1
|
Li X, Song Y, Mu W, Hou X, Ba T, Ji S. Dysregulation of arginine methylation in tumorigenesis. Front Mol Biosci 2024; 11:1420365. [PMID: 38911125 PMCID: PMC11190088 DOI: 10.3389/fmolb.2024.1420365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 05/22/2024] [Indexed: 06/25/2024] Open
Abstract
Protein methylation, similar to DNA methylation, primarily involves post-translational modification (PTM) targeting residues of nitrogen-containing side-chains and other residues. Protein arginine methylation, occurred on arginine residue, is mainly mediated by protein arginine methyltransferases (PRMTs), which are ubiquitously present in a multitude of organisms and are intricately involved in the regulation of numerous biological processes. Specifically, PRMTs are pivotal in the process of gene transcription regulation, and protein function modulation. Abnormal arginine methylation, particularly in histones, can induce dysregulation of gene expression, thereby leading to the development of cancer. The recent advancements in modification mediated by PRMTs and cancer research have had a profound impact on our understanding of the abnormal modification involved in carcinogenesis and progression. This review will provide a defined overview of these recent progression, with the aim of augmenting our knowledge on the role of PRMTs in progression and their potential application in cancer therapy.
Collapse
Affiliation(s)
- Xiao Li
- Department of Basic Medicine, Zhengzhou Shuqing Medical College, Zhengzhou, Henan, China
| | - Yaqiong Song
- Department of Basic Medicine, Zhengzhou Shuqing Medical College, Zhengzhou, Henan, China
| | - Weiwei Mu
- Department of Basic Medicine, Zhengzhou Shuqing Medical College, Zhengzhou, Henan, China
| | - Xiaoli Hou
- Department of Basic Medicine, Zhengzhou Shuqing Medical College, Zhengzhou, Henan, China
| | - Te Ba
- Department of Shanxi University of Chinese Medicine, Jinzhong, Shanxi, China
| | - Shaoping Ji
- Department of Basic Medicine, Zhengzhou Shuqing Medical College, Zhengzhou, Henan, China
- Department of Biochemistry and Molecular Biology, Medical School, Henan University, Kaifeng, Henan, China
| |
Collapse
|
2
|
Liu TY, Liao CC, Chang YS, Chen YC, Chen HD, Lai IL, Peng CY, Chung CC, Chou YP, Tsai FJ, Jeng LB, Chang JG. Identification of 13 Novel Loci in a Genome-Wide Association Study on Taiwanese with Hepatocellular Carcinoma. Int J Mol Sci 2023; 24:16417. [PMID: 38003606 PMCID: PMC10671380 DOI: 10.3390/ijms242216417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/09/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023] Open
Abstract
Liver cancer is caused by complex interactions among genetic factors, viral infection, alcohol abuse, and metabolic diseases. We conducted a genome-wide association study and polygenic risk score (PRS) model in Taiwan, employing a nonspecific etiology approach, to identify genetic risk factors for hepatocellular carcinoma (HCC). Our analysis of 2836 HCC cases and 134,549 controls revealed 13 novel associated loci such as the FAM66C gene, noncoding genes, liver-fibrosis-related genes, metabolism-related genes, and HCC-related pathway genes. We incorporated the results from the UK Biobank and Japanese database into our study for meta-analysis to validate our findings. We also identified specific subtypes of the major histocompatibility complex that influence both viral infection and HCC progression. Using this data, we developed a PRS to predict HCC risk in the general population, patients with HCC, and HCC-affected families. The PRS demonstrated higher risk scores in families with multiple HCCs and other cancer cases. This study presents a novel approach to HCC risk analysis, identifies seven new genes associated with HCC development, and introduces a reproducible PRS model for risk assessment.
Collapse
Affiliation(s)
- Ting-Yuan Liu
- Center for Precision Medicine and Epigenome Research Center, China Medical University Hospital, Taichung 40447, Taiwan; (T.-Y.L.); (C.-C.L.); (Y.-S.C.); (Y.-C.C.); (H.-D.C.); (I.-L.L.); (C.-C.C.); (Y.-P.C.)
- Million-Person Precision Medicine Initiative, Department of Medical Research, China Medical University Hospital, Taichung 40447, Taiwan
| | - Chi-Chou Liao
- Center for Precision Medicine and Epigenome Research Center, China Medical University Hospital, Taichung 40447, Taiwan; (T.-Y.L.); (C.-C.L.); (Y.-S.C.); (Y.-C.C.); (H.-D.C.); (I.-L.L.); (C.-C.C.); (Y.-P.C.)
| | - Ya-Sian Chang
- Center for Precision Medicine and Epigenome Research Center, China Medical University Hospital, Taichung 40447, Taiwan; (T.-Y.L.); (C.-C.L.); (Y.-S.C.); (Y.-C.C.); (H.-D.C.); (I.-L.L.); (C.-C.C.); (Y.-P.C.)
| | - Yu-Chia Chen
- Center for Precision Medicine and Epigenome Research Center, China Medical University Hospital, Taichung 40447, Taiwan; (T.-Y.L.); (C.-C.L.); (Y.-S.C.); (Y.-C.C.); (H.-D.C.); (I.-L.L.); (C.-C.C.); (Y.-P.C.)
- Million-Person Precision Medicine Initiative, Department of Medical Research, China Medical University Hospital, Taichung 40447, Taiwan
| | - Hong-Da Chen
- Center for Precision Medicine and Epigenome Research Center, China Medical University Hospital, Taichung 40447, Taiwan; (T.-Y.L.); (C.-C.L.); (Y.-S.C.); (Y.-C.C.); (H.-D.C.); (I.-L.L.); (C.-C.C.); (Y.-P.C.)
