1
|
Legionella pneumophila Infection of Human Macrophages Retains Golgi Structure but Reduces O-Glycans. Pathogens 2022; 11:pathogens11080908. [PMID: 36015029 PMCID: PMC9415278 DOI: 10.3390/pathogens11080908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/02/2022] [Accepted: 08/08/2022] [Indexed: 11/30/2022] Open
Abstract
Legionella pneumophila is an accidental pathogen that replicates intracellularly within the Legionella-containing vacuole (LCV) in macrophages. Within an hour of infection, L. pneumophila secretes effectors to manipulate Rab1 and intercept ER-derived vesicles to the LCV. The downstream consequences of interrupted ER trafficking on the Golgi of macrophages are not clear. We examined the Golgi structure and function in L. pneumophila-infected human U937 macrophages. Intriguingly, the size of the Golgi in infected macrophages remained similar to uninfected macrophages. Furthermore, TEM analysis also did not reveal any significant changes in the ultrastructure of the Golgi in L. pneumophila-infected cells. Drug-induced Golgi disruption impacted bacterial replication in human macrophages, suggesting that an intact organelle is important for bacteria growth. To probe for Golgi functionality after L. pneumophila infection, we assayed glycosylation levels using fluorescent lectins. Golgi O-glycosylation levels, visualized by the fluorescent cis-Golgi lectin, Helix pomatia agglutinin (HPA), significantly decreased over time as infection progressed, compared to control cells. N-glycosylation levels in the Golgi, as measured by L-PHA lectin staining, were not impacted by L. pneumophila infection. To understand the mechanism of reduced O-glycans in the Golgi we monitored UDP-GalNAc transporter levels in infected macrophages. The solute carrier family 35 membrane A2 (SLC35A2) protein levels were significantly reduced in L. pneumophila-infected U937 and HeLa cells and L. pneumophila growth in human macrophages benefitted from GalNAc supplementation. The pronounced reduction in Golgi HPA levels was dependent on the translocation apparatus DotA expression in bacteria and occurred in a ubiquitin-independent manner. Thus, L. pneumophila infection of human macrophages maintains and requires an intact host Golgi ultrastructure despite known interference of ER–Golgi trafficking. Finally, L. pneumophila infection blocks the formation of O-linked glycans and reduces SLC35A2 protein levels in infected human macrophages.
Collapse
|
2
|
Voelkel-Johnson C. Sphingolipids in embryonic development, cell cycle regulation, and stemness - Implications for polyploidy in tumors. Semin Cancer Biol 2022; 81:206-219. [PMID: 33429049 PMCID: PMC8263803 DOI: 10.1016/j.semcancer.2020.12.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 12/26/2020] [Accepted: 12/30/2020] [Indexed: 12/12/2022]
Abstract
The aberrant biology of polyploid giant cancer cells (PGCC) includes dysregulation of the cell cycle, induction of stress responses, and dedifferentiation, all of which are likely accompanied by adaptations in biophysical properties and metabolic activity. Sphingolipids are the second largest class of membrane lipids and play important roles in many aspects of cell biology that are potentially relevant to polyploidy. We have recently shown that the function of the sphingolipid enzyme acid ceramidase (ASAH1) is critical for the ability of PGCC to generate progeny by depolyploidization but mechanisms by which sphingolipids contribute to polyploidy and generation of offspring with stem-like properties remain elusive. This review discusses the role of sphingolipids during embryonic development, cell cycle regulation, and stem cells in an effort to highlight parallels to polyploidy.
