1
|
Christodoulidis G, Koumarelas KE, Kouliou MN, Thodou E, Samara M. Gastric Cancer in the Era of Epigenetics. Int J Mol Sci 2024; 25:3381. [PMID: 38542354 PMCID: PMC10970362 DOI: 10.3390/ijms25063381] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 03/12/2024] [Accepted: 03/13/2024] [Indexed: 11/11/2024] Open
Abstract
Gastric cancer (GC) remains a significant contributor to cancer-related mortality. Novel high-throughput techniques have enlightened the epigenetic mechanisms governing gene-expression regulation. Epigenetic characteristics contribute to molecular taxonomy and give rise to cancer-specific epigenetic patterns. Helicobacter pylori (Hp) infection has an impact on aberrant DNA methylation either through its pathogenic CagA protein or by inducing chronic inflammation. The hypomethylation of specific repetitive elements generates an epigenetic field effect early in tumorigenesis. Epstein-Barr virus (EBV) infection triggers DNA methylation by dysregulating DNA methyltransferases (DNMT) enzyme activity, while persistent Hp-EBV co-infection leads to aggressive tumor behavior. Distinct histone modifications are also responsible for oncogene upregulation and tumor-suppressor gene silencing in gastric carcinomas. While histone methylation and acetylation processes have been extensively studied, other less prevalent alterations contribute to the development and migration of gastric cancer via a complex network of interactions. Enzymes, such as Nicotinamide N-methyltransferase (NNMT), which is involved in tumor's metabolic reprogramming, interact with methyltransferases and modify gene expression. Non-coding RNA molecules, including long non-coding RNAs, circular RNAs, and miRNAs serve as epigenetic regulators contributing to GC development, metastasis, poor outcomes and therapy resistance. Serum RNA molecules hold the potential to serve as non-invasive biomarkers for diagnostic, prognostic or therapeutic applications. Gastric fluids represent a valuable source to identify potential biomarkers with diagnostic use in terms of liquid biopsy. Ongoing clinical trials are currently evaluating the efficacy of next-generation epigenetic drugs, displaying promising outcomes. Various approaches including multiple miRNA inhibitors or targeted nanoparticles carrying epigenetic drugs are being designed to enhance existing treatment efficacy and overcome treatment resistance.
Collapse
Affiliation(s)
- Grigorios Christodoulidis
- Department of General Surgery, University Hospital of Larissa, University of Thessaly, Biopolis Campus, 41110 Larissa, Greece; (G.C.); (K.-E.K.); (M.-N.K.)
| | - Konstantinos-Eleftherios Koumarelas
- Department of General Surgery, University Hospital of Larissa, University of Thessaly, Biopolis Campus, 41110 Larissa, Greece; (G.C.); (K.-E.K.); (M.-N.K.)
| | - Marina-Nektaria Kouliou
- Department of General Surgery, University Hospital of Larissa, University of Thessaly, Biopolis Campus, 41110 Larissa, Greece; (G.C.); (K.-E.K.); (M.-N.K.)