- Department of Laboratory Medicine, China Medical University Hospital, Taichung 404, Taiwan
| | - I-Lu Lai
- Center for Precision Medicine and Epigenome Research Center, China Medical University Hospital, Taichung 40447, Taiwan; (T.-Y.L.); (C.-C.L.); (Y.-S.C.); (Y.-C.C.); (H.-D.C.); (I.-L.L.); (C.-C.C.); (Y.-P.C.)
| | - Cheng-Yuan Peng
- Department of Internal Medicine, Section of Hepatobiliary Tract, China Medical University Hospital, Taichung 40447, Taiwan;
| | - Chin-Chun Chung
- Center for Precision Medicine and Epigenome Research Center, China Medical University Hospital, Taichung 40447, Taiwan; (T.-Y.L.); (C.-C.L.); (Y.-S.C.); (Y.-C.C.); (H.-D.C.); (I.-L.L.); (C.-C.C.); (Y.-P.C.)
| | - Yu-Pao Chou
- Center for Precision Medicine and Epigenome Research Center, China Medical University Hospital, Taichung 40447, Taiwan; (T.-Y.L.); (C.-C.L.); (Y.-S.C.); (Y.-C.C.); (H.-D.C.); (I.-L.L.); (C.-C.C.); (Y.-P.C.)
| | - Fuu-Jen Tsai
- Department of Medical Research, China Medical University Hospital, Taichung 40447, Taiwan
- School of Chinese Medicine, China Medical University, Taichung 40402, Taiwan
- Division of Pediatric Genetics, Children’s Hospital of China Medical University, Taichung 40447, Taiwan
- Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung 41354, Taiwan
| | - Long-Bin Jeng
- Department of Surgery, Section of Hepatobiliary Tract, China Medical University Hospital, Taichung 40447, Taiwan;
| | - Jan-Gowth Chang
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung 41354, Taiwan
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung 40402, Taiwan
| |
Collapse
|
3
|
Chang K, Gao D, Yan J, Lin L, Cui T, Lu S. Critical Roles of Protein Arginine Methylation in the Central Nervous System. Mol Neurobiol 2023; 60:6060-6091. [PMID: 37415067 DOI: 10.1007/s12035-023-03465-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 06/24/2023] [Indexed: 07/08/2023]
Abstract
A remarkable post-transitional modification of both histones and non-histone proteins is arginine methylation. Methylation of arginine residues is crucial for a wide range of cellular process, including signal transduction, DNA repair, gene expression, mRNA splicing, and protein interaction. Arginine methylation is modulated by arginine methyltransferases and demethylases, like protein arginine methyltransferase (PRMTs) and Jumonji C (JmjC) domain containing (JMJD) proteins. Symmetric dimethylarginine and asymmetric dimethylarginine, metabolic products of the PRMTs and JMJD proteins, can be changed by abnormal expression of these proteins. Many pathologies including cancer, inflammation and immune responses have been closely linked to aberrant arginine methylation. Currently, the majority of the literature discusses the substrate specificity and function of arginine methylation in the pathogenesis and prognosis of cancers. Numerous investigations on the roles of arginine methylation in the central nervous system (CNS) have so far been conducted. In this review, we display the biochemistry of arginine methylation and provide an overview of the regulatory mechanism of arginine methyltransferases and demethylases. We also highlight physiological functions of arginine methylation in the CNS and the significance of arginine methylation in a variety of neurological diseases such as brain cancers, neurodegenerative diseases and neurodevelopmental disorders. Furthermore, we summarize PRMT inhibitors and molecular functions of arginine methylation. Finally, we pose important questions that require further research to comprehend the roles of arginine methylation in the CNS and discover more effective targets for the treatment of neurological diseases.
Collapse
Affiliation(s)
- Kewei Chang
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an, 710061, Shaanxi, China
- Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education of China, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an, 710061, Shaanxi, China
| | - Dan Gao
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an, 710061, Shaanxi, China
- Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education of China, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an, 710061, Shaanxi, China
| | - Jidong Yan
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an, 710061, Shaanxi, China
- Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education of China, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an, 710061, Shaanxi, China
| | - Liyan Lin
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an, 710061, Shaanxi, China
| | - Tingting Cui
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an, 710061, Shaanxi, China
| | - Shemin Lu
- Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education of China, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an, 710061, Shaanxi, China.
- Department of Biochemistry and Molecular Biology, and Institute of Molecular and Translational Medicine, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an, 710061, Shaanxi, China.
