1
|
Jiang Y, MacNeil LT. Simple model systems reveal conserved mechanisms of Alzheimer's disease and related tauopathies. Mol Neurodegener 2023; 18:82. [PMID: 37950311 PMCID: PMC10638731 DOI: 10.1186/s13024-023-00664-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 10/04/2023] [Indexed: 11/12/2023] Open
Abstract
The lack of effective therapies that slow the progression of Alzheimer's disease (AD) and related tauopathies highlights the need for a more comprehensive understanding of the fundamental cellular mechanisms underlying these diseases. Model organisms, including yeast, worms, and flies, provide simple systems with which to investigate the mechanisms of disease. The evolutionary conservation of cellular pathways regulating proteostasis and stress response in these organisms facilitates the study of genetic factors that contribute to, or protect against, neurodegeneration. Here, we review genetic modifiers of neurodegeneration and related cellular pathways identified in the budding yeast Saccharomyces cerevisiae, the nematode Caenorhabditis elegans, and the fruit fly Drosophila melanogaster, focusing on models of AD and related tauopathies. We further address the potential of simple model systems to better understand the fundamental mechanisms that lead to AD and other neurodegenerative disorders.
Collapse
Affiliation(s)
- Yuwei Jiang
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada
| | - Lesley T MacNeil
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada.
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Canada.
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, 1280 Main St W, Hamilton, ON, L8S 4K1, Canada.
| |
Collapse
|
2
|
Tejada Nunes V, Gonçalves IL, Martinez Oliveira P, Lima Feksa D, Muller de Moura Sarmento S, Erminda Schreiner G, Klock C, Casanova Petry C, da Costa Escobar Piccoli J, Manfredini V, Casagrande Denardin C. Aqueous extract of pummelo pulp (Citrus maxima) improves the biochemical profile and reduces the inflammation process in Wistar rats with non-alcoholic fatty liver disease. Food Chem Toxicol 2023; 178:113933. [PMID: 37419271 DOI: 10.1016/j.fct.2023.113933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 06/27/2023] [Accepted: 07/04/2023] [Indexed: 07/09/2023]
Abstract
This study investigated the effect of pummelo extract (Citrus maxima) on biochemical, inflammatory, antioxidant and histological changes in NAFLD rats. Forty male Wistar rats divided into four groups were used: (1) control group; (2) fructose associated with high-fat diet - DHF; (3) normal diet + pummelo extract (50 mg/kg); and (4) FHD + pummelo extract. This was administered at dose of 50 mg/kg of the animal's weight, by gavage, for 45 days. Significant improvement in lipid profile, liver and kidney function, inflammation, oxidative stress markers was identified in group 4 compared to group 2. Regarding TNF-α and IL-1β, group 2 showed higher values (respectively 142, 5 ± 0.7 and 560.5 ± 2.7 pg/mg protein) compared to group 4 (respectively 91.4 ± 0.9 and 402.1.4 ± 0.9 pg/mg protein), p < 0.05. Significant increases were found in SOD and CAT activities, respectively 0.10 ± 0.06 and 8.62 ± 1.67 U/mg protein for group 2 and respectively 0.28 ± 0.08 and 21.52 ± 2.28 U/mg of protein for group 4. Decreases in triglycerides, hepatic cholesterol and fat droplets in hepatic tissue were observed in group 4 compared to group 2. Results highlight that pummelo extract may be useful for prevent the development of NAFLD.
Collapse
Affiliation(s)
- Vinícius Tejada Nunes
- Programa de Pós-graduação em Bioquímica, Universidade Federal do Pampa, Campus Uruguaiana, Rio Grande do Sul, Brazil.