| | - Eleni Thodou
- Department of Pathology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Biopolis Campus, 41110 Larissa, Greece;
| | - Maria Samara
- Department of Pathology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Biopolis Campus, 41110 Larissa, Greece;
| |
Collapse
|
2
|
Zhou W, Yan K, Xi Q. BMP signaling in cancer stemness and differentiation. CELL REGENERATION (LONDON, ENGLAND) 2023; 12:37. [PMID: 38049682 PMCID: PMC10695912 DOI: 10.1186/s13619-023-00181-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 11/06/2023] [Indexed: 12/06/2023]
Abstract
The BMP (Bone morphogenetic protein) signaling pathway plays a central role in metazoan biology, intricately shaping embryonic development, maintaining tissue homeostasis, and influencing disease progression. In the context of cancer, BMP signaling exhibits context-dependent dynamics, spanning from tumor suppression to promotion. Cancer stem cells (CSCs), a modest subset of neoplastic cells with stem-like attributes, exert substantial influence by steering tumor growth, orchestrating therapy resistance, and contributing to relapse. A comprehensive grasp of the intricate interplay between CSCs and their microenvironment is pivotal for effective therapeutic strategies. Among the web of signaling pathways orchestrating cellular dynamics within CSCs, BMP signaling emerges as a vital conductor, overseeing CSC self-renewal, differentiation dynamics, and the intricate symphony within the tumor microenvironment. Moreover, BMP signaling's influence in cancer extends beyond CSCs, intricately regulating cellular migration, invasion, and metastasis. This multifaceted role underscores the imperative of comprehending BMP signaling's contributions to cancer, serving as the foundation for crafting precise therapies to navigate multifaceted challenges posed not only by CSCs but also by various dimensions of cancer progression. This article succinctly encapsulates the diverse roles of the BMP signaling pathway across different cancers, spanning glioblastoma multiforme (GBM), diffuse intrinsic pontine glioma (DIPG), colorectal cancer, acute myeloid leukemia (AML), lung cancer, prostate cancer, and osteosarcoma. It underscores the necessity of unraveling underlying mechanisms and molecular interactions. By delving into the intricate tapestry of BMP signaling's engagement in cancers, researchers pave the way for meticulously tailored therapies, adroitly leveraging its dualistic aspects-whether as a suppressor or promoter-to effectively counter the relentless march of tumor progression.
Collapse
Affiliation(s)
- Wei Zhou
- State Key Laboratory of Molecular Oncology, MOE Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Kun Yan
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Qiaoran Xi
- State Key Laboratory of Molecular Oncology, MOE Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
- Joint Graduate Program of Peking-Tsinghua-NIBS, Tsinghua University, Beijing, China.
| |
Collapse
|
3
|
Tang SY, Zhou PJ, Meng Y, Zeng FR, Deng GT. Gastric cancer: An epigenetic view. World J Gastrointest Oncol 2022; 14:90-109. [PMID: 35116105 PMCID: PMC8790429 DOI: 10.4251/wjgo.v14.i1.90] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 05/17/2021] [Accepted: 12/23/2021] [Indexed: 02/06/2023] Open
Abstract
Gastric cancer (GC) poses a serious threat worldwide with unfavorable prognosis mainly due to late diagnosis and limited therapies. Therefore, precise molecular classification and search for potential targets are required for diagnosis and treatment, as GC is complicated and heterogeneous in nature. Accumulating evidence indicates that epigenetics plays a vital role in gastric carcinogenesis and progression, including histone modifications, DNA methylation and non-coding RNAs. Epigenetic biomarkers and drugs are currently under intensive evaluations to ensure efficient clinical utility in GC. In this review, key epigenetic alterations and related functions and mechanisms are summarized in GC. We focus on integration of existing epigenetic findings in GC for the bench-to-bedside translation of some pivotal epigenetic alterations into clinical practice and also describe the vacant field waiting for investigation.
