1
|
Balsa LM, Rodriguez MR, Ferraresi-Curotto V, Parajón-Costa BS, Gonzalez-Baró AC, León IE. Finding New Molecular Targets of Two Copper(II)-Hydrazone Complexes on Triple-Negative Breast Cancer Cells Using Mass-Spectrometry-Based Quantitative Proteomics. Int J Mol Sci 2023; 24:ijms24087531. [PMID: 37108690 PMCID: PMC10139133 DOI: 10.3390/ijms24087531] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/14/2023] [Accepted: 03/16/2023] [Indexed: 04/29/2023] Open
Abstract
Breast cancer is the most common cancer in women, with a high incidence estimated to reach 2.3 million by 2030. Triple-Negative Breast Cancer (TNBC) is the greatest invasive class of breast cancer with a poor prognosis, due to the side-effects exerted by the chemotherapy used and the low effectivity of novel treatments. In this sense, copper compounds have shown to be potentially effective as antitumor agents, attracting increasing interest as alternatives to the usually employed platinum-derived drugs. Therefore, the aim of this work is to identify differentially expressed proteins in MDA-MB-231 cells exposed to two copper(II)-hydrazone complexes using label-free quantitative proteomics and functional bioinformatics strategies to identify the molecular mechanisms through which these copper complexes exert their antitumoral effect in TNBC cells. Both copper complexes increased proteins involved in endoplasmic reticulum stress and unfolded protein response, as well as the downregulation of proteins related to DNA replication and repair. One of the most relevant anticancer mechanisms of action found for CuHL1 and CuHL2 was the down-regulation of gain-of-function-mutant p53. Moreover, we found a novel and interesting effect for a copper metallodrug, which was the down-regulation of proteins related to lipid synthesis and metabolism that could lead to a beneficial decrease in lipid levels.
Collapse
Affiliation(s)
- Lucia M Balsa
- CEQUINOR (UNLP, CCT-CONICET La Plata, Asociado a CIC), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata 1900, Argentina
| | - María R Rodriguez
- CEQUINOR (UNLP, CCT-CONICET La Plata, Asociado a CIC), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata 1900, Argentina
| | - Verónica Ferraresi-Curotto
- Instituto de Física La Plata, IFLP (UNLP, CCT-CONICET La Plata), Departamento de Física, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata 1900, Argentina
| | - Beatriz S Parajón-Costa
- CEQUINOR (UNLP, CCT-CONICET La Plata, Asociado a CIC), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata 1900, Argentina
| | - Ana C Gonzalez-Baró
- CEQUINOR (UNLP, CCT-CONICET La Plata, Asociado a CIC), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata 1900, Argentina
| | - Ignacio E León
- CEQUINOR (UNLP, CCT-CONICET La Plata, Asociado a CIC), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata 1900, Argentina
- Cátedra de Fisiopatología, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata 1900, Argentina
| |
Collapse
|
2
|
Kashkin KN. Looking for Tumor Specific Promoters In Silico. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2022. [DOI: 10.1134/s1068162022060127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Abstract—
Previously we demonstrated the tumor-specific activity of several human native and chimeric promoters. Here we have analyzed the DNA sequences of experimentally tested tumor-specific promoters for the presence of recognition matrices of transcription factors and for de novo motif discovery. CiiiDER and MEME Suite software tools were used for this purpose. A number of transcription factor matrices have been identified, which are present more often in tumor-specific promoters than in the promoters of housekeeping genes. New promoter–TF regulatory relationships have been predicted by pathway analysis. A motif of 44 bp characteristic of tumor-specific promoters but not of housekeeping gene promoters has been discovered. The search through 29 598 human promoters from the EPDnew promoter database has revealed a series of promoters with this motif, their genes being associated with unfavorable prognoses in cancer. We suppose that some of these promoters may possess a tumor specific activity. In addition, a close similarity in nucleotide motifs between the promoters of the BIRC5 and MCM2 genes has been shown. The results of the study may contribute to understanding the peculiarities of gene transcription in tumors, as well as to searching for native tumor-specific promoters or creating artificial ones for cancer gene therapy, as well as in the development of anticancer vaccines.