Collapse
Affiliation(s)
- Christina Voelkel-Johnson
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, USA.
| |
Collapse
|
3
|
Wang K, Muñoz KJ, Tan M, Sütterlin C. Chlamydia and HPV induce centrosome amplification in the host cell through additive mechanisms. Cell Microbiol 2021; 23:e13397. [PMID: 34716742 DOI: 10.1111/cmi.13397] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 10/08/2021] [Accepted: 10/13/2021] [Indexed: 12/15/2022]
Abstract
Based on epidemiology studies, Chlamydia trachomatis has been proposed as a co-factor for human papillomavirus (HPV) in the development of cervical cancer. These two intracellular pathogens have been independently reported to induce the production of extra centrosomes, or centrosome amplification, which is a hallmark of cancer cells. We developed a cell culture model to systematically measure the individual and combined effects of Chlamydia and HPV on the centrosome in the same host cell. We found that C. trachomatis caused centrosome amplification in a greater proportion of cells than HPV and that the effects of the two pathogens on the centrosome were additive. Furthermore, centrosome amplification induced by Chlamydia, but not by HPV, strongly correlated with multinucleation and required progression through mitosis. Our results suggest that C. trachomatis and HPV induce centrosome amplification through different mechanisms, with the chlamydial effect being largely due to a failure in cytokinesis that also results in multinucleation. Our findings provide support for C. trachomatis as a co-factor for HPV in carcinogenesis and offer mechanistic insights into how two infectious agents may cooperate to promote cancer. TAKE AWAYS: • Chlamydia and HPV induce centrosome amplification in an additive manner. • Chlamydia-induced centrosome amplification is linked to host cell multinucleation. • Chlamydia-induced centrosome amplification requires cell cycle progression. • Chlamydia and HPV cause centrosome amplification through different mechanisms. • This study supports Chlamydia as a co-factor for HPV in carcinogenesis.
Collapse
Affiliation(s)
- Kevin Wang
- Department of Microbiology and Molecular Genetics, University of California, Irvine, California, USA
| | - Karissa J Muñoz
- Department of Developmental and Cell Biology, University of California, Irvine, California, USA
| | - Ming Tan
- Department of Microbiology and Molecular Genetics, University of California, Irvine, California, USA.,Department of Medicine, University of California, Irvine, California, USA
| | - Christine Sütterlin
- Department of Developmental and Cell Biology, University of California, Irvine, California, USA
| |
Collapse
|
4
|
Zhao Q, Huang M, Liu Y, Wan Y, Duan R, Wu L. Effects of atrazine short-term exposure on jumping ability and intestinal microbiota diversity in male Pelophylax nigromaculatus adults. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:36122-36132. [PMID: 33683588 DOI: 10.1007/s11356-021-13234-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 02/26/2021] [Indexed: 06/12/2023]
Abstract
Atrazine, a common chemical pesticide, has toxicity to adult and juvenile amphibians in natural ecosystems; however, it is more common to study its effects on larvae instead of adults. This study assessed the impacts of atrazine in water through short-term exposure (7 days) on male black spotted frog (Pelophylax nigromaculatus) adults fed every day. The jumping ability, including jumping height, distance, time, and speed, was measured by 3D motion analysis software, and the intestinal content microbiota was determined by 16S rRNA amplicon sequencing with QIIME software. The results showed that male P. nigromaculatus exposure to 200 and 500 μg/L atrazine significantly increased jumping distance and jumping time compared to control groups. Conversely, 500 μg/L atrazine treatments significantly decreased the diversity and changed the composition and structure of intestinal content microflora in male P. nigromaculatus compared to control groups. At the phylum level, Chlamydiae was only detected in the control group, and Actinobacteria, Bacteroidetes, Firmicutes, Fusobacteria, and Proteobacteria were the dominant microflora in the atrazine treatment groups. At the genus level, the abundance of Lactobacillus and Weissella significantly increased in atrazine treatment groups compared to control groups. This study can provide a new framework based on movement behavior and intestinal microbiota to evaluate the response of amphibians to short-term exposure to environmental pollution.