| |
Collapse
|
4
|
Fulton MD, Cao M, Ho MC, Zhao X, Zheng YG. The macromolecular complexes of histones affect protein arginine methyltransferase activities. J Biol Chem 2021; 297:101123. [PMID: 34492270 PMCID: PMC8511957 DOI: 10.1016/j.jbc.2021.101123] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 08/14/2021] [Accepted: 08/24/2021] [Indexed: 11/29/2022] Open
Abstract
Histone arginine methylation is a key post-translational modification that mediates epigenetic events that activate or repress gene transcription. Protein arginine methyltransferases (PRMTs) are the driving force for the process of arginine methylation, and the core histone proteins have been shown to be substrates for most PRMT family members. However, previous reports of the enzymatic activities of PRMTs on histones in the context of nucleosomes seem contradictory. Moreover, what governs nucleosomal substrate recognition of different PRMT members is not understood. We sought to address this key biological question by examining how different macromolecular contexts where the core histones reside may regulate arginine methylation catalyzed by individual PRMT members (i.e., PRMT1, PRMT3, PRMT4, PRMT5, PRMT6, PRMT7, and PRMT8). Our results demonstrated that the substrate context exhibits a huge impact on the histone arginine methylation activity of PRMTs. Although all the tested PRMTs methylate multiple free histones individually, they show a preference for one particular histone substrate in the context of the histone octamer. We found that PRMT1, PRMT3, PRMT5, PRMT6, PRMT7, and PRMT8 preferentially methylate histone H4, whereas PRMT4/coactivator-associated arginine methyltransferase 1 prefers histone H3. Importantly, neither reconstituted nor cell-extracted mononucleosomes could be methylated by any PRMTs tested. Structural analysis suggested that the electrostatic interaction may play a mechanistic role in priming the substrates for methylation by PRMT enzymes. Taken together, this work expands our knowledge on the molecular mechanisms of PRMT substrate recognition and has important implications for understanding cellular dynamics and kinetics of histone arginine methylation in regulating gene transcription and other chromatin-templated processes.
Collapse
Affiliation(s)
- Melody D Fulton
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, The University of Georgia, Athens, Georgia, USA
| | - Mengtong Cao
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, The University of Georgia, Athens, Georgia, USA
| | - Meng-Chiao Ho
- Institute of Biological Chemistry, Academia Sinica, Nankang, Taipei, Taiwan
| | - Xinyang Zhao
- Department of Biochemistry and Molecular Genetics, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Y George Zheng
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, The University of Georgia, Athens, Georgia, USA.
| |
Collapse
|
5
|
Protein Arginine Methyltransferase (PRMT) Inhibitors-AMI-1 and SAH Are Effective in Attenuating Rhabdomyosarcoma Growth and Proliferation in Cell Cultures. Int J Mol Sci 2021; 22:ijms22158023. [PMID: 34360791 PMCID: PMC8348967 DOI: 10.3390/ijms22158023] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/20/2021] [Accepted: 07/23/2021] [Indexed: 02/06/2023] Open
Abstract
Rhabdomyosarcoma (RMS) is a malignant soft tissue cancer that develops mostly in children and young adults. With regard to histopathology, four rhabdomyosarcoma types are distinguishable: embryonal, alveolar, pleomorphic and spindle/sclerosing. Currently, increased amounts of evidence indicate that not only gene mutations, but also epigenetic modifications may be involved in the development of RMS. Epigenomic changes regulate the chromatin architecture and affect the interaction between DNA strands, histones and chromatin binding proteins, thus, are able to control gene expression. The main aim of the study was to assess the role of protein arginine methyltransferases (PRMT) in the cellular biology of rhabdomyosarcoma. In the study we used two pan-inhibitors of PRMT, called AMI-1 and SAH, and evaluated their effects on proliferation and apoptosis of RMS cells. We observed that AMI-1 and SAH reduce the invasive phenotype of rhabdomyosarcoma cells by decreasing their proliferation rate, cell viability and ability to form cell colonies. In addition, microarray analysis revealed that these inhibitors attenuate the activity of the PI3K-Akt signaling pathway and affect expression of genes related to it.
Collapse
|
6
|
Janisiak J, Kopytko P, Tarnowski M. Dysregulation of protein argininemethyltransferase in the pathogenesis of cancerpy. POSTEP HIG MED DOSW 2021. [DOI: 10.5604/01.3001.0014.8521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Arginine methylation is considered to be one of the most permanent and one of the most frequent post-translational modifications. The reaction of transferring a methyl group from S-adenosylmethionine to arginine residue is catalyzed by aginine methyltransferase (PRMT). In humans there are nine members of the PRMT family, named in order of discovery of PRMT1- PRMT9. Arginine methyltransferases were divided into three classes: I, II, III, with regard to the product of the catalyzed reaction. The products of their activity are, respectively, the following: asymmetric dimethylarginine (ADMA), symmetrical dimethylarginine (SDMA) and monomethylarginine (MMA). These modifications significantly affect the chromatin functions; therefore, they can act as co-activators or suppressors of the transcription process. Arginine methylation plays a crucial role in many biological processes in a human organism. Among others, it participates in signal transduction control, mRNA splicing and the regulation of basic cellular processes such as proliferation, differentiation, migration and apoptosis. There is increasing evidence that dysregulation of PRMT levels may lead to the cancer transformation of cells. The correlation between increased PRMT level and cancer has been demonstrated in the following: breast, ovary, lung and colorectal cancer. The activity of arginine methyltransferase can be regulated by small molecule PRMT inhibitors. To date, three substances that inhibit PRMT activity have been evaluated in clinical trials and exhibit anti-tumor activity against hematological cancer. It is believed that the use of specific PRMT inhibitors may become a new, effective and safe treatment of oncological diseases.