Collapse
Affiliation(s)
- Si-Yuan Tang
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
| | - Pei-Jun Zhou
- Cancer Research Institute, School of Basic Medicine Science, Central South University, School of Basic Medicine Science, Central South University 410008, Hunan Province, China
| | - Yu Meng
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
| | - Fu-Rong Zeng
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
| | - Guang-Tong Deng
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
| |
Collapse
|
4
|
Skok DJ, Hauptman N, Jerala M, Zidar N. Expression of Cytokine-Coding Genes BMP8B, LEFTY1 and INSL5 Could Distinguish between Ulcerative Colitis and Crohn's Disease. Genes (Basel) 2021; 12:genes12101477. [PMID: 34680872 PMCID: PMC8535226 DOI: 10.3390/genes12101477] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/17/2021] [Accepted: 09/21/2021] [Indexed: 12/17/2022] Open
Abstract
Ulcerative colitis (UC) and Crohn’s disease (CD) are characterized by an imbalance between pro-inflammatory and anti-inflammatory cytokines, interfering with the resolution of inflammation. Due to the crucial role of cytokines, new insights into their profiles in UC and CD would help to improve our understanding of pathogenesis and enable the development of new treatment modalities. We provide an expression profile of cytokines in UC and CD, using bioinformatics approach, and experimental validation of expression of the selected genes. We retrieved data and analyzed the cytokine gene expression profiles of UC and CD. From ten genes with inverse expression, common to CD and UC, BMP8B, LEFTY1 and INSL5 were selected for gene expression experimental validation. Experimentally, BMP8B and INSL5 were down-regulated in both CD and UC but followed the bioinformatics trend. The expression of genes LEFTY1 and BMP8B was statistically significant when comparing UC and CD in colon and the expression of gene LEFTY1 showed statistical significance when CD in ileum and colon were compared. Using the bioinformatics approach and experimental validation, we found differences in expression profiles between UC and CD for INSL5, LEFTY1 and BMP8B. These three promising candidate genes need to be further explored at different levels, such as DNA methylation and protein expression, to provide more evidence on their potential diagnostic role in CD and UC.
Collapse
Affiliation(s)
- Daša Jevšinek Skok
- Institute of Pathology, Faculty of Medicine, University of Ljubljana, Korytkova 2, SI-1000 Ljubljana, Slovenia; (D.J.S.); (N.H.); (M.J.)
- Agricultural Institute of Slovenia, Hacquetova Ulica 17, SI-1000 Ljubljana, Slovenia
| | - Nina Hauptman
- Institute of Pathology, Faculty of Medicine, University of Ljubljana, Korytkova 2, SI-1000 Ljubljana, Slovenia; (D.J.S.); (N.H.); (M.J.)
| | - Miha Jerala
- Institute of Pathology, Faculty of Medicine, University of Ljubljana, Korytkova 2, SI-1000 Ljubljana, Slovenia; (D.J.S.); (N.H.); (M.J.)
| | - Nina Zidar
- Institute of Pathology, Faculty of Medicine, University of Ljubljana, Korytkova 2, SI-1000 Ljubljana, Slovenia; (D.J.S.); (N.H.); (M.J.)
- Correspondence: ; Tel.: +386-1-543-7149
| |
Collapse
|
5
|
Ohmuro-Matsuyama Y, Kitaguchi T, Kimura H, Ueda H. Simple Fluorogenic Cellular Assay for Histone Deacetylase Inhibitors Based on Split-Yellow Fluorescent Protein and Intrabodies. ACS OMEGA 2021; 6:10039-10046. [PMID: 34056159 PMCID: PMC8153662 DOI: 10.1021/acsomega.0c06281] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Accepted: 03/31/2021] [Indexed: 05/03/2023]
Abstract
Histone deacetylase (HDAC) inhibitors that regulate the posttranslational modifications of histone tails are therapeutic drugs for many diseases such as cancers, neurodegenerative diseases, and asthma; however, convenient and sensitive methods to measure the effect of HDAC inhibitors in cultured mammalian cells remain limited. In this study, a fluorogenic assay was developed to detect the acetylation of lysine 9 on histone H3 (H3K9ac), which is involved in several cancers, Alzheimer's disease, and autism spectrum disorder. To monitor the changes in H3K9ac levels, an H3K9ac-specific intrabody fused with a small fragment FP11 of the split-yellow fluorescent protein (YFP) (scFv-FP11) was expressed in mammalian cells, together with a larger YFP fragment FP1-10 fused with a nuclear localization signal. When the intranuclear level of H3K9ac is increased, the scFv-FP11 is more enriched in the nucleus via passive diffusion through the nuclear pores from the cytoplasm, which increases the chance of forming a fluorescent complex with the nuclear YFP1-10. The results showed that the YFP fluorescence increased when the cells were treated with HDAC inhibitors. Moreover, the sensitivity of the split YFP reporter system to three HDAC inhibitors was higher than that of a conventional cell viability test. The assay system will be a simple and sensitive detection method to evaluate HDAC inhibitor activities at the levels of both single cells and cell populations.
