, we investigated the role of the cyclic adenosine monophosphate-response element (CRE)-binding protein (CREB) in mediating the proinflammatory and proangiogenic responses of ECs to gremlin. APPROACH AND RESULTS Gremlin induces a proinflammatory response in ECs, leading to reactive oxygen species and cyclic adenosine monophosphate production and the upregulation of proinflammatory molecules involved in leukocyte extravasation, including chemokine (C-C motif) ligand-2 (Ccl2) and Ccl7, chemokine (C-X-C motif) ligand-1 (Cxcl1), vascular cell adhesion molecule-1 (VCAM-1), and intercellular adhesion molecule-1 (ICAM-1). Accordingly, gremlin induces the VEGFR2-dependent phosphorylation, nuclear translocation, and transactivating activity of CREB in ECs. CREB activation mediates the early phases of the angiogenic response to gremlin, including stimulation of EC motility and permeability, and leads to monocyte/macrophage adhesion to ECs and their extravasation. All these effects are inhibited by EC transfection with a dominant-negative CREB mutant or with a CREB-binding protein-CREB interaction inhibitor that competes for CREB/CRE binding. Also, both recombinant gremlin and gremlin-expressing tumor cells induce proinflammatory/proangiogenic responses in vivo that are suppressed by the anti-inflammatory drug hydrocortisone. Similar effects were induced by the canonical VEGFR2 ligand VEGF-A165. CONCLUSIONS Together, the results underline the tight cross-talk between angiogenesis and inflammation and demonstrate a crucial role of CREB activation in the modulation of the VEGFR2-mediated proinflammatory/proangiogenic response of ECs to gremlin.
Collapse
Affiliation(s)
- Michela Corsini
- From the Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy (M.C., E.M., C.R., E.G., M.P., S.M.); Electron Microscopy Unit, Centro de Biologia Molecular Severo Ochoa, Campus Cantoblanco, Madrid, Spain (G.A.); and Centre for Experimental Medicine, Queen's University Belfast, ICS-A, Grosvenor Road, Belfast BT12 6BA, UK (I.H.A., D.P.B.)
| | | | | | | | | | | | | | | | | |
Collapse
|