Collapse
Affiliation(s)
- Joanna Janisiak
- Katedra i Zakład Fizjologii, Pomorski Uniwersytet Medyczny w Szczecinie
| | - Patrycja Kopytko
- Katedra i Zakład Fizjologii, Pomorski Uniwersytet Medyczny w Szczecinie
| | - Maciej Tarnowski
- Katedra i Zakład Fizjologii, Pomorski Uniwersytet Medyczny w Szczecinie
| |
Collapse
|
7
|
Samuel SF, Barry A, Greenman J, Beltran-Alvarez P. Arginine methylation: the promise of a 'silver bullet' for brain tumours? Amino Acids 2021; 53:489-506. [PMID: 33404912 PMCID: PMC8107164 DOI: 10.1007/s00726-020-02937-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 12/21/2020] [Indexed: 02/07/2023]
Abstract
Despite intense research efforts, our pharmaceutical repertoire against high-grade brain tumours has not been able to increase patient survival for a decade and life expectancy remains at less than 16 months after diagnosis, on average. Inhibitors of protein arginine methyltransferases (PRMTs) have been developed and investigated over the past 15 years and have now entered oncology clinical trials, including for brain tumours. This review collates recent advances in the understanding of the role of PRMTs and arginine methylation in brain tumours. We provide an up-to-date literature review on the mechanisms for PRMT regulation. These include endogenous modulators such as alternative splicing, miRNA, post-translational modifications and PRMT-protein interactions, and synthetic inhibitors. We discuss the relevance of PRMTs in brain tumours with a particular focus on PRMT1, -2, -5 and -8. Finally, we include a future perspective where we discuss possible routes for further research on arginine methylation and on the use of PRMT inhibitors in the context of brain tumours.
Collapse
Affiliation(s)
| | - Antonia Barry
- Department of Biomedical Sciences, University of Hull, Hull, UK
| | - John Greenman
- Department of Biomedical Sciences, University of Hull, Hull, UK
| | | |
Collapse
|
8
|
Wu B, Tang X, Zhou Z, Ke H, Tang S, Ke R. RNA sequencing analysis of FGF2-responsive transcriptome in skin fibroblasts. PeerJ 2021; 9:e10671. [PMID: 33520460 PMCID: PMC7812929 DOI: 10.7717/peerj.10671] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 12/08/2020] [Indexed: 01/01/2023] Open
Abstract
Background Fibroblast growth factor 2 (FGF2) is a highly pleiotropic cytokine with antifibrotic activity in wound healing. During the process of wound healing and fibrosis, fibroblasts are the key players. Although accumulating evidence has suggested the antagonistic effects of FGF2 in the activation process of fibroblasts, the mechanisms by which FGF2 hinders the fibroblast activation remains incompletely understood. This study aimed to identify the key genes and their regulatory networks in skin fibroblasts treated with FGF2. Methods RNA-seq was performed to identify the differentially expressed mRNA (DEGs) and lncRNA between FGF2-treated fibroblasts and control. DEGs were analyzed by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG). Furthermore, the networks between mRNAs and lncRNAs were constructed by Pearson correlation analysis and the networkanalyst website. Finally, hub genes were validated by real time-PCR. Results Between FGF2-treated fibroblasts and control fibroblasts, a total of 1475 DEGs was obtained. These DEGs were mainly enriched in functions such as the ECM organization, cell adhesion, and cell migration. They were mainly involved in ECM-receptor interaction, PI3K-Akt signaling, and the Hippo pathway. The hub DEGs included COL3A1, COL4A1, LOX, PDGFA, TGFBI, and ITGA10. Subsequent real-time PCR, as well as bioinformatics analysis, consistently demonstrated that the expression of ITGA10 was significantly upregulated while the other five DEGs (COL3A1, COL4A1, LOX, PDGFA, TGFBI) were downregulated in FGF2-treated fibroblasts. Meanwhile, 213 differentially expressed lncRNAs were identified and three key lncRNAs (HOXA-AS2, H19, and SNHG8) were highlighted in FGF2-treated fibroblasts. Conclusion The current study comprehensively analyzed the FGF2-responsive transcriptional profile and provided candidate mechanisms that may account for FGF2-mediated wound healing.
Collapse
Affiliation(s)
- Baojin Wu
- Department of Plastic Surgery, Huashan Hospital Affiliated to Fudan University, Shanghai, China
| | - Xinjie Tang
- Department of Plastic Surgery, Huashan Hospital Affiliated to Fudan University, Shanghai, China
| | - Zhaoping Zhou
- Department of Plastic Surgery, Huashan Hospital Affiliated to Fudan University, Shanghai, China
| | - Honglin Ke
- Department of Emergency, Huashan Hospital Affiliated to Fudan University, Shanghai, China
| | - Shao Tang
- Department of Statistics, Florida State University, Tallahassee, FL, USA
| | - Ronghu Ke
- Department of Plastic Surgery, Huashan Hospital Affiliated to Fudan University, Shanghai, China
| |
Collapse
|
9
|
Bryant JP, Heiss J, Banasavadi-Siddegowda YK. Arginine Methylation in Brain Tumors: Tumor Biology and Therapeutic Strategies. Cells 2021; 10:cells10010124. [PMID: 33440687 PMCID: PMC7827394 DOI: 10.3390/cells10010124] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/05/2021] [Accepted: 01/05/2021] [Indexed: 12/12/2022] Open
Abstract
Protein arginine methylation is a common post-translational modification that plays a pivotal role in cellular regulation. Protein arginine methyltransferases (PRMTs) catalyze the modification of target proteins by adding methyl groups to the guanidino nitrogen atoms of arginine residues. Protein arginine methylation takes part in epigenetic and cellular regulation and has been linked to neurodegenerative diseases, metabolic diseases, and tumor progression. Aberrant expression of PRMTs is associated with the development of brain tumors such as glioblastoma and medulloblastoma. Identifying PRMTs as plausible contributors to tumorigenesis has led to preclinical and clinical investigations of PRMT inhibitors for glioblastoma and medulloblastoma therapy. In this review, we discuss the role of arginine methylation in cancer biology and provide an update on the use of small molecule inhibitors of PRMTs to treat glioblastoma, medulloblastoma, and other cancers.