Collapse
Affiliation(s)
- Qiang Zhao
- College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi, 417000, Hunan, China
| | - Minyi Huang
- College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi, 417000, Hunan, China.
| | - Yang Liu
- College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi, 417000, Hunan, China
| | - Yuyue Wan
- College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi, 417000, Hunan, China
| | - Renyan Duan
- College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi, 417000, Hunan, China.
| | - Lianfu Wu
- Key Laboratory of Biodiversity Research and Ecological Conservation in Southwest Anhui Province, Anqing, 246011, Anhui, China
| |
Collapse
|
5
|
Yang X, Siddique A, Khan AA, Wang Q, Malik A, Jan AT, Rudayni HA, Chaudhary AA, Khan S. Chlamydia Trachomatis Infection: Their potential implication in the Etiology of Cervical Cancer. J Cancer 2021; 12:4891-4900. [PMID: 34234859 PMCID: PMC8247366 DOI: 10.7150/jca.58582] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 05/13/2021] [Indexed: 12/12/2022] Open
Abstract
Pathogenic bacterial strains can alter the normal function of cells and induce different levels of inflammatory responses that are connected to the development of different diseases, such as tuberculosis, diarrhea, cancer etc. Chlamydia trachomatis (C. trachomatis) is an intracellular obligate gram-negative bacterium which has been connected with the cervical cancer etiology. Nevertheless, establishment of causality and the underlying mechanisms of carcinogenesis of cervical cancer associated with C. trachomatis remain unclear. Studies reveal the existence of C. trachomatis in cervical cancer patients. The DNA repair pathways including mismatch repair, nucleotide excision, and base excision are vital in the abatement of accumulated mutations that can direct to the process of carcinogenesis. C. trachomatis recruits DDR proteins away from sites of DNA damage and, in this way, impedes the DDR. Therefore, by disturbing host cell-cycle control, chromatin and DDR repair, C. trachomatis makes a situation favorable for malignant transformation. Inflammation originated due to infection directs over production of reactive oxygen species (ROS) and consequent oxidative DNA damage. This review may aid our current understanding of the etiology of cervical cancer in C. trachomatis-infected patients.
Collapse
Affiliation(s)
- Xingju Yang
- Department of Nursing, Jinan People's Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 271199, China
| | - Anam Siddique
- Department of Biosciences, Shri Ram Group of College (SRGC), Muzaffarnagar 251001, India
| | - Abdul Arif Khan
- Division of Microbiology, Indian Council of Medical Research-National AIDS Research Institute, Pune, Maharashtra, India
| | - Qian Wang
- Department of Obstetrics and Gynecology, Jinan Fifth People's Hospital, Jinan, Shandong, 250022, China
| | - Abdul Malik
- Department of Pharmaceutics, College of Pharmacy, P.O. Box 2457, King Saud University, Riyadh 11451, Saudi Arabia
| | - Arif Tasleem Jan
- School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri 185236, India
| | - Hassan Ahmed Rudayni
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
| | - Anis Ahmad Chaudhary
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
| | - Shahanavaj Khan
- Department of Biosciences, Shri Ram Group of College (SRGC), Muzaffarnagar 251001, India
- Department of Pharmaceutics, College of Pharmacy, P.O. Box 2457, King Saud University, Riyadh 11451, Saudi Arabia
- Department of Health Sciences, Novel Global Community Educational Foundation, Australia
| |
Collapse
|
6
|
Rao CV, Asch AS, Carr DJJ, Yamada HY. "Amyloid-beta accumulation cycle" as a prevention and/or therapy target for Alzheimer's disease. Aging Cell 2020; 19:e13109. [PMID: 31981470 PMCID: PMC7059149 DOI: 10.1111/acel.13109] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 12/16/2019] [Accepted: 12/25/2019] [Indexed: 02/06/2023] Open