Collapse
|
3
|
Li Y, Qin Z, Zhang F, Yang ST. Two-color fluorescent proteins reporting survivin regulation in breast cancer cells for high throughput drug screening. Biotechnol Bioeng 2021; 119:1004-1017. [PMID: 34914099 DOI: 10.1002/bit.28006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/25/2021] [Accepted: 12/09/2021] [Indexed: 02/06/2023]
Abstract
Reporter gene assay is widely used for high throughput drug screening and drug action mechanism evaluation. In this study, we developed a robust dual-fluorescent reporter assay to detect drugs repressing the transcription of survivin, a cancer biomarker from the inhibitor of apoptosis family, in breast cancer cells cultured in three-dimensional (3D) microbioreactors. Survivin is overexpressed in numerous malignancies but almost silent in normal tissue cells and is considered a lead target for cancer therapy. Breast cancer MCF-7 cells were engineered to express enhanced green fluorescent protein driven by a survivin promoter and red fluorescent protein driven by a cytomegalovirus promoter as internal control to detect changes in survivin expression in cells as affected by drugs. This 3D dual-fluorescent reporter assay was validated with YM155 and doxorubicin, which were known to downregulate survivin in cancer cells, and further evaluated with two widely used anticancer compounds, cisplatin, and epigallocatechin gallate, to evaluate their effects on survivin expression. The results showed that the 3D dual-fluorescent reporter assay was robust for high throughput screening of drugs targeting survivin in breast cancer cells.
Collapse
Affiliation(s)
- You Li
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio, USA
| | - Zhen Qin
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio, USA
| | - Fengli Zhang
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio, USA
| | - Shang-Tian Yang
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
4
|
Identification of the Differentially Expressed Genes of Muscle Growth and Intramuscular Fat Metabolism in the Development Stage of Yellow Broilers. Genes (Basel) 2020; 11:genes11030244. [PMID: 32110997 PMCID: PMC7140879 DOI: 10.3390/genes11030244] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 02/10/2020] [Accepted: 02/20/2020] [Indexed: 02/04/2023] Open
Abstract
High-quality chicken meat is an important source of animal protein for humans. Gene expression profiles in breast muscle tissue were determined, aiming to explore the common regulatory genes relevant to muscle and intramuscular fat (IMF) during the developmental stage in chickens. Results show that breast muscle weight (BMW), breast meat percentage (BMP, %), and IMF (%) continuously increased with development. A total of 256 common differentially expressed genes (DEGs) during the developmental stage were screened. Among them, some genes related to muscle fiber hypertrophy were upregulated (e.g., CSRP3, LMOD2, MUSTN1, MYBPC1), but others (e.g., ACTC1, MYL1, MYL4) were downregulated from Week 3 to Week 18. During this period, expression of some DEGs related to the cells cycle (e.g., CCNB3, CCNE2, CDC20, MCM2) changed in a way that genetically suggests possible inhibitory regulation on cells number. In addition, DEGs associated with energy metabolism (e.g., ACOT9, CETP, LPIN1, DGAT2, RBP7, FBP1, PHKA1) were found to regulate IMF deposition. Our data identified and provide new insights into the common regulatory genes related to muscle growth, cell proliferation, and energy metabolism at the developmental stage in chickens.
Collapse
|
5
|
Qin Q, Tan Q, Li J, Yang W, Lian B, Mo Q, Wei C. Elevated expression of POLD1 is associated with poor prognosis in breast cancer. Oncol Lett 2018; 16:5591-5598. [PMID: 30344713 PMCID: PMC6176253 DOI: 10.3892/ol.2018.9392] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 04/16/2018] [Indexed: 01/02/2023] Open
Abstract
Polymerase δ catalytic subunit gene 1 (POLD1) may serve an important function in the development of tumors. However, its role in breast cancer remains unclear. The aim of the present study was to observe the expression and the function of POLD1 in breast cancer. A total of 84 patients with invasive breast carcinoma were recruited between 2011 and 2013. The expression of POLD1 was detected in paired tumor and adjacent normal tissues. Gene expression level of POLD1 was assessed using reverse transcription quantitative polymerase chain reaction. The protein expression of POLD1 was assessed using western blot analysis. The association between the clinicopathological features of patients with breast cancer and POLD1 expression was analyzed using a χ2 test. Disease-free survival (DFS) was analyzed using Kaplan-Meier method, and Cox regression analysis was performed to investigate clinicopathological significance of POLD1 expression. Additionally, the effects of POLD1 in regulating cell cycle and proliferation of MCF-7 cells were evaluated in vitro. The results demonstrated that gene and protein expression levels of POLD1 were significantly elevated in breast cancer tissues compared with those in adjacent normal tissues. Increased expression of POLD1 was significantly associated with positive lymph node status (P=0.028), histological grade (P=0.025), p53 status (P<0.001) and ki-67 index (P=0.020). Survival analysis demonstrated that increased expression of POLD1 was associated with poor DFS (P=0.033). Additionally, increased expression of POLD1 was associated with shorter DFS at early-stage (P=0.037), late-stage cases (P=0.023) and with the presence of triple-negative tumors (TNBC; P=0.049). Multivariate analysis revealed that POLD1 may be used as an independent prognostic factor in patients with breast cancer. In vitro studies revealed that downregulation of POLD1 suppressed cell cycle progression and proliferation in MCF-7 cells. In conclusion, POLD1 may be considered as a potential prognostic marker for invasive breast carcinoma.