Collapse
|
10
|
Wang YC, Chang CP, Tsai YJ, Lee YJ, Li C. Alternative 3' splice site selection of intron 5 within the prmt8 gene results in a novel variant widely distributed in vertebrates and specifically abundant in Aves. Gene 2020; 747:144684. [PMID: 32311412 DOI: 10.1016/j.gene.2020.144684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 04/14/2020] [Accepted: 04/16/2020] [Indexed: 11/18/2022]
Abstract
PRMT8 is a neuron-specific protein arginine methyltransferase in vertebrates. From data mining, we found a novel prmt8e6+43 splicing variant with a 43-nucleotide (nt) extension at the 5' of exon 6 in chicken. RT-PCR analyses confirmed the existence of two splicing variants but also detected a third upper signal. The triplet pattern detected in chicken suggests that one strand from the prmt8e6+43 transcript and one strand from the regular splicing products form a heteroduplex with a bulb conformation and the two transcripts are of similar abundance. One short plus one faint upper heteroduplex signal detected in mouse and human indicate that the level of the variant is much less than the normal one in mammals. The relative expression of the normal and prmt8e6+43 variants in different species can be inferred from the reads of intron 5 that contains the 43-nt extension or not in the RNA-seq data of NCBI Gene database. The results of the analyses showed that the prmt8e6+43 variant is relatively abundant in birds but much less or even not detected in mammalian species. As conserved intron 5 sequences and evidences of alternative splicing (AS) are detected in elephant shark, a cartilaginous fish with the slowest-evolving genome, we propose that the prmt8e6+43 variant is present in the common ancestor of jawed vertebrates. The prmt8e6+43 variant includes a premature termination codon and thus should encode a truncated PRMT8 with deletion from the dimerization arm. Western blot analyses showed very weak low-molecular-weight signals in chicken, which might be the C-terminal truncated PRMT8. Why avian species maintain high RNA but not protein levels of the prmt8e6+43 variant and whether the evolutionary conserved sequence and AS might regulate PRMT8 expression require further investigation.
Collapse
Affiliation(s)
- Yi-Chun Wang
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung, Taiwan; Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Chien-Ping Chang
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung, Taiwan
| | - Yun-Jung Tsai
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung, Taiwan
| | - Yu-Jen Lee
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung, Taiwan
| | - Chuan Li
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung, Taiwan; Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan.
| |
Collapse
|
11
|
Botzenhart UU, Gredes T, Gerlach R, Zeidler-Rentzsch I, Gedrange T, Keil C. Histological features of masticatory muscles after botulinum toxin A injection into the right masseter muscle of dystrophin deficient (mdx-) mice. Ann Anat 2020; 229:151464. [PMID: 31978572 DOI: 10.1016/j.aanat.2020.151464] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 12/15/2019] [Accepted: 12/23/2019] [Indexed: 12/24/2022]
Abstract
OBJECTIVE/BACKGROUND The most frequently used animal model for human DMD (Duchenne muscular dystrophy) research is the mdx mouse. In both species, characteristic histological changes like inflammation, muscle fiber degeneration and fibrosis are the same, but in contrast to humans, in mdx mice, phases of muscle fiber degeneration are compensated by regeneration processes. AIM Therefore, the interest of this study was to evaluate histological features in masticatory muscles after BTX-A injection into the right masseter muscle of wild type and dystrophic (mdx) mice, illustrating de- and regeneration processes induced by this substance. MATERIAL AND METHODS The right masseter muscle of 100 days old healthy and mdx mice were selectively paralyzed by a single intramuscular BTX-A injection. Masseter as well as temporal muscle of injection and non-injection side were carefully dissected 21 days and 42 days after injection, respectively, and fiber diameter, cell nuclei position, necrosis and collagen content were analyzed histomorphologically in order to evaluate de- and regeneration processes in these muscles. Statistical analysis was performed using SigmaStat Software and Mann Whitney U-test (significance level: p < 0.05). RESULTS At both investigation periods and in both mouse strains fiber diameter was significantly reduced and collagen content was significantly increased in the right injected masseter muscle whereas fiber diameters in mdx mice were much smaller, and these differences were even more apparent at the second investigation period. Necrosis and central located nuclei could generally be found in all mdx mice muscles investigated with an amount of centronucleation exceeding 60%, and a significant increase of necrosis six weeks after injection. In wild type mice central located nuclei could primarily be found in the treated masseter muscle with a portion of 2.7%, and this portion decreased after six weeks, whereas in mdx mice a decrease could also be seen in the non-injected muscles. In contrast, in wild type mice necrosis was not apparent at any time and in all muscles investigated. CONCLUSION From our results it can be concluded that in mdx mice masticatory muscles de- and regeneration processes were extended, triggered by a selective BTX-A injection, or mdx mice at this age, independently of BTX-A treatment, went through another cycle of de- and regeneration as a characteristic of this disease.