| | - Itamar Luís Gonçalves
- Faculdade de Medicina, Universidade Regional Integrada Alto Uruguai e Missões, Sete de Setembro Avenue, 1621, Erechim, Rio Grande do Sul, Brazil
| | - Patricia Martinez Oliveira
- Programa de Pós-graduação em Bioquímica, Universidade Federal do Pampa, Campus Uruguaiana, Rio Grande do Sul, Brazil
| | - Denise Lima Feksa
- Programa de Pós-graduação em Bioquímica, Universidade Federal do Pampa, Campus Uruguaiana, Rio Grande do Sul, Brazil
| | - Sílvia Muller de Moura Sarmento
- Programa de Pós-graduação Multicêntrico em Ciências Fisiológicas, Universidade Federal do Pampa, Campus Uruguaiana, Rio Grande do Sul, Brazil
| | - Gênifer Erminda Schreiner
- Programa de Pós-graduação em Bioquímica, Universidade Federal do Pampa, Campus Uruguaiana, Rio Grande do Sul, Brazil
| | - Clóvis Klock
- Grupo Infolaudo e Medicina Diagnóstica, Erechim, Rio Grande do Sul, Brazil
| | | | | | - Vanusa Manfredini
- Programa de Pós-graduação em Bioquímica, Universidade Federal do Pampa, Campus Uruguaiana, Rio Grande do Sul, Brazil
| | - Cristiane Casagrande Denardin
- Programa de Pós-graduação em Bioquímica, Universidade Federal do Pampa, Campus Uruguaiana, Rio Grande do Sul, Brazil
| |
Collapse
|
3
|
Epremyan KK, Mamaev DV, Zvyagilskaya RA. Alzheimer's Disease: Significant Benefit from the Yeast-Based Models. Int J Mol Sci 2023; 24:9791. [PMID: 37372938 DOI: 10.3390/ijms24129791] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 06/02/2023] [Accepted: 06/04/2023] [Indexed: 06/29/2023] Open
Abstract
Alzheimer's disease (AD) is an age-related, multifaceted neurological disorder associated with accumulation of aggregated proteins (amyloid Aβ and hyperphosphorylated tau), loss of synapses and neurons, and alterations in microglia. AD was recognized by the World Health Organization as a global public health priority. The pursuit of a better understanding of AD forced researchers to pay attention to well-defined single-celled yeasts. Yeasts, despite obvious limitations in application to neuroscience, show high preservation of basic biological processes with all eukaryotic organisms and offer great advantages over other disease models due to the simplicity, high growth rates on low-cost substrates, relatively simple genetic manipulations, the large knowledge base and data collections, and availability of an unprecedented amount of genomic and proteomic toolboxes and high-throughput screening techniques, inaccessible to higher organisms. Research reviewed above clearly indicates that yeast models, together with other, more simple eukaryotic models including animal models, C. elegans and Drosophila, significantly contributed to understanding Aβ and tau biology. These models allowed high throughput screening of factors and drugs that interfere with Aβ oligomerization, aggregation and toxicity, and tau hyperphosphorylation. In the future, yeast models will remain relevant, with a focus on creating novel high throughput systems to facilitate the identification of the earliest AD biomarkers among different cellular networks in order to achieve the main goal-to develop new promising therapeutic strategies to treat or prevent the disease.
Collapse
Affiliation(s)
- Khoren K Epremyan
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33/2, 119071 Moscow, Russia
| | - Dmitry V Mamaev
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33/2, 119071 Moscow, Russia
| | - Renata A Zvyagilskaya
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33/2, 119071 Moscow, Russia
| |
Collapse
|
4
|
Xie Y, Jin Y, Li S, Shen B, Ma L, Zuo L, Gao Y, Yang G. Leonurine Alleviates Cognitive Dysfunction and Reduces Oxidative Stress by Activating Nrf-2 Pathway in Alzheimer's Disease Mouse Model. Neuropsychiatr Dis Treat 2023; 19:1347-1357. [PMID: 37284249 PMCID: PMC10241212 DOI: 10.2147/ndt.s404798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 05/22/2023] [Indexed: 06/08/2023] Open
Abstract
Introduction Alzheimer's disease (AD) is the most common type of dementia, impacting approximately 50 million individuals globally. However, the current treatments available for AD are only symptomatic and have limited efficacy. This study aimed to investigate whether Leonurine could alleviate cognitive dysfunction in a mouse model of AD and explore its underlying molecular mechanisms. Methods In this study, male APP/PS1 mice were orally administered Leonurine for two consecutive months. The cognitive functions of the mice were then evaluated using novel object recognition (NOR) and Morris water maze (MWM) tests. Hippocampal neuronal damage was observed through Nissl staining, Aβ levels were determined through ELISA, oxidative stress activity was detected through biochemical methods, and the nuclear factor erythroid-2-related factor 2 (Nrf-2) pathway was analyzed using western blot and real-time quantitative polymerase chain reaction analysis. Results Our results demonstrated that Leonurine treatment markedly improved cognitive functions, as indicated by the improved performance in the model. Additionally, histopathology showed a reduction in hippocampal neuronal damage. This can be attributed to the potential of Leonurine to reduce Aβ1-40 and Aβ1-42 levels and alleviate oxidative stress. Its antioxidant effect is linked to the activation of the Nrf-2 signaling pathway in APP/PS1 mice, which promotes Nrf-2 nuclear translocation and expression of HO-1 and NQO-1. Conclusion These findings suggest that Leonurine could be explored further as it could emerge as a promising drug for AD treatment.