Abstract
The cell cycle and its regulators are validated targets for cancer drugs. Reagents that target cells in a specific cell cycle phase (e.g., antimitotics or DNA synthesis inhibitors/replication stress inducers) have demonstrated success as broad-spectrum anticancer drugs. Cyclin-dependent kinases (CDKs) are drivers of cell cycle transitions. A CDK inhibitor, flavopiridol/alvocidib, is an FDA-approved drug for acute myeloid leukemia. Alzheimer's disease (AD) is another serious issue in contemporary medicine. The cause of AD remains elusive, although a critical role of latent amyloid-beta accumulation has emerged. Existing AD drug research and development targets include amyloid, amyloid metabolism/catabolism, tau, inflammation, cholesterol, the cholinergic system, and other neurotransmitters. However, none have been validated as therapeutically effective targets. Recent reports from AD-omics and preclinical animal models provided data supporting the long-standing notion that cell cycle progression and/or mitosis may be a valid target for AD prevention and/or therapy. This review will summarize the recent developments in AD research: (a) Mitotic re-entry, leading to the "amyloid-beta accumulation cycle," may be a prerequisite for amyloid-beta accumulation and AD pathology development; (b) AD-associated pathogens can cause cell cycle errors; (c) thirteen among 37 human AD genetic risk genes may be functionally involved in the cell cycle and/or mitosis; and (d) preclinical AD mouse models treated with CDK inhibitor showed improvements in cognitive/behavioral symptoms. If the "amyloid-beta accumulation cycle is an AD drug target" concept is proven, repurposing of cancer drugs may emerge as a new, fast-track approach for AD management in the clinic setting.
Collapse
Affiliation(s)
- Chinthalapally V. Rao
- Center for Cancer Prevention and Drug DevelopmentDepartment of MedicineHematology/Oncology SectionUniversity of Oklahoma Health Sciences Center (OUHSC)Oklahoma CityOKUSA
| | - Adam S. Asch
- Stephenson Cancer CenterDepartment of MedicineHematology/Oncology SectionUniversity of Oklahoma Health Sciences Center (OUHSC)Oklahoma CityOKUSA
| | - Daniel J. J. Carr
- Department of OphthalmologyUniversity of Oklahoma Health Sciences Center (OUHSC)Oklahoma CityOKUSA
| | - Hiroshi Y. Yamada
- Center for Cancer Prevention and Drug DevelopmentDepartment of MedicineHematology/Oncology SectionUniversity of Oklahoma Health Sciences Center (OUHSC)Oklahoma CityOKUSA
| |
Collapse
|
7
|
Wolle MA, West SK. Ocular Chlamydia trachomatis infection: elimination with mass drug administration. Expert Rev Anti Infect Ther 2019; 17:189-200. [PMID: 30698042 DOI: 10.1080/14787210.2019.1577136] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
INTRODUCTION Ocular Chlamydia trachomatis infection, the causative agent for trachoma, is responsible for 1.9 million cases of visual loss worldwide. Mass Drug Administration (MDA) with azithromycin to entire trachoma-endemic districts is part of the World Health Organization's public health strategy for trachoma elimination. Areas covered: Background on C. trachomatis and the epidemiology of trachoma are presented, followed by a review of the antibiotics for treatment and the need for a public health approach to trachoma elimination. The effectiveness of mass drug administration is presented, concluding with challenges to trachoma elimination in the future. Expert opinion: MDA using azithromycin is a key component of the public health strategy for trachoma elimination. With high coverage in children, there is good evidence that MDA drops the community pool of infection. There are challenges to trachoma elimination by the year 2020, and the drug donation program for country MDAs will be integral to ongoing efforts.
Collapse
Affiliation(s)
- Meraf A Wolle
- a Dana Center for Preventive Ophthalmology , Johns Hopkins Medical Institutions , Baltimore , MD , USA
| | - Sheila K West
- a Dana Center for Preventive Ophthalmology , Johns Hopkins Medical Institutions , Baltimore , MD , USA
| |
Collapse
|
8
|
Abstract
Chlamydia spp. are important causes of human disease for which no effective vaccine exists. These obligate intracellular pathogens replicate in a specialized membrane compartment and use a large arsenal of secreted effectors to survive in the hostile intracellular environment of the host. In this Review, we summarize the progress in decoding the interactions between Chlamydia spp. and their hosts that has been made possible by recent technological advances in chlamydial proteomics and genetics. The field is now poised to decipher the molecular mechanisms that underlie the intimate interactions between Chlamydia spp. and their hosts, which will open up many exciting avenues of research for these medically important pathogens.
Collapse
|
9
|
Käser T, Pasternak JA, Hamonic G, Rieder M, Lai K, Delgado-Ortega M, Gerdts V, Meurens F. Flow cytometry as an improved method for the titration of Chlamydiaceae and other intracellular bacteria. Cytometry A 2016; 89:451-60. [PMID: 26849001 DOI: 10.1002/cyto.a.22822] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 12/09/2015] [Accepted: 01/06/2016] [Indexed: 11/10/2022]
Abstract
Chlamydiaceae is a family of intracellular bacteria causing a range of diverse pathological outcomes. The most devastating human diseases are ocular infections with C. trachomatis leading to blindness and genital infections causing pelvic inflammatory disease with long-term sequelae including infertility and chronic pelvic pain. In order to enable the comparison of experiments between laboratories investigating host-chlamydia interactions, the infectious titer has to be determined. Titer determination of chlamydia is most commonly performed via microscopy of host cells infected with a serial dilution of chlamydia. However, other methods including fluorescent ELISpot (Fluorospot) and DNA Chip Scanning Technology have also been proposed to enumerate chlamydia-infected cells. For viruses, flow cytometry has been suggested as a superior alternative to standard titration methods. In this study we compared the use of flow cytometry with microscopy and Fluorospot for the titration of C. suis as a representative of other intracellular bacteria. Titer determination via Fluorospot was unreliable, while titration via microscopy led to a linear read-out range of 16 - 64 dilutions and moderate reproducibility with acceptable standard deviations within and between investigators. In contrast, flow cytometry had a vast linear read-out range of 1,024 dilutions and the lowest standard deviations given a basic training in these methods. In addition, flow cytometry was faster and material costs were lower compared to microscopy. Flow cytometry offers a fast, cheap, precise, and reproducible alternative for the titration of intracellular bacteria like C. suis. © 2016 International Society for Advancement of Cytometry.
Collapse
Affiliation(s)
- T Käser
- Vaccine and Infectious Disease Organization (VIDO), Home of the International Vaccine Centre (InterVac), University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5E3, Canada
| | - J A Pasternak
- Vaccine and Infectious Disease Organization (VIDO), Home of the International Vaccine Centre (InterVac), University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5E3, Canada
| | - G Hamonic
- Vaccine and Infectious Disease Organization (VIDO), Home of the International Vaccine Centre (InterVac), University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5E3, Canada
| | - M Rieder
- Vaccine and Infectious Disease Organization (VIDO), Home of the International Vaccine Centre (InterVac), University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5E3, Canada
| | - K Lai
- Vaccine and Infectious Disease Organization (VIDO), Home of the International Vaccine Centre (InterVac), University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5E3, Canada
| | - M Delgado-Ortega
- Vaccine and Infectious Disease Organization (VIDO), Home of the International Vaccine Centre (InterVac), University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5E3, Canada
| | - V Gerdts
- Vaccine and Infectious Disease Organization (VIDO), Home of the International Vaccine Centre (InterVac), University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5E3, Canada
| | - F Meurens
- Nantes-Atlantic College of Veterinary Medicine and Food Sciences and Engineering, UMR BioEpAR, LUNAM Université, Oniris, Nantes, F-44307, France.,Epidemiology and Risk Analysis in Animal Health, CS 40706, INRA, UMR1300 Biology, Nantes, F-44307, France
| |
Collapse
|