Collapse
Affiliation(s)
- Ute Ulrike Botzenhart
- Medical Faculty Carl Gustav Carus Campus, Technische Universtität Dresden, Dresden, Germany.
| | - Tomasz Gredes
- Medical Faculty Carl Gustav Carus Campus, Technische Universtität Dresden, Dresden, Germany
| | - Ricarda Gerlach
- Medical Faculty Carl Gustav Carus Campus, Technische Universtität Dresden, Dresden, Germany
| | - Ines Zeidler-Rentzsch
- Medical Faculty Carl Gustav Carus Campus, Technische Universtität Dresden, Dresden, Germany
| | - Tomasz Gedrange
- Medical Faculty Carl Gustav Carus Campus, Technische Universtität Dresden, Dresden, Germany
| | - Christiane Keil
- Medical Faculty Carl Gustav Carus Campus, Technische Universtität Dresden, Dresden, Germany
| |
Collapse
|
12
|
Li ASM, Li F, Eram MS, Bolotokova A, Dela Seña CC, Vedadi M. Chemical probes for protein arginine methyltransferases. Methods 2019; 175:30-43. [PMID: 31809836 DOI: 10.1016/j.ymeth.2019.11.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 11/29/2019] [Accepted: 11/29/2019] [Indexed: 12/28/2022] Open
Abstract
Protein arginine methyltransferases (PRMTs) catalyze the transfer of methyl groups to specific arginine residues of their substrates using S-adenosylmethionine as a methyl donor, contributing to regulation of many biological processes including transcription, and DNA damage repair. Dysregulation of PRMT expression is often associated with various diseases including cancers. Different methods have been used to characterize the activities of PRMTs and determine their kinetic parameters including mass spectrometry, radiometric, and antibody-based assays. Here, we present kinetic characterization of PRMTs using a radioactivity-based assay for better comparison along with previously reported values. We also report on full characterization of PRMT9 activity with SAP145 peptide as substrate. We further review the potent, selective and cell-active PRMT inhibitors discovered in recent years to provide a better understanding of available tools to investigate the roles these proteins play in health and disease.
Collapse
Affiliation(s)
- Alice Shi Ming Li
- Structural Genomics Consortium, University of Toronto, Toronto, ON M5G 1L7, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Fengling Li
- Structural Genomics Consortium, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Mohammad S Eram
- Structural Genomics Consortium, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Albina Bolotokova
- Structural Genomics Consortium, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Carlo C Dela Seña
- Structural Genomics Consortium, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Masoud Vedadi
- Structural Genomics Consortium, University of Toronto, Toronto, ON M5G 1L7, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
13
|
Yang M, Liu H, Wang Y, Wu G, Qiu S, Liu C, Tan Z, Guo J, Zhu L. Hypoxia reduces the osteogenic differentiation of peripheral blood mesenchymal stem cells by upregulating Notch-1 expression. Connect Tissue Res 2019; 60:583-596. [PMID: 31035811 DOI: 10.1080/03008207.2019.1611792] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Purpose: Mesenchymal stem cells (MSCs) seeded on biocompatible scaffolds have therapeutic potential for bone defect repair. However, MSCs can be affected by hypoxia and nutritional deficiency due to a lack of blood vessels in the scaffolds. Here, we explored the effects of hypoxia on MSC differentiation to clarify these mechanisms. Methods: Peripheral blood mesenchymal stem cells (PBMSCs) were cultured in small individual chambers with oxygen concentrations of 1%, 9%, and 21%. Cell proliferation was evaluated by Cell Counting Kit 8 assays, and cell survival was determined using live/dead assays. Scratch assays were performed to evaluate cell migration. Ca2+ deposition/mineralization experiments, reverse transcription quantitative real-time polymerase chain reaction, and Western blotting were performed to assess the osteogenic differentiation of cells. Notch1 expression was downregulated by lentivirus-transfected PBMSCs to observe the effects of Notch1 knockdown on osteogenic gene and protein expression. Results: PBMSCs exposed to hypoxia (1% O2) demonstrated accelerated proliferation, increased migration, and reduced survival in the absence of serum. Although 9% oxygen promoted osteogenic differentiation, the osteogenic differentiation of PBMSCs was significantly reduced by 1% O2, and this effect was associated with increased Notch1 expression. Reducing Notch1 expression using small interfering RNA significantly restored the osteogenic differentiation of PBMSCs. Conclusions: Hypoxia accelerated proliferation, increased migration, and reduced PBMSC differentiation into osteoblasts by increasing Notch1 expression. These findings may contribute to the development of appropriate cell culture or in vivo transplantation conditions to maintain the full osteogenic potential of PBMSCs.
Collapse
Affiliation(s)
- Minsheng Yang
- Department of Spine Orthopedics, Zhujiang Hospital, Southern Medical University , Guangzhou , China
| | - Haixin Liu
- People's Hospital of Deyang City , Sichuan , China
| | - Yihan Wang
- Department of Spine Orthopedics, Zhujiang Hospital, Southern Medical University , Guangzhou , China
| | - Guofeng Wu
- Department of Orthopedics, Jingzhou No. 1 People's Hospital and First Affiliated Hospital of Yangtze University , Jingzhou , China
| | - Sujun Qiu
- Department of Spine Orthopedics, Zhujiang Hospital, Southern Medical University , Guangzhou , China
| | - Chun Liu
- Department of Spine Orthopedics, Zhujiang Hospital, Southern Medical University , Guangzhou , China
| | - Zhiwen Tan
- Department of Spine Orthopedics, Zhujiang Hospital, Southern Medical University , Guangzhou , China
| | - Jiasong Guo
- Department of Histology and Embryology, Southern Medical University , Guangzhou , China.,Key Laboratory of Tissue Construction and Detection of Guangdong Province , Guangzhou , China.,Institute of Bone Biology, Academy of Orthopaedics , Guangdong Province , Guangzhou , China
| | - Lixin Zhu
- Department of Spine Orthopedics, Zhujiang Hospital, Southern Medical University , Guangzhou , China
| |
Collapse
|
14
|
Richter JF, Hildner M, Schmauder R, Turner JR, Schumann M, Reiche J. Occludin knockdown is not sufficient to induce transepithelial macromolecule passage. Tissue Barriers 2019; 7:1612661. [PMID: 31161924 DOI: 10.1080/21688370.2019.1608759] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Occludin, a tight junction protein, has been reported to regulate barrier function - particularly the leak pathway for larger solutes - in epithelia. Therefore, we aimed to precisely define its role in macromolecule passage at single cell-cell junctions. A combination of varying occludin expression by transient and stable knockdown including systematic seeding strategies was employed to achieve a broad and defined pattern of variance in occludin expression over epithelia. This variance model enabled us to examine occludin function in the leak pathway using global and local analysis, i.e. to analyze macromolecule flux across epithelia and macromolecule passage at single-cell level. Macromolecular flux was found not to correlate with occludin expression in intestinal epithelial cells. In fact, by spatially resolving macromolecular permeation sites using a recently developed method we uncovered leaky cell junctions at the edge of Transwells resulting in increased passage. This demonstrates that rare leaks can determine net flux of macromolecules across epithelia while the vast majority of cellular junctions do not contribute significantly. Hence, concomitant local analysis of macromolecule passage across epithelial barriers is indispensable for interpretation of global flux data. By combining this new approach with cell culture models of the leak pathway, we can present evidence that lack of occludin is not sufficient to stimulate the epithelial leak pathway.
