1
|
Chang E, An JY. Whole-genome doubling is a double-edged sword: the heterogeneous role of whole-genome doubling in various cancer types. BMB Rep 2024; 57:125-134. [PMID: 38449300 PMCID: PMC10979346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/01/2024] [Accepted: 02/01/2024] [Indexed: 03/08/2024] Open
Abstract
Whole-genome doubling (WGD), characterized by the duplication of an entire set of chromosomes, is commonly observed in various tumors, occurring in approximately 30-40% of patients with different cancer types. The effect of WGD on tumorigenesis varies depending on the context, either promoting or suppressing tumor progression. Recent advances in genomic technologies and large-scale clinical investigations have led to the identification of the complex patterns of genomic alterations underlying WGD and their functional consequences on tumorigenesis progression and prognosis. Our comprehensive review aims to summarize the causes and effects of WGD on tumorigenesis, highlighting its dualistic influence on cancer cells. We then introduce recent findings on WGD-associated molecular signatures and genetic aberrations and a novel subtype related to WGD. Finally, we discuss the clinical implications of WGD in cancer subtype classification and future therapeutic interventions. Overall, a comprehensive understanding of WGD in cancer biology is crucial to unraveling its complex role in tumorigenesis and identifying novel therapeutic strategies. [BMB Reports 2024; 57(3): 125-134].
Collapse
Affiliation(s)
- Eunhyong Chang
- Department of Integrated Biomedical and Life Science, Korea University, Seoul 02841, Korea
- L-HOPE Program for Community-Based Total Learning Health Systems, Korea University, Seoul 02841, Korea
| | - Joon-Yong An
- Department of Integrated Biomedical and Life Science, Korea University, Seoul 02841, Korea
- L-HOPE Program for Community-Based Total Learning Health Systems, Korea University, Seoul 02841, Korea
- School of Biosystem and Biomedical Science, College of Health Science, Korea University, Seoul 02841, Korea
| |
Collapse
|
2
|
Seipel K, Frey M, Nilius H, Akhoundova D, Banz Y, Bacher U, Pabst T. Low-Frequency PPM1D Gene Mutations Affect Treatment Response to CD19-Targeted CAR T-Cell Therapy in Large B-Cell Lymphoma. Curr Oncol 2023; 30:10463-10476. [PMID: 38132396 PMCID: PMC10742331 DOI: 10.3390/curroncol30120762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/20/2023] [Accepted: 12/08/2023] [Indexed: 12/23/2023] Open
Abstract
Chimeric antigen receptor T (CAR T)-cell therapy has become a standard treatment option for patients with relapsed or refractory diffuse large B-cell lymphoma (r/r DLBCL). Mutations in the PPM1D gene, a frequent driver alteration in clonal hematopoiesis (CH), lead to a gain of function of PPM1D/Wip1 phosphatase, impairing p53-dependent G1 checkpoint and promoting cell proliferation. The presence of PPM1D mutations has been correlated with reduced response to standard chemotherapy in lymphoma patients. In this study, we analyzed the impact of low-frequency PPM1D mutations on the safety and efficacy of CD19-targeted CAR T-cell therapy in a cohort of 85 r/r DLBCL patients. In this cohort, the prevalence of PPM1D gene mutations was 20% with a mean variant allele frequency (VAF) of 0.052 and a median VAF of 0.036. CAR T-induced cytokine release syndrome (CRS) and immune effector cell-associated neuro-toxicities (ICANS) occurred at similar frequencies in patients with and without PPM1D mutations. Clinical outcomes were globally worse in the PPM1D mutated (PPM1Dmut) vs. PPM1D wild type (PPM1Dwt) subset. While the prevalent treatment outcome within the PPM1Dwt subgroup was complete remission (56%), the majority of patients within the PPM1Dmut subgroup had only partial remission (60%). Median progression-free survival (PFS) was 3 vs. 12 months (p = 0.07) and median overall survival (OS) was 5 vs. 37 months (p = 0.004) for the PPM1Dmut and PPM1Dwt cohort, respectively. Our data suggest that the occurrence of PPM1D mutations in the context of CH may predict worse outcomes after CD19-targeted CAR T-cell therapy in patients with r/r DLBCL.