Collapse
Affiliation(s)
- Yue Xie
- Department of Neurology, the Second Medical Center and National Clinical Research Center for Geriatric Disease, Chinese PLA General Hospital, Beijing, 100853, People’s Republic of China
| | - Yaning Jin
- Chaoyang Second Retired Cadre Rest Center of Beijing Garrison, Beijing, 100853, People’s Republic of China
| | - Shuyue Li
- Department of Geriatrics, the Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, People’s Republic of China
| | - Baoxi Shen
- Department of Neurosurgery, the First Medical Centre, Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing, 100853, People’s Republic of China
| | - Liping Ma
- Department of Neurology, Xinzhou People’s Hospital, Shanxi, 034000, People’s Republic of China
| | - Lujie Zuo
- Department of Otolaryngology, Head and Neck Surgery, Children’s Hospital of Hebei Province, Shijiazhuang, Hebei, 050000, People’s Republic of China
| | - Ya Gao
- Department of Geriatrics, the Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, People’s Republic of China
| | - Guofeng Yang
- Department of Geriatrics, the Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, People’s Republic of China
| |
Collapse
|
5
|
Liu M, Sun X, Chen B, Dai R, Xi Z, Xu H. Insights into Manganese Superoxide Dismutase and Human Diseases. Int J Mol Sci 2022; 23:ijms232415893. [PMID: 36555531 PMCID: PMC9786916 DOI: 10.3390/ijms232415893] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/09/2022] [Accepted: 12/12/2022] [Indexed: 12/15/2022] Open
Abstract
Redox equilibria and the modulation of redox signalling play crucial roles in physiological processes. Overproduction of reactive oxygen species (ROS) disrupts the body's antioxidant defence, compromising redox homeostasis and increasing oxidative stress, leading to the development of several diseases. Manganese superoxide dismutase (MnSOD) is a principal antioxidant enzyme that protects cells from oxidative damage by converting superoxide anion radicals to hydrogen peroxide and oxygen in mitochondria. Systematic studies have demonstrated that MnSOD plays an indispensable role in multiple diseases. This review focuses on preclinical evidence that describes the mechanisms of MnSOD in diseases accompanied with an imbalanced redox status, including fibrotic diseases, inflammation, diabetes, vascular diseases, neurodegenerative diseases, and cancer. The potential therapeutic effects of MnSOD activators and MnSOD mimetics are also discussed. Targeting this specific superoxide anion radical scavenger may be a clinically beneficial strategy, and understanding the therapeutic role of MnSOD may provide a positive insight into preventing and treating related diseases.