Collapse
Affiliation(s)
- Jan F Richter
- a Institute of Anatomy II , Jena University Hospital , Jena , Germany
| | - Markus Hildner
- a Institute of Anatomy II , Jena University Hospital , Jena , Germany
| | - Ralf Schmauder
- b Institute of Physiology II , Jena University Hospital , Jena , Germany
| | - Jerrold R Turner
- c Department of Pathology , Brigham and Women's Hospital and Harvard Medical School , Boston , MA , USA
| | - Michael Schumann
- d Dept. of Gastroenterology, Infectious Diseases and Rheumatology , Campus Benjamin Franklin, Charité - University medicine Berlin , Berlin , Germany
| | - Juliane Reiche
- e Institute of Biochemistry II , Jena University Hospital , Jena , Germany
| |
Collapse
|
15
|
Lin H, Wang B, Yu J, Wang J, Li Q, Cao B. Protein arginine methyltransferase 8 gene enhances the colon cancer stem cell (CSC) function by upregulating the pluripotency transcription factor. J Cancer 2018; 9:1394-1402. [PMID: 29721049 PMCID: PMC5929084 DOI: 10.7150/jca.23835] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 02/25/2018] [Indexed: 12/12/2022] Open
Abstract
Objective: Cancer stem cells play a crucial role in tumor multidrug resistance and metastasis, which can produce heterogeneous tumor cells and have self-renewal ability. The related literature reported that PRMT8 was overexpressed in tumor stem cells and pluripotent stem cells. However, it's unclear how PRMT8 acts on the stemness of colon tumor cells. This study is designed to detect functions by transfecting with PRMT8 plasmid to colon cancer cells. Methods: In this study we investigated colon cancer cell sphere and its differential expression of PRMT8 compared with colon cancer cells grown by static adherence. RKO Sphere formation assay was used to identify CSCs and verified PRMT8 and pluripotent transcription factors SOX2, OCT4, Nanog expression level in colon cell sphere. Colon cancer cell HCT-8 and RKO up-regulated PRMT8 expression by being transfected with PRMT8 plasmid to evaluate its effect on the stemness of colon tumor cell. Results: In RKO cell sphere, stem cell surface marker CD133 and CD44 were highly expressed. And PRMT8, SOX2, OCT4 and Nanog were also highly expressed in RKO cell sphere. After PRMT8 was up-regulated in HCT-8 and RKO cells, flow cytometry proved that PRMT8 group cells have a significant increase of the side population (SP) cells with cancer stem cell surface markers CD133 and CD44. And overexpression of PRMT8 in HCT-8 and RKO cells facilitated their aggressive traits, which contained proliferation, invasion and migration, as well as leading to their drug resistance. PRMT8 may play a role in colon cancer stem cells (CSC) through its regulation of pluripotent transcription factors, such as Nanog Homeobox (Nanog), octamer-binding transcription factor-4 (Oct4) and SRY-related high-mobility-group(HMG)-box protein-2 (Sox2). Conclusion: PRMT8 may promote the formation of colon cancer stem cells and, thus, be considered a potential therapeutic target for the treatment of malignant colon tumor.
Collapse
Affiliation(s)
- Haishan Lin
- Department of Oncology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Bin Wang
- Department of Medical Administration, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Jing Yu
- Department of Oncology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Jing Wang
- Department of Oncology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Qin Li
- Department of Oncology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Bangwei Cao
- Department of Oncology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| |
Collapse
|
16
|
Raposo AE, Piller SC. Protein arginine methylation: an emerging regulator of the cell cycle. Cell Div 2018; 13:3. [PMID: 29568320 PMCID: PMC5859524 DOI: 10.1186/s13008-018-0036-2] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 03/13/2018] [Indexed: 12/19/2022] Open
Abstract
Protein arginine methylation is a common post-translational modification where a methyl group is added onto arginine residues of a protein to alter detection by its binding partners or regulate its activity. It is known to be involved in many biological processes, such as regulation of signal transduction, transcription, facilitation of protein–protein interactions, RNA splicing and transport. The enzymes responsible for arginine methylation, protein arginine methyltransferases (PRMTs), have been shown to methylate or associate with important regulatory proteins of the cell cycle and DNA damage repair pathways, such as cyclin D1, p53, p21 and the retinoblastoma protein. Overexpression of PRMTs resulting in aberrant methylation patterns in cancers often correlates with poor recovery prognosis. This indicates that protein arginine methylation is also an important regulator of the cell cycle, and consequently a target for cancer regulation. The effect of protein arginine methylation on the cell cycle and how this emerging key player of cell cycle regulation may be used in therapeutic strategies for cancer are the focus of this review.