Collapse
MESH Headings
- Humans
- Immunotherapy, Adoptive/adverse effects
- Receptors, Chimeric Antigen
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/therapeutic use
- Lymphoma, Large B-Cell, Diffuse/therapy
- Lymphoma, Large B-Cell, Diffuse/drug therapy
- Treatment Outcome
- Antigens, CD19/genetics
- Antigens, CD19/therapeutic use
- Protein Phosphatase 2C/genetics
Collapse
Affiliation(s)
- Katja Seipel
- Department for Biomedical Research (DBMR), University of Bern, 3008 Bern, Switzerland;
- Department of Medical Oncology, University Hospital Bern, 3010 Bern, Switzerland;
| | - Michèle Frey
- Department of Medical Oncology, University Hospital Bern, 3010 Bern, Switzerland;
| | - Henning Nilius
- Department of Clinical Chemistry, University of Bern, 3010 Bern, Switzerland;
| | - Dilara Akhoundova
- Department for Biomedical Research (DBMR), University of Bern, 3008 Bern, Switzerland;
- Department of Medical Oncology, University Hospital Bern, 3010 Bern, Switzerland;
| | - Yara Banz
- Institute of Tissue Medicine and Pathology (IGMP), University of Bern, 3010 Bern, Switzerland;
| | - Ulrike Bacher
- Department of Hematology, University Hospital Bern, 3010 Bern, Switzerland;
| | - Thomas Pabst
- Department of Medical Oncology, University Hospital Bern, 3010 Bern, Switzerland;
| |
Collapse
|
3
|
Zhang X, Park JE, Kim EH, Hong J, Hwang KT, Kim YA, Jang CY. Wip1 controls the translocation of the chromosomal passenger complex to the central spindle for faithful mitotic exit. Cell Mol Life Sci 2021; 78:2821-2838. [PMID: 33067654 PMCID: PMC11072438 DOI: 10.1007/s00018-020-03665-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 08/12/2020] [Accepted: 10/05/2020] [Indexed: 10/23/2022]
Abstract
Dramatic cellular reorganization in mitosis critically depends on the timely and temporal phosphorylation of a broad range of proteins, which is mediated by the activation of the mitotic kinases and repression of counteracting phosphatases. The mitosis-to-interphase transition, which is termed mitotic exit, involves the removal of mitotic phosphorylation by protein phosphatases. Although protein phosphatase 1 (PP1) and protein phosphatase 2A (PP2A) drive this reversal in animal cells, the phosphatase network associated with ordered bulk dephosphorylation in mitotic exit is not fully understood. Here, we describe a new mitotic phosphatase relay in which Wip1/PPM1D phosphatase activity is essential for chromosomal passenger complex (CPC) translocation to the anaphase central spindle after release from the chromosome via PP1-mediated dephosphorylation of histone H3T3. Depletion of endogenous Wip1 and overexpression of the phosphatase-dead mutant disturbed CPC translocation to the central spindle, leading to failure of cytokinesis. While Wip1 was degraded in early mitosis, its levels recovered in anaphase and the protein functioned as a Cdk1-counteracting phosphatase at the anaphase central spindle and midbody. Mechanistically, Wip1 dephosphorylated Thr-59 in inner centromere protein (INCENP), which, subsequently bound to MKLP2 and recruited other components to the central spindle. Furthermore, Wip1 overexpression is associated with the overall survival rate of patients with breast cancer, suggesting that Wip1 not only functions as a weak oncogene in the DNA damage network but also as a tumor suppressor in mitotic exit. Altogether, our findings reveal that sequential dephosphorylation of mitotic phosphatases provides spatiotemporal regulation of mitotic exit to prevent tumor initiation and progression.