Collapse
Affiliation(s)
- Mengfan Liu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Engineering Research Center, Shanghai Colleges for TCM New Drug Discovery, Shanghai 201203, China
| | - Xueyang Sun
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Engineering Research Center, Shanghai Colleges for TCM New Drug Discovery, Shanghai 201203, China
| | - Boya Chen
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Rongchen Dai
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Engineering Research Center, Shanghai Colleges for TCM New Drug Discovery, Shanghai 201203, China
| | - Zhichao Xi
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Engineering Research Center, Shanghai Colleges for TCM New Drug Discovery, Shanghai 201203, China
- Correspondence: (Z.X.); (H.X.)
| | - Hongxi Xu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Engineering Research Center, Shanghai Colleges for TCM New Drug Discovery, Shanghai 201203, China
- Correspondence: (Z.X.); (H.X.)
| |
Collapse
|
6
|
Silwal A, House A, Sandoval K, Vijeth S, Umbaugh D, Crider A, Mobayen S, Neumann W, Witt KA. Novel Somatostatin Receptor-4 Agonist SM-I-26 Mitigates Lipopolysaccharide-Induced Inflammatory Gene Expression in Microglia. Neurochem Res 2022; 47:768-780. [PMID: 34846597 PMCID: PMC8847317 DOI: 10.1007/s11064-021-03482-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 09/10/2021] [Accepted: 11/06/2021] [Indexed: 11/28/2022]
Abstract
Somatostatin receptor subtype 4 (SSTR4) is expressed in BV2 microglia, suggesting that SSTR4 agonists may impact microglia function. This study assessed the high-affinity SSTR4 agonist SM-I-26 (SMI) (0 nM, 10 nM, 1000 nM) against lipopolysaccharide (LPS)-induced inflammation (0, 10 or 100 ng/ml) over 6 or 24 h in BV2 microglia. Cell viability, nitrite output and mRNA expression changes of genes associated with our target (Sstr4), inflammation (Tnf-α, Il-6, Il-1β, inos), anti-inflammatory and anti-oxidant actions (Il-10, Catalase), and mediators of Aβ binding/phagocytosis (Msr1, Cd33, Trem1, Trem2) were measured. At 6 h SMI showed no effect across all conditions. At 24 h SMI (10 and 1000 nM) upregulated Sstr4 expression under inflammatory and non-inflammatory conditions. At 24 h SMI downregulated expression of the inflammatory cytokines Tnf-α (1000 nM within all LPS concentrations) and Il-6 (10 nM within 0 and 10 ng/ml LPS). At 24 h 10 nM SMI upregulated Il-10, while 1000 nM upregulated Catalase under inflammatory and non-inflammatory conditions. At 24 h Msr1 and Cd33 were upregulated by 1000 nM SMI under non-inflammatory conditions, while Trem1 was downregulated by 10 and 1000 nM SMI under mildly inflammatory and non-inflammatory conditions. These results show that SMI had concentration and time-dependent effects on mRNA expression of genes associated with different states of microglial activation. The SMI reduced Tnf-α and Il-6 inflammatory gene expression, and increased Il-10 anti-inflammatory gene expression, identifies anti-inflammatory actions of SSTR4 agonists extend to microglia.
Collapse
Affiliation(s)
- Ashok Silwal
- Department of Pharmaceutical Sciences, School of Pharmacy, Southern Illinois University Edwardsville, 200 University Park Drive, Building 220, Edwardsville, IL, 62025, USA
| | - Austin House
- Department of Pharmaceutical Sciences, School of Pharmacy, Southern Illinois University Edwardsville, 200 University Park Drive, Building 220, Edwardsville, IL, 62025, USA
| | - Karin Sandoval
- Department of Pharmaceutical Sciences, School of Pharmacy, Southern Illinois University Edwardsville, 200 University Park Drive, Building 220, Edwardsville, IL, 62025, USA
| | - Shaluah Vijeth
- Department of Pharmaceutical Sciences, School of Pharmacy, Southern Illinois University Edwardsville, 200 University Park Drive, Building 220, Edwardsville, IL, 62025, USA
| | - David Umbaugh
- Department of Pharmaceutical Sciences, School of Pharmacy, Southern Illinois University Edwardsville, 200 University Park Drive, Building 220, Edwardsville, IL, 62025, USA
| | - Albert Crider
- Department of Pharmaceutical Sciences, School of Pharmacy, Southern Illinois University Edwardsville, 200 University Park Drive, Building 220, Edwardsville, IL, 62025, USA
| | - Shirin Mobayen
- Department of Pharmaceutical Sciences, School of Pharmacy, Southern Illinois University Edwardsville, 200 University Park Drive, Building 220, Edwardsville, IL, 62025, USA
| | - William Neumann
- Department of Pharmaceutical Sciences, School of Pharmacy, Southern Illinois University Edwardsville, 200 University Park Drive, Building 220, Edwardsville, IL, 62025, USA
| | - Ken A Witt
- Department of Pharmaceutical Sciences, School of Pharmacy, Southern Illinois University Edwardsville, 200 University Park Drive, Building 220, Edwardsville, IL, 62025, USA.