Collapse
Affiliation(s)
- Qinghong Qin
- Department of Breast Surgery, The Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Qixing Tan
- Department of Breast Surgery, The Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Jinyuan Li
- Department of Breast Surgery, The Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Weiping Yang
- Department of Ultrasound Diagnosis, The Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Bin Lian
- Department of Breast Surgery, The Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Qinguo Mo
- Department of Breast Surgery, The Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Changyuan Wei
- Department of Breast Surgery, The Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| |
Collapse
|
6
|
Construction of a combinatorial library of chimeric tumor-specific promoters. Biotechniques 2017; 63:107-116. [PMID: 28911314 DOI: 10.2144/000114586] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 07/24/2017] [Indexed: 11/23/2022] Open
Abstract
Gene therapy is a fast-developing field of molecular medicine. New, effective, and cancer-specific promoters are in high demand by researchers seeking to treat cancer through expression of therapeutic genes. Here, we created a combinatorial library of tumor-specific chimeric promoter modules for identifying new promoters with desired functions. The library was constructed by randomly combining promoter fragments from eight human genes involved in cell proliferation control. The pool of chimeric promoters was inserted into a lentiviral expression vector upstream of the CopGFP reporter gene, transduced into A431 cells, and enriched for active promoters by cell sorting. The enriched library contained a remarkably high proportion of active and tumor-specific promoters. This approach to generating combinatorial libraries of chimeric promoters may serve as a useful tool for selecting highly specific and effective promoters for cancer research and gene therapy.
Collapse
|
7
|
Nicolas E, Golemis EA, Arora S. POLD1: Central mediator of DNA replication and repair, and implication in cancer and other pathologies. Gene 2016; 590:128-41. [PMID: 27320729 PMCID: PMC4969162 DOI: 10.1016/j.gene.2016.06.031] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 06/10/2016] [Accepted: 06/14/2016] [Indexed: 02/06/2023]
Abstract
The evolutionarily conserved human polymerase delta (POLD1) gene encodes the large p125 subunit which provides the essential catalytic activities of polymerase δ (Polδ), mediated by 5′–3′ DNA polymerase and 3′–5′ exonuclease moieties. POLD1 associates with three smaller subunits (POLD2, POLD3, POLD4), which together with Replication Factor C and Proliferating Nuclear Cell Antigen constitute the polymerase holoenzyme. Polδ function is essential for replication, with a primary role as the replicase for the lagging strand. Polδ also has an important proofreading ability conferred by the exonuclease activity, which is critical for ensuring replicative fidelity, but also serves to repair DNA lesions arising as a result of exposure to mutagens. Polδ has been shown to be important for multiple forms of DNA repair, including nucleotide excision repair, double strand break repair, base excision repair, and mismatch repair. A growing number of studies in the past decade have linked germline and sporadic mutations in POLD1 and the other subunits of Polδ with human pathologies. Mutations in Polδ in mice and humans lead to genomic instability, mutator phenotype and tumorigenesis. The advent of genome sequencing techniques has identified damaging mutations in the proofreading domain of POLD1 as the underlying cause of some inherited cancers, and suggested that mutations in POLD1 may influence therapeutic management. In addition, mutations in POLD1 have been identified in the developmental disorders of mandibular hypoplasia, deafness, progeroid features and lipodystrophy and atypical Werner syndrome, while changes in expression or activity of POLD1 have been linked to senescence and aging. Intriguingly, some recent evidence suggests that POLD1 function may also be altered in diabetes. We provide an overview of critical Polδ activities in the context of these pathologic conditions.
Collapse
Affiliation(s)
- Emmanuelle Nicolas
- Program in Molecular Therapeutics, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Erica A Golemis
- Program in Molecular Therapeutics, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Sanjeevani Arora
- Program in Molecular Therapeutics, Fox Chase Cancer Center, Philadelphia, PA 19111, USA.
| |
Collapse
|