Collapse
Affiliation(s)
- Xianghua Zhang
- Drug Information Research Institute, College of Pharmacy, Sookmyung Women's University, Seoul, 04310, Republic of Korea
| | - Ji Eun Park
- Drug Information Research Institute, College of Pharmacy, Sookmyung Women's University, Seoul, 04310, Republic of Korea
| | - Eun Ho Kim
- Department of Biochemistry, School of Medicine, Catholic University of Daegu, Daegu, 42472, Republic of Korea
| | - Jihee Hong
- Drug Information Research Institute, College of Pharmacy, Sookmyung Women's University, Seoul, 04310, Republic of Korea
| | - Ki-Tae Hwang
- Department of Surgery, Seoul National University Boramae Medical Center, Seoul, 07061, Republic of Korea
| | - Young A Kim
- Department of Pathology, Seoul National University Boramae Medical Center, Seoul, 07061, Republic of Korea.
| | - Chang-Young Jang
- Drug Information Research Institute, College of Pharmacy, Sookmyung Women's University, Seoul, 04310, Republic of Korea.
| |
Collapse
|
4
|
Bae H, Go YH, Kwon T, Sung BJ, Cha HJ. A Theoretical Model for the Cell Cycle and Drug Induced Cell Cycle Arrest of FUCCI Systems with Cell-to-Cell Variation during Mitosis. Pharm Res 2019; 36:57. [DOI: 10.1007/s11095-019-2570-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 01/11/2019] [Indexed: 12/16/2022]
|
5
|
Jeong HC, Park SJ, Choi JJ, Go YH, Hong SK, Kwon OS, Shin JG, Kim RK, Lee MO, Lee SJ, Shin HD, Moon SH, Cha HJ. PRMT8 Controls the Pluripotency and Mesodermal Fate of Human Embryonic Stem Cells By Enhancing the PI3K/AKT/SOX2 Axis. Stem Cells 2017; 35:2037-2049. [DOI: 10.1002/stem.2642] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 05/06/2017] [Indexed: 12/31/2022]
Affiliation(s)
- Ho-Chang Jeong
- Department of Life Sciences, Sogang University; Seoul Republic of Korea
| | - Soon-Jung Park
- Department of Medicine; School of Medicine, Konkuk University; Seoul Republic of Korea
| | - Jong-Jin Choi
- Department of Medicine; School of Medicine, Konkuk University; Seoul Republic of Korea
| | - Young-Hyun Go
- Department of Life Sciences, Sogang University; Seoul Republic of Korea
| | - Soon-Ki Hong
- Department of Life Sciences, Sogang University; Seoul Republic of Korea
| | - Ok-Seon Kwon
- Department of Life Sciences, Sogang University; Seoul Republic of Korea
| | - Joong-Gon Shin
- Department of Life Sciences, Sogang University; Seoul Republic of Korea
- Research Institute for Basic Science, Sogang University; Seoul Republic of Korea
| | - Rae-Kwon Kim
- Department of Life Science; Research Institute for Natural Sciences, Hanyang University; Seoul Republic of Korea
| | - Mi-Ok Lee
- Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB); Daejeon Republic of Korea
| | - Su-Jae Lee
- Department of Life Science; Research Institute for Natural Sciences, Hanyang University; Seoul Republic of Korea
| | - Hyoung Doo Shin
- Department of Life Sciences, Sogang University; Seoul Republic of Korea
- Research Institute for Basic Science, Sogang University; Seoul Republic of Korea
| | - Sung-Hwan Moon
- Department of Medicine; School of Medicine, Konkuk University; Seoul Republic of Korea
| | - Hyuk-Jin Cha
- Department of Life Sciences, Sogang University; Seoul Republic of Korea
| |
Collapse
|
6
|
Wip1 directly dephosphorylates NLK and increases Wnt activity during germ cell development. Biochim Biophys Acta Mol Basis Dis 2017; 1863:1013-1022. [DOI: 10.1016/j.bbadis.2017.01.028] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Revised: 12/28/2016] [Accepted: 01/28/2017] [Indexed: 12/26/2022]
|
7
|
Zou X, Blank M. Targeting p38 MAP kinase signaling in cancer through post-translational modifications. Cancer Lett 2016; 384:19-26. [PMID: 27725227 DOI: 10.1016/j.canlet.2016.10.008] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 09/26/2016] [Accepted: 10/02/2016] [Indexed: 12/31/2022]
Abstract
The p38 MAPK signaling pathway is a key signal transduction cascade that cancer cells employ to sense and adapt to a plethora of environmental stimuli, and has attracted much attention as a promising target for cancer therapy. Accumulating evidence suggests a dual role of p38 signaling in various types of cancers, wherein the p38 pathway can both suppress and promote tumor growth, metastasis and chemoresistance. This dual role of p38 signaling, along with its context dependence and versatility, poses a great challenge for developing efficient anticancer treatment. An increasing number of studies showed that p38 signaling is subject to regulation by a variety of post-translational modifications (PTMs). Recently, large-scale proteomics profilings have identified a large number of PTMs on key components of the p38 pathway. However, the majority of these modifications and their biological significance in cancer remain uncharacterized. In this review, we highlight a series of studies that focus on the PTMs in the p38 cascade landscape, and discuss the complexity and implications of these PTMs in p38 MAPK signaling regulation.
Collapse
Affiliation(s)
- Xiao Zou
- Laboratory of Molecular and Cellular Cancer Biology, Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Michael Blank
- Laboratory of Molecular and Cellular Cancer Biology, Faculty of Medicine, Bar-Ilan University, Safed, Israel.
| |
Collapse
|
8
|
de Boer HR, Llobet SG, van Vugt MATM. Erratum to: Controlling the response to DNA damage by the APC/C-Cdh1. Cell Mol Life Sci 2016; 73:2985-2998. [PMID: 27251328 PMCID: PMC4969907 DOI: 10.1007/s00018-016-2279-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- H Rudolf de Boer
- Department of Medical Oncology, Cancer Research Center Groningen, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Sergi Guerrero Llobet
- Department of Medical Oncology, Cancer Research Center Groningen, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Marcel A T M van Vugt
- Department of Medical Oncology, Cancer Research Center Groningen, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
9
|
Zhou Z, He M, Shah AA, Wan Y. Insights into APC/C: from cellular function to diseases and therapeutics. Cell Div 2016; 11:9. [PMID: 27418942 PMCID: PMC4944252 DOI: 10.1186/s13008-016-0021-6] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 05/27/2016] [Indexed: 02/07/2023] Open
Abstract
Anaphase-promoting complex/cyclosome (APC/C) is a multifunctional ubiquitin-protein ligase that targets different substrates for ubiquitylation and therefore regulates a variety of cellular processes such as cell division, differentiation, genome stability, energy metabolism, cell death, autophagy as well as carcinogenesis. Activity of APC/C is principally governed by two WD-40 domain proteins, Cdc20 and Cdh1, in and beyond cell cycle. In the past decade, the results based on numerous biochemical, 3D structural, mouse genetic and small molecule inhibitor studies have largely attracted our attention into the emerging role of APC/C and its regulation in biological function, human diseases and potential therapeutics. This review will aim to summarize some recently reported insights into APC/C in regulating cellular function, connection of its dysfunction with human diseases and its implication of therapeutics.
Collapse
Affiliation(s)
- Zhuan Zhou
- Department of Cell Biology, University of Pittsburgh School of Medicine and University of Pittsburgh Cancer Institute, 5117 Centre Avenue, Hillman Cancer Center, HCC2.6c, Pittsburgh, PA 15213 USA
| | - Mingjing He
- Department of Cell Biology, University of Pittsburgh School of Medicine and University of Pittsburgh Cancer Institute, 5117 Centre Avenue, Hillman Cancer Center, HCC2.6c, Pittsburgh, PA 15213 USA ; State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041 Sichuan People's Republic of China
| | - Anil A Shah
- Department of Cell Biology, University of Pittsburgh School of Medicine and University of Pittsburgh Cancer Institute, 5117 Centre Avenue, Hillman Cancer Center, HCC2.6c, Pittsburgh, PA 15213 USA
| | - Yong Wan
- Department of Cell Biology, University of Pittsburgh School of Medicine and University of Pittsburgh Cancer Institute, 5117 Centre Avenue, Hillman Cancer Center, HCC2.6c, Pittsburgh, PA 15213 USA
| |
Collapse
|
10
|
de Boer HR, Guerrero Llobet S, van Vugt MATM. Controlling the response to DNA damage by the APC/C-Cdh1. Cell Mol Life Sci 2016; 73:949-60. [PMID: 26650195 PMCID: PMC4744251 DOI: 10.1007/s00018-015-2096-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 11/10/2015] [Accepted: 11/16/2015] [Indexed: 12/31/2022]
Abstract
Proper cell cycle progression is safeguarded by the oscillating activities of cyclin/cyclin-dependent kinase complexes. An important player in the regulation of mitotic cyclins is the anaphase-promoting complex/cyclosome (APC/C), a multi-subunit E3 ubiquitin ligase. Prior to entry into mitosis, the APC/C remains inactive, which allows the accumulation of mitotic regulators. APC/C activation requires binding to either the Cdc20 or Cdh1 adaptor protein, which sequentially bind the APC/C and facilitate targeting of multiple mitotic regulators for proteasomal destruction, including Securin and Cyclin B, to ensure proper chromosome segregation and mitotic exit. Emerging data have indicated that the APC/C, particularly in association with Cdh1, also functions prior to mitotic entry. Specifically, the APC/C-Cdh1 is activated in response to DNA damage in G2 phase cells. These observations are in line with in vitro and in vivo genetic studies, in which cells lacking Cdh1 expression display various defects, including impaired DNA repair and aberrant cell cycle checkpoints. In this review, we summarize the current literature on APC/C regulation in response to DNA damage, the functions of APC/C-Cdh1 activation upon DNA damage, and speculate how APC/C-Cdh1 can control cell fate in the context of persistent DNA damage.