Collapse
Affiliation(s)
- Anita E Raposo
- School of Science and Health, Western Sydney University, Penrith, NSW 2751 Australia
| | - Sabine C Piller
- School of Science and Health, Western Sydney University, Penrith, NSW 2751 Australia
| |
Collapse
|
17
|
Jeong HC, Park SJ, Choi JJ, Go YH, Hong SK, Kwon OS, Shin JG, Kim RK, Lee MO, Lee SJ, Shin HD, Moon SH, Cha HJ. PRMT8 Controls the Pluripotency and Mesodermal Fate of Human Embryonic Stem Cells By Enhancing the PI3K/AKT/SOX2 Axis. Stem Cells 2017; 35:2037-2049. [DOI: 10.1002/stem.2642] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 05/06/2017] [Indexed: 12/31/2022]
Affiliation(s)
- Ho-Chang Jeong
- Department of Life Sciences, Sogang University; Seoul Republic of Korea
| | - Soon-Jung Park
- Department of Medicine; School of Medicine, Konkuk University; Seoul Republic of Korea
| | - Jong-Jin Choi
- Department of Medicine; School of Medicine, Konkuk University; Seoul Republic of Korea
| | - Young-Hyun Go
- Department of Life Sciences, Sogang University; Seoul Republic of Korea
| | - Soon-Ki Hong
- Department of Life Sciences, Sogang University; Seoul Republic of Korea
| | - Ok-Seon Kwon
- Department of Life Sciences, Sogang University; Seoul Republic of Korea
| | - Joong-Gon Shin
- Department of Life Sciences, Sogang University; Seoul Republic of Korea
- Research Institute for Basic Science, Sogang University; Seoul Republic of Korea
| | - Rae-Kwon Kim
- Department of Life Science; Research Institute for Natural Sciences, Hanyang University; Seoul Republic of Korea
| | - Mi-Ok Lee
- Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB); Daejeon Republic of Korea
| | - Su-Jae Lee
- Department of Life Science; Research Institute for Natural Sciences, Hanyang University; Seoul Republic of Korea
| | - Hyoung Doo Shin
- Department of Life Sciences, Sogang University; Seoul Republic of Korea
- Research Institute for Basic Science, Sogang University; Seoul Republic of Korea
| | - Sung-Hwan Moon
- Department of Medicine; School of Medicine, Konkuk University; Seoul Republic of Korea
| | - Hyuk-Jin Cha
- Department of Life Sciences, Sogang University; Seoul Republic of Korea
| |
Collapse
|
18
|
Hernandez SJ, Dolivo DM, Dominko T. PRMT8 demonstrates variant-specific expression in cancer cells and correlates with patient survival in breast, ovarian and gastric cancer. Oncol Lett 2017; 13:1983-1989. [PMID: 28454353 DOI: 10.3892/ol.2017.5671] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 11/30/2016] [Indexed: 11/06/2022] Open
Abstract
Recent emphasis has been placed on the role of epigenetic regulators and epigenetic marks as biomarkers for cancer diagnosis and prognosis, and as therapeutic targets for treatment. One such class of regulators is the protein arginine methyltransferase (PRMT) family. The present study examined available curated data regarding the expression and alteration of one of the least studied PRMT family members, PRMT8, in various types of cancer and cancer cell lines. Publicly available cancer data on PRMT8 expression were examined using the Human Protein Atlas and the Kaplan-Meier Plotter, and reverse transcription-polymerase chain reaction was used to screen a selection of human cell lines for variant-specific PRMT8 expression. High levels of PRMT8 expression in breast, ovarian and cervical cancer was observed. Additionally, in patients with breast and ovarian cancer, high PRMT8 expression was correlated with increased patient survival, whereas in gastric cancer, high PRMT8 expression was correlated with decreased patient survival. The present study also investigated the expression of PRMT8 variant 2, a novel transcript variant recently identified in our laboratory, in various cancer cell lines. Variant-specific expression of PRMT8 in numerous distinct cancer cell lines derived from different tissues, including the expression of the novel PRMT8 variant 2 in U87MG glioblastoma cells was demonstrated. The present study proposes the possibility of PRMT8 as a cancer biomarker, based on the high level of PRMT8 expression in various types of cancer, particularly in tissues that would not normally be expected to express PRMT8, and on the correlation of PRMT8 and patient lifespan in several cancer types. Variant-specific expression of PRMT8 in diverse cancer cell lines suggests the possibility of alternate PRMT8 isoforms to have diverse effects on cancer cell phenotypes.
Collapse
Affiliation(s)
- Sarah J Hernandez
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA 01605, USA
| | - David M Dolivo
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA 01605, USA
| | - Tanja Dominko
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA 01605, USA.,Center for Biomedical Sciences and Engineering, University of Nova Gorica, 5271 Vipava, Slovenia
| |
Collapse
|
19
|
Solari C, Echegaray CV, Luzzani C, Cosentino MS, Waisman A, Petrone MV, Francia M, Sassone A, Canizo J, Sevlever G, Barañao L, Miriuka S, Guberman A. Protein arginine Methyltransferase 8 gene is expressed in pluripotent stem cells and its expression is modulated by the transcription factor Sox2. Biochem Biophys Res Commun 2016; 473:194-199. [DOI: 10.1016/j.bbrc.2016.03.077] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 03/17/2016] [Indexed: 01/08/2023]
|