| |
Collapse
|
7
|
Manochkumar J, Doss CGP, El-Seedi HR, Efferth T, Ramamoorthy S. The neuroprotective potential of carotenoids in vitro and in vivo. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 91:153676. [PMID: 34339943 DOI: 10.1016/j.phymed.2021.153676] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 06/26/2021] [Accepted: 07/14/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Despite advances in research on neurodegenerative diseases, the pathogenesis and treatment response of neurodegenerative diseases remain unclear. Recent studies revealed a significant role of carotenoids to treat neurodegenerative diseases. The aim of this study was to systematically review the neuroprotective potential of carotenoids in vivo and in vitro and the molecular mechanisms and pathological factors contributing to major neurodegenerative diseases (Alzheimer's disease, Huntington's disease, Parkinson's disease, amyotrophic lateral sclerosis, and stroke). HYPOTHESIS Carotenoids as therapeutic molecules to target neurodegenerative diseases. RESULTS Aggregation of toxic proteins, mitochondrial dysfunction, oxidative stress, the excitotoxic pathway, and neuroinflammation were the major pathological factors contributing to the progression of neurodegenerative diseases. Furthermore, in vitro and in vivo studies supported the beneficiary role of carotenoids, namely lycopene, β-carotene, crocin, crocetin, lutein, fucoxanthin and astaxanthin in alleviating disease progression. These carotenoids provide neuroprotection by inhibition of neuro-inflammation, microglial activation, excitotoxic pathway, modulation of autophagy, attenuation of oxidative damage and activation of defensive antioxidant enzymes. Additionally, studies conducted on humans also demonstrated that dietary intake of carotenoids lowers the risk of neurodegenerative diseases. CONCLUSION Carotenoids may be used as drugs to prevent and treat neurodegenerative diseases. Although, the in vitro and in vivo results are encouraging, further well conducted clinical studies on humans are required to conclude about the full potential of neurodegenerative diseases.
Collapse
Affiliation(s)
- Janani Manochkumar
- School of Bio Sciences and Technology, VIT University, Vellore 632014, Tamil Nadu, India
| | - C George Priya Doss
- School of Bio Sciences and Technology, VIT University, Vellore 632014, Tamil Nadu, India
| | - Hesham R El-Seedi
- Pharmacognosy, Department of Medicinal Chemistry, Uppsala University, Box 574, SE-75 123 Uppsala, Sweden; Department of Chemistry, Faculty of Science, Menoufia University, 32512 Shebin El-Koom, Egypt
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University Mainz, Germany
| | - Siva Ramamoorthy
- School of Bio Sciences and Technology, VIT University, Vellore 632014, Tamil Nadu, India.