Collapse
Affiliation(s)
- H Rudolf de Boer
- Department of Medical Oncology, Cancer Research Center Groningen, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - S Guerrero Llobet
- Department of Medical Oncology, Cancer Research Center Groningen, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Marcel A T M van Vugt
- Department of Medical Oncology, Cancer Research Center Groningen, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
11
|
In situ label-free quantification of human pluripotent stem cells with electrochemical potential. Biomaterials 2016; 75:250-259. [DOI: 10.1016/j.biomaterials.2015.10.038] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 10/11/2015] [Accepted: 10/14/2015] [Indexed: 12/30/2022]
|
12
|
Kim JJ, Gil NY, Zhang XH, Chun KH, Fang G, Kim J, Cho H, Jang CY, Cha HJ. Sirt1 Regulates Microtubule Dynamics Through Negative Regulation of Plk1 in Mitosis. J Cell Biochem 2015; 116:1888-97. [PMID: 25737075 DOI: 10.1002/jcb.25144] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 02/17/2015] [Indexed: 02/01/2023]
Abstract
Although loss of Sirt1 leads to chromosome aneuploidy, which accounts for higher tumor susceptibility, the molecular mechanisms remain unclear. Herein, we demonstrate that Sirt1 directly regulates Plk1, of which activity is critical for mitotic progression and spindle dynamics. Depletion or inhibition of Sirt1 significantly perturbs the formation of the mitotic spindle, leading to defective chromosome segregation. Elevated depolymerization of the mitotic spindle following loss of Sirt1 was associated with the deregulation of Plk1 activity. Thus, we conclude that Sirt1 may contribute to a mitotic regulator that controls spindle dynamics through Plk1 activity, resulting in fine-tuning of Plk1 dependent microtubule dynamics.
Collapse
Affiliation(s)
- Jin-Ju Kim
- College of Natural Sciences, Department of Life Sciences, Sogang University, Seoul, 121-742, Republic of Korea
| | - Na-Yeon Gil
- College of Natural Sciences, Department of Life Sciences, Sogang University, Seoul, 121-742, Republic of Korea
| | - Xiang Hua Zhang
- Research Center for Cell Fate Control, College of Pharmacy, Sookmyung Women's University, Seoul, 140-742, Republic of Korea
| | - Kwang-Hoon Chun
- Gachon Institute of Pharmaceutical Sciences, College of Pharmacy, Gachon University, Inchoen, Republic of Korea
| | - Guowei Fang
- Genentech, Inc., South San Francisco, California, 94080
| | - Joon Kim
- Laboratory of Biochemistry, School of Life Sciences & Biotechnology, Korea University, Seoul, 136-701, Republic of Korea
| | - Hyeseong Cho
- Department of Biochemistry, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Chang-Young Jang
- Research Center for Cell Fate Control, College of Pharmacy, Sookmyung Women's University, Seoul, 140-742, Republic of Korea
| | - Hyuk-Jin Cha
- College of Natural Sciences, Department of Life Sciences, Sogang University, Seoul, 121-742, Republic of Korea
| |
Collapse
|