Collapse
Affiliation(s)
- Yuki Ohmuro-Matsuyama
- Laboratory
for Chemistry and Life Science, and Cell Biology Center, Institute
of Innovative Research, Tokyo Institute
of Technology, Nagatsuta-cho, Yokohama, Kanagawa 226-8503, Japan
- Technology
Research Laboratory, Shimadzu Corporation, Hikaridai, Seika-cho, Soraku-gun, Kyoto 619-0237, Japan
| | - Tetsuya Kitaguchi
- Laboratory
for Chemistry and Life Science, and Cell Biology Center, Institute
of Innovative Research, Tokyo Institute
of Technology, Nagatsuta-cho, Yokohama, Kanagawa 226-8503, Japan
| | - Hiroshi Kimura
- Laboratory
for Chemistry and Life Science, and Cell Biology Center, Institute
of Innovative Research, Tokyo Institute
of Technology, Nagatsuta-cho, Yokohama, Kanagawa 226-8503, Japan
| | - Hiroshi Ueda
- Laboratory
for Chemistry and Life Science, and Cell Biology Center, Institute
of Innovative Research, Tokyo Institute
of Technology, Nagatsuta-cho, Yokohama, Kanagawa 226-8503, Japan
- E-mail:
| |
Collapse
|
6
|
Fiches GN, Zhou D, Kong W, Biswas A, Ahmed EH, Baiocchi RA, Zhu J, Santoso N. Profiling of immune related genes silenced in EBV-positive gastric carcinoma identified novel restriction factors of human gammaherpesviruses. PLoS Pathog 2020; 16:e1008778. [PMID: 32841292 PMCID: PMC7473590 DOI: 10.1371/journal.ppat.1008778] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 09/04/2020] [Accepted: 07/05/2020] [Indexed: 12/24/2022] Open
Abstract
EBV-associated gastric cancer (EBVaGC) is characterized by high frequency of DNA methylation. In this study, we investigated how epigenetic alteration of host genome contributes to pathogenesis of EBVaGC through the analysis of transcriptomic and epigenomic datasets from NIH TCGA (The Cancer Genome Atlas) consortium. We identified that immune related genes (IRGs) is a group of host genes preferentially silenced in EBV-positive gastric cancers through DNA hypermethylation. Further functional characterizations of selected IRGs reveal their novel antiviral activity against not only EBV but also KSHV. In particular, we showed that metallothionein-1 (MT1) and homeobox A (HOXA) gene clusters are down-regulated via EBV-driven DNA hypermethylation. Several MT1 isoforms suppress EBV lytic replication and release of progeny virions as well as KSHV lytic reactivation, suggesting functional redundancy of these genes. In addition, single HOXA10 isoform exerts antiviral activity against both EBV and KSHV. We also confirmed the antiviral effect of other dysregulated IRGs, such as IRAK2 and MAL, in scenario of EBV and KSHV lytic reactivation. Collectively, our results demonstrated that epigenetic silencing of IRGs is a viral strategy to escape immune surveillance and promote viral propagation, which is overall beneficial to viral oncogenesis of human gamma-herpesviruses (EBV and KSHV), considering that these IRGs possess antiviral activities against these oncoviruses.
Collapse
Affiliation(s)
- Guillaume N. Fiches
- Department of Pathology, Ohio State University College of Medicine, Columbus, Ohio, United States of America
| | - Dawei Zhou
- Department of Pathology, Ohio State University College of Medicine, Columbus, Ohio, United States of America
| | - Weili Kong
- Gladstone Institute of Virology and Immunology, University of California, San Francisco, California, United States of America
| | - Ayan Biswas
- Department of Pathology, Ohio State University College of Medicine, Columbus, Ohio, United States of America
| | - Elshafa H. Ahmed
- Division of Hematology, Department of Internal Medicine, Ohio State University College of Medicine, Columbus, Ohio, United States of America
| | - Robert A. Baiocchi
- Division of Hematology, Department of Internal Medicine, Ohio State University College of Medicine, Columbus, Ohio, United States of America
| | - Jian Zhu
- Department of Pathology, Ohio State University College of Medicine, Columbus, Ohio, United States of America
| | - Netty Santoso
- Department of Pathology, Ohio State University College of Medicine, Columbus, Ohio, United States of America
| |
Collapse
|
7
|
H3K18Ac as a Marker of Cancer Progression and Potential Target of Anti-Cancer Therapy. Cells 2019; 8:cells8050485. [PMID: 31121824 PMCID: PMC6562857 DOI: 10.3390/cells8050485] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 05/13/2019] [Accepted: 05/16/2019] [Indexed: 02/07/2023] Open
Abstract
Acetylation and deacetylation are posttranslational modifications (PTMs) which affect the regulation of chromatin structure and its remodeling. Acetylation of histone 3 at lysine placed on position 18 (H3K18Ac) plays an important role in driving progression of many types of cancer, including breast, colon, lung, hepatocellular, pancreatic, prostate, and thyroid cancer. The aim of this review is to analyze and discuss the newest findings regarding the role of H3K18Ac and acetylation of other histones in carcinogenesis. We summarize the level of H3K18Ac in different cancer cell lines and analyze its association with patients’ outcomes, including overall survival (OS), progression-free survival (PFS), and disease-free survival (DFS). Finally, we describe future perspectives of cancer therapeutic strategies based on H3K18 modifications.
Collapse
|
8
|
Mahli A, Seitz T, Beckröge T, Freese K, Thasler WE, Benkert M, Dietrich P, Weiskirchen R, Bosserhoff A, Hellerbrand C. Bone Morphogenetic Protein-8B Expression is Induced in Steatotic Hepatocytes and Promotes Hepatic Steatosis and Inflammation In Vitro. Cells 2019; 8:cells8050457. [PMID: 31096638 PMCID: PMC6562647 DOI: 10.3390/cells8050457] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 05/09/2019] [Accepted: 05/14/2019] [Indexed: 02/07/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is considered to be the hepatic manifestation of the metabolic syndrome. The bone morphogenetic protein-8B (BMP8B) has been shown to be expressed in brown adipose tissues and the hypothalamus and to affect thermogenesis and susceptibility to diet-induced obesity. Here, we aimed to analyze BMP8B expression in NAFLD and to gain insight into BMP8B effects on pathophysiological steps of NAFLD progression. BMP8B mRNA and protein expression were dose-dependently induced in primary human hepatocytes in vitro upon incubation with fatty acids. Furthermore, hepatic BMP8B expression was significantly increased in a murine NAFLD model and in NAFLD patients compared with controls. Incubation with recombinant BMP8B further enhanced the fatty acid-induced cellular lipid accumulation as well as NFκB activation and pro-inflammatory gene expression in hepatocytes, while siRNA-mediated BMP8B depletion ameliorated these fatty acid-induced effects. Analysis of the expression of key factors of hepatocellular lipid transport and metabolisms indicated that BMP8B effects on fatty acid uptake as well as de novo lipogenesis contributed to hepatocellular accumulation of fatty acids leading to increased storage in the form of triglycerides and enhanced combustion by beta oxidation. In conclusion, our data indicate that BMP8B enhances different pathophysiological steps of NAFLD progression and suggest BMP8B as a promising prognostic marker and therapeutic target for NAFLD and, potentially, also for other chronic liver diseases.
Collapse
Affiliation(s)
- Abdo Mahli
- Institute of Biochemistry (Emil-Fischer Zentrum), Friedrich-Alexander University Erlangen-Nürnberg, Fahrstr. 17, D-91054 Erlangen, Germany.
| | - Tatjana Seitz
- Institute of Biochemistry (Emil-Fischer Zentrum), Friedrich-Alexander University Erlangen-Nürnberg, Fahrstr. 17, D-91054 Erlangen, Germany.
| | - Tobias Beckröge
- Institute of Biochemistry (Emil-Fischer Zentrum), Friedrich-Alexander University Erlangen-Nürnberg, Fahrstr. 17, D-91054 Erlangen, Germany.
| | - Kim Freese
- Institute of Biochemistry (Emil-Fischer Zentrum), Friedrich-Alexander University Erlangen-Nürnberg, Fahrstr. 17, D-91054 Erlangen, Germany.
| | | | - Matthias Benkert
- Institute of Biochemistry (Emil-Fischer Zentrum), Friedrich-Alexander University Erlangen-Nürnberg, Fahrstr. 17, D-91054 Erlangen, Germany.
| | - Peter Dietrich
- Institute of Biochemistry (Emil-Fischer Zentrum), Friedrich-Alexander University Erlangen-Nürnberg, Fahrstr. 17, D-91054 Erlangen, Germany.
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH University Hospital Aachen, D-52074 Aachen, Germany.
| | - Anja Bosserhoff
- Institute of Biochemistry (Emil-Fischer Zentrum), Friedrich-Alexander University Erlangen-Nürnberg, Fahrstr. 17, D-91054 Erlangen, Germany.
| | - Claus Hellerbrand
- Institute of Biochemistry (Emil-Fischer Zentrum), Friedrich-Alexander University Erlangen-Nürnberg, Fahrstr. 17, D-91054 Erlangen, Germany.
| |
Collapse
|
9
|
Calcagno DQ, Wisnieski F, Mota ERDS, Maia de Sousa SB, Costa da Silva JM, Leal MF, Gigek CO, Santos LC, Rasmussen LT, Assumpção PP, Burbano RR, Smith MAC. Role of histone acetylation in gastric cancer: implications of dietetic compounds and clinical perspectives. Epigenomics 2019; 11:349-362. [DOI: 10.2217/epi-2018-0081] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Histone modifications regulate the structural status of chromatin and thereby influence the transcriptional status of genes. These processes are controlled by the recruitment of different enzymes to a specific genomic site. Furthermore, obtaining an understanding of these mechanisms could help delineate alternative treatment and preventive strategies for cancer. For example, in gastric cancer, cholecalciferol, curcumin, resveratrol, quercetin, garcinol and sodium butyrate are natural regulators of acetylation and deacetylation enzyme activity that exert chemopreventive and anticancer effects. Here, we review the recent findings on histone acetylation in gastric cancer and discuss the effects of nutrients and bioactive compounds on histone acetylation and their potential role in the prevention and treatment of this type of cancer.
Collapse
Affiliation(s)
- Danielle Q Calcagno
- Programa de Pós-graduação em Oncologia e Ciências Médicas, Núcleo de Pesquisas em Oncologia, Universidade Federal do Pará, Belém, PA, Brazil
- Programa de Pós-graduação em Química Medicinal e Modelagem Molecular, Universidade Federal do Pará, Belém, PA, Brazil
- Residência Multiprofissional em Saúde/Oncologia, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém, PA, Brazil
| | | | - Elizangela R da Silva Mota
- Programa de Pós-graduação em Química Medicinal e Modelagem Molecular, Universidade Federal do Pará, Belém, PA, Brazil
| | - Stefanie B Maia de Sousa
- Programa de Pós-graduação em Oncologia e Ciências Médicas, Núcleo de Pesquisas em Oncologia, Universidade Federal do Pará, Belém, PA, Brazil
| | | | - Mariana F Leal
- Programa de Pós-graduação em Oncologia e Ciências Médicas, Núcleo de Pesquisas em Oncologia, Universidade Federal do Pará, Belém, PA, Brazil
- Disciplina de Genética, Universidade Federal de São Paulo, SP, Brazil
| | - Carolina O Gigek
- Disciplina de Genética, Universidade Federal de São Paulo, SP, Brazil
- Departamento de Patologia, Universidade Federal de São Paulo, SP, Brazil
| | - Leonardo C Santos
- Disciplina de Genética, Universidade Federal de São Paulo, SP, Brazil
| | - Lucas T Rasmussen
- Disciplina de Genética, Universidade Federal de São Paulo, SP, Brazil
- Pró-Reitoria de Pesquisa e Pós-Graduação, Universidade do Sagrado Coração, Bauru, SP, Brazil
| | - Paulo P Assumpção
- Programa de Pós-graduação em Oncologia e Ciências Médicas, Núcleo de Pesquisas em Oncologia, Universidade Federal do Pará, Belém, PA, Brazil
| | - Rommel R Burbano
- Programa de Pós-graduação em Oncologia e Ciências Médicas, Núcleo de Pesquisas em Oncologia, Universidade Federal do Pará, Belém, PA, Brazil
- Laboratório de Biologia Molecular, Hospital Ophir Loyola, Belém, PA, Brazil
| | - Marília AC Smith
- Disciplina de Genética, Universidade Federal de São Paulo, SP, Brazil
| |
Collapse
|
10
|
Sõritsa D, Teder H, Roosipuu R, Tamm H, Laisk-Podar T, Soplepmann P, Altraja A, Salumets A, Peters M. Whole exome sequencing of benign pulmonary metastasizing leiomyoma reveals mutation in the BMP8B gene. BMC MEDICAL GENETICS 2018; 19:20. [PMID: 29386003 PMCID: PMC5793349 DOI: 10.1186/s12881-018-0537-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 01/24/2018] [Indexed: 02/06/2023]
Abstract
Background Benign metastasizing leiomyoma (BML) is an orphan neoplasm commonly characterized by pulmonary metastases consisting of smooth muscle cells. Patients with BML have usually a current or previous uterine leiomyoma, which is therefore suggested to be the most probable source of this tumour. The purpose of this case report was to determine the possible genetic grounds for pulmonary BML. Case presentation We present a case report in an asymptomatic 44-year-old female patient, who has developed uterine leiomyoma with subsequent pulmonary BML. Whole exome sequencing (WES) was used to detect somatic mutations in BML lesion. Somatic single nucleotide mutations were identified by comparing the WES data between the pulmonary metastasis and blood sample of the same BML patient. One heterozygous somatic mutation was selected for validation by Sanger sequencing. Clonality of the pulmonary metastasis and uterine leiomyoma was assessed by X-chromosome inactivation assay. Conclusions We describe a potentially deleterious somatic heterozygous mutation in bone morphogenetic protein 8B (BMP8B) gene (c.1139A > G, Tyr380Cys) that was identified in the pulmonary metastasis and was absent from blood and uterine leiomyoma, and may play a facilitating role in the metastasizing of BML. The clonality assay confirmed a skewed pattern of X-chromosome inactivation, suggesting monoclonal origin of the pulmonary metastases. Electronic supplementary material The online version of this article (10.1186/s12881-018-0537-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Deniss Sõritsa
- Institute of Clinical Medicine, Department of Obstetrics and Gynaecology, University of Tartu, Tartu, Estonia. .,Elite Clinic, Sangla 63, 50407, Tartu, Estonia. .,Competence Centre on Health Technologies, Tartu, Estonia.
| | - Hindrek Teder
- Competence Centre on Health Technologies, Tartu, Estonia.,Institute of Biomedicine and Translational Medicine, Department of Biomedicine, University of Tartu, Tartu, Estonia
| | - Retlav Roosipuu
- Department of Pathology, Tartu University Hospital, Tartu, Estonia
| | - Hannes Tamm
- Department of Pathology, Tartu University Hospital, Tartu, Estonia
| | - Triin Laisk-Podar
- Institute of Clinical Medicine, Department of Obstetrics and Gynaecology, University of Tartu, Tartu, Estonia.,Competence Centre on Health Technologies, Tartu, Estonia
| | - Pille Soplepmann
- Institute of Clinical Medicine, Department of Obstetrics and Gynaecology, University of Tartu, Tartu, Estonia.,Elite Clinic, Sangla 63, 50407, Tartu, Estonia.,Tartu University Hospital's Women's Clinic, Tartu, Estonia
| | - Alan Altraja
- Department of Pulmonary Medicine, University of Tartu, Tartu, Estonia.,Lung Clinic, Tartu University Hospital, Tartu, Estonia
| | - Andres Salumets
- Institute of Clinical Medicine, Department of Obstetrics and Gynaecology, University of Tartu, Tartu, Estonia.,Competence Centre on Health Technologies, Tartu, Estonia.,Institute of Biomedicine and Translational Medicine, Department of Biomedicine, University of Tartu, Tartu, Estonia.,Department of Obstetrics and Gynaecology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Maire Peters
- Institute of Clinical Medicine, Department of Obstetrics and Gynaecology, University of Tartu, Tartu, Estonia.,Competence Centre on Health Technologies, Tartu, Estonia
| |
Collapse
|
11
|
Gigek CO, Calcagno DQ, Rasmussen LT, Santos LC, Leal MF, Wisnieski F, Burbano RR, Lourenço LG, Lopes-Filho GJ, Smith MAC. Genetic variants in gastric cancer: Risks and clinical implications. Exp Mol Pathol 2017; 103:101-111. [PMID: 28736214 DOI: 10.1016/j.yexmp.2017.07.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 07/03/2017] [Accepted: 07/19/2017] [Indexed: 12/14/2022]
Abstract
Cancer is a multifactorial disease that involves many molecular alterations. Gastric cancer (GC) is the third leading cause of cancer death worldwide. GC is a highly heterogeneous disease with different molecular and genetics features. Therefore, this review focuses on an overview of the genetic aspects of gastric cancer by highlighting the important impact and role of deletions and/or duplications of chromosomal segments, genomic variants, H. pylori infection and interleukin variants, as found in gene expression and newly proposed molecular classification studies. The challenge is to better understand the mechanisms and different pathways that lead to the development and progression of GC.
Collapse
Affiliation(s)
- Carolina Oliveira Gigek
- Disciplina de Genética, Departamento de Morfologia e Genética, Universidade Federal de São Paulo (UNIFESP), CEP 04023-900 São Paulo, Brazil; Disciplina de Gastroenterologia Cirúrgica, Universidade Federal de São Paulo (UNIFESP), CEP: 04024-002 São Paulo, Brazil.
| | - Danielle Queiroz Calcagno
- Núcleo de Pesquisas em Oncologia, Universidade Federal do Pará (UFPA), CEP: 66073-000 Belém, Pará, Brazil
| | | | - Leonardo Caires Santos
- Disciplina de Genética, Departamento de Morfologia e Genética, Universidade Federal de São Paulo (UNIFESP), CEP 04023-900 São Paulo, Brazil
| | - Mariana Ferreira Leal
- Disciplina de Genética, Departamento de Morfologia e Genética, Universidade Federal de São Paulo (UNIFESP), CEP 04023-900 São Paulo, Brazil; Departamento de Ortopedia e Traumatologia, Universidade Federal de São Paulo (UNIFESP), CEP 04038-032 São Paulo, Brazil
| | - Fernanda Wisnieski
- Disciplina de Genética, Departamento de Morfologia e Genética, Universidade Federal de São Paulo (UNIFESP), CEP 04023-900 São Paulo, Brazil
| | | | - Laercio Gomes Lourenço
- Disciplina de Gastroenterologia Cirúrgica, Universidade Federal de São Paulo (UNIFESP), CEP: 04024-002 São Paulo, Brazil
| | - Gaspar Jesus Lopes-Filho
- Disciplina de Gastroenterologia Cirúrgica, Universidade Federal de São Paulo (UNIFESP), CEP: 04024-002 São Paulo, Brazil
| | - Marilia Arruda Cardoso Smith
- Disciplina de Genética, Departamento de Morfologia e Genética, Universidade Federal de São Paulo (UNIFESP), CEP 04023-900 São Paulo, Brazil
| |
Collapse
|