| |
Collapse
|
8
|
Neuroserpin Inclusion Bodies in a FENIB Yeast Model. Microorganisms 2021; 9:microorganisms9071498. [PMID: 34361933 PMCID: PMC8305157 DOI: 10.3390/microorganisms9071498] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/01/2021] [Accepted: 07/09/2021] [Indexed: 11/17/2022] Open
Abstract
FENIB (familial encephalopathy with neuroserpin inclusion bodies) is a human monogenic disease caused by point mutations in the SERPINI1 gene, characterized by the intracellular deposition of polymers of neuroserpin (NS), which leads to proteotoxicity and cell death. Despite the different cell and animal models developed thus far, the exact mechanism of cell toxicity elicited by NS polymers remains unclear. Here, we report that human wild-type NS and the polymerogenic variant G392E NS form protein aggregates mainly localized within the endoplasmic reticulum (ER) when expressed in the yeast S. cerevisiae. The expression of NS in yeast delayed the exit from the lag phase, suggesting that NS inclusions cause cellular stress. The cells also showed a higher resistance following mild oxidative stress treatments when compared to control cells. Furthermore, the expression of NS in a pro-apoptotic mutant strain-induced cell death during aging. Overall, these data recapitulate phenotypes observed in mammalian cells, thereby validating S. cerevisiae as a model for FENIB.
Collapse
|
9
|
Divsalar A, Ghobadi R. The presence of deep eutectic solvents of reline and glyceline on interaction and side effect of anti-cancer drug of 5-fluorouracil: Bovine liver catalase as a target. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.114588] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
10
|
Zhou T, Liu L, Wang Q, Gao Y. Naringenin alleviates cognition deficits in high-fat diet-fed SAMP8 mice. J Food Biochem 2020; 44:e13375. [PMID: 32677738 DOI: 10.1111/jfbc.13375] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 06/06/2020] [Accepted: 06/19/2020] [Indexed: 01/03/2023]
Abstract
Naringenin is a natural dihydro flavonoid that is abundant in grapefruit. Previous studies suggested the cognition protective effect of naringenin in various cognitive deficits models, such as type 2 diabetic rat model and chemicals (e.g., lipopolysaccharide, scopolamine) treated rodents. However, the effects of naringenin on aging animals and the potential mechanisms are still unclear. In this study, we investigated the influence of naringenin administration on learning deficits in aging mice. High-fat diet-fed SAMP8 mice were employed as an age-related model of Alzheimer's disease. Dietary administration of 0.2% naringenin for 12 weeks significantly improved the spatial learning and memory performance of the high-fat diet-fed SAMP8 mice in both Barnes Maze test and Morris Water Maze test. Further mechanism research indicated that naringenin reduced Aβ production, tau-hyperphosphorylation, oxidative stress, and neuroinflammation in the brain. This research provides further evidence for the treatment effect of naringenin on Alzheimer's disease. PRACTICAL APPLICATIONS: Naringenin, also known as 4',5,7-thrihydroxyflflavanone, is a natural dihydro flavonoid that is abundant in grapefruit and other citrus fruits. The current study first demonstrated the improvement effect of naringenin on cognition deficits in HFD-fed SAMP8 mice, an aging mouse model. Potential mechanisms were also systematically explained by exploring the amyloid-β (Aβ) accumulation, tau hyperphosphorylation, oxidative stress, and neuroinflammation in the brain of mice. This study provides further evidence for the utilization of naringenin as an effective treatment agent for Alzheimer's disease.
Collapse
Affiliation(s)
- Tao Zhou
- Department of Neurosurgery, Brain Hospital, Weifang People's Hospital, Weifang, China
| | - Long Liu
- Department of Neurosurgery, Brain Hospital, Weifang People's Hospital, Weifang, China
| | - Qiulian Wang
- Department of Neurosurgery, Brain Hospital, Weifang People's Hospital, Weifang, China
| | - Ying Gao
- Department of Neurosurgery, Brain Hospital, Weifang People's Hospital, Weifang, China
| |
Collapse
|
11
|
Silva LN, Oliveira SSC, Magalhães LB, Andrade Neto VV, Torres-Santos EC, Carvalho MDC, Pereira MD, Branquinha MH, Santos ALS. Unmasking the Amphotericin B Resistance Mechanisms in Candida haemulonii Species Complex. ACS Infect Dis 2020; 6:1273-1282. [PMID: 32239912 DOI: 10.1021/acsinfecdis.0c00117] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The polyene amphotericin B (AMB) exerts a powerful and broad antifungal activity. AMB acts by (i) binding to ergosterol, leading to pore formation at the fungal plasma membrane with subsequent ion leakage, and (ii) inducing the intracellular accumulation of reactive oxygen species (ROS). Herein, we have deciphered the AMB resistance mechanisms in clinical isolates of Candida haemulonii complex (C. haemulonii, C. duobushaemulonii, C. haemulonii var. vulnera) in comparison to other clinically relevant non-albicans Candida species. Membrane gas chromatography-mass spectrometry analysis revealed that the vast majority of sterols were composed of ergosterol pathway intermediates, evidencing the absence of AMB target. Supporting this data, C. haemulonii species complex demonstrated poor membrane permeability after AMB treatment. Regarding the oxidative burst, AMB induced the formation of ROS in all species tested; however, this phenomenon was slightly seen in C. haemulonii complex isolates. Our results indicated that these isolates displayed altered respiratory status, as revealed by their poor growth in nonfermented carbon sources, low consumption of oxygen, and derisive mitochondrial membrane potential. The use of specific inhibitors of mitochondrial respiratory chain (complex I-IV) revealed no effects on the yeast growth, highlighting the metabolic shift to fermentative pathway in C. haemulonii strains. Also, C. haemulonii complex proved to be highly resistant to oxidative burst agents, which can be correlated with a high activity of antioxidant enzymes. Our data demonstrated primary evidence suggesting that ergosterol content, mitochondrial function, and fungal redox homeostasis are involved in AMB fungicidal effects and might explain the resistance presented in this multidrug-resistant, emergent, and opportunistic fungal complex.
Collapse
Affiliation(s)
- Laura N. Silva
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes, Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Bloco E - Subsolo sala 05, Rio de Janeiro 21941-902, Brazil
| | - Simone S. C. Oliveira
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes, Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Bloco E - Subsolo sala 05, Rio de Janeiro 21941-902, Brazil
| | - Lucas B. Magalhães
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes, Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Bloco E - Subsolo sala 05, Rio de Janeiro 21941-902, Brazil
| | - Valter V. Andrade Neto
- Laboratório de Bioquímica de Tripanosomatídeos, Instituto Oswaldo Cruz, Av. Brasil, 4365 - Fundação Oswaldo Cruz, Rio de Janeiro 21040-360, Brazil
| | - Eduardo C. Torres-Santos
- Laboratório de Bioquímica de Tripanosomatídeos, Instituto Oswaldo Cruz, Av. Brasil, 4365 - Fundação Oswaldo Cruz, Rio de Janeiro 21040-360, Brazil
| | - Mariana D. C. Carvalho
- Laboratório de Citotoxicidade e Genotoxicidade, Instituto de Química, Centro de Tecnologia, Universidade Federal do Rio de Janeiro, Av. Athos da Silveira Ramos, 149 - Bloco A, 5° Andar, Rio de Janeiro 21941-909, Brazil
| | - Marcos D. Pereira
- Laboratório de Citotoxicidade e Genotoxicidade, Instituto de Química, Centro de Tecnologia, Universidade Federal do Rio de Janeiro, Av. Athos da Silveira Ramos, 149 - Bloco A, 5° Andar, Rio de Janeiro 21941-909, Brazil
| | - Marta H. Branquinha
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes, Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Bloco E - Subsolo sala 05, Rio de Janeiro 21941-902, Brazil
| | - André L. S. Santos
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes, Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Bloco E - Subsolo sala 05, Rio de Janeiro 21941-902, Brazil
- Programa de Pós-Graduação em Bioquímica, Instituto de Química, Centro de Tecnologia, Universidade Federal do Rio de Janeiro, Av. Athos da Silveira Ramos, 149 - Bloco A, 5° Andar, Rio de Janeiro 21941-909, Brazil
| |
Collapse
|
12
|
Sachsenhauser V, Deng X, Kim HH, Jankovic M, Bardwell JC. Yeast Tripartite Biosensors Sensitive to Protein Stability and Aggregation Propensity. ACS Chem Biol 2020; 15:1078-1088. [PMID: 32105441 DOI: 10.1021/acschembio.0c00083] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
In contrast to the myriad approaches available to study protein misfolding and aggregation in vitro, relatively few tools are available for the study of these processes in the cellular context. This is in part due to the complexity of the cellular environment which, for instance, interferes with many spectroscopic approaches. Here, we describe a tripartite fusion approach that can be used to assess in vivo protein stability and solubility in the cytosol of Saccharomyces cerevisiae. Our biosensors contain tripartite fusions in which a protein of interest is inserted into antibiotic resistance markers. These fusions act to directly link the aggregation susceptibility and stability of the inserted protein to antibiotic resistance. We demonstrate a linear relationship between the thermodynamic stabilities of variants of the model folding protein immunity protein 7 (Im7) fused into the resistance markers and their antibiotic resistance readouts. We also use this system to investigate the in vivo properties of the yeast prion proteins Sup35 and Rnq1 and proteins whose aggregation is associated with some of the most prevalent neurodegenerative misfolding disorders, including peptide amyloid beta 1-42 (Aβ42), which is involved in Alzheimer's disease, and protein α-synuclein, which is linked to Parkinson's disease.
Collapse
Affiliation(s)
- Veronika Sachsenhauser
- Department of Molecular, Cellular, and Developmental Biology and Howard Hughes Medical Institute, University of Michigan, Ann Arbor, Michigan 48109-1085, United States
- Department of Chemistry, Technical University Munich, Lichtenbergstraße 4, 85748 Garching, Germany
| | - Xiexiong Deng
- Department of Molecular, Cellular, and Developmental Biology and Howard Hughes Medical Institute, University of Michigan, Ann Arbor, Michigan 48109-1085, United States
| | - Hyun-hee Kim
- Department of Molecular, Cellular, and Developmental Biology and Howard Hughes Medical Institute, University of Michigan, Ann Arbor, Michigan 48109-1085, United States
| | - Maja Jankovic
- Department of Molecular, Cellular, and Developmental Biology and Howard Hughes Medical Institute, University of Michigan, Ann Arbor, Michigan 48109-1085, United States
| | - James C.A. Bardwell
- Department of Molecular, Cellular, and Developmental Biology and Howard Hughes Medical Institute, University of Michigan, Ann Arbor, Michigan 48109-1085, United States
| |
Collapse
|
13
|
Zhu Z, Yang M, Bai Y, Ge F, Wang S. Antioxidant-related catalase CTA1 regulates development, aflatoxin biosynthesis, and virulence in pathogenic fungus Aspergillus flavus. Environ Microbiol 2020; 22:2792-2810. [PMID: 32250030 DOI: 10.1111/1462-2920.15011] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 03/17/2020] [Accepted: 03/31/2020] [Indexed: 11/29/2022]
Abstract
Reactive oxygen species (ROS) induce the synthesis of a myriad of secondary metabolites, including aflatoxins. It raises significant concern as it is a potent environmental contaminant. In Aspergillus flavus., antioxidant enzymes link ROS stress response with coordinated gene regulation of aflatoxin biosynthesis. In this study, we characterized the function of a core component of the antioxidant enzyme catalase (CTA1) of A. flavus. Firstly, we verified the presence of cta1 corresponding protein (CTA1) by Western blot analysis and mass-spectrometry based analysis. Then, the functional study revealed that the growth, sporulation and sclerotia formation significantly increased, while aflatoxins production and virulence were decreased in the cta1 deletion mutant as compared with the WT and complementary strains. Furthermore, the absence of the cta1 gene resulted in a significant rise in the intracellular ROS level, which in turn added to the oxidative stress level of cells. A further quantitative proteomics investigation hinted that in vivo, CTA1 might maintain the ROS level to facilitate the aflatoxin synthesis. All in all, the pleiotropic phenotype of A. flavus CTA1 deletion mutant revealed that the antioxidant system plays a crucial role in fungal development, aflatoxins biosynthesis and virulence.
Collapse
Affiliation(s)
- Zhuo Zhu
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Mingkun Yang
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.,State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Youhuang Bai
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Feng Ge
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Shihua Wang
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| |
Collapse
|
14
|
One- and Two-Electron Oxidations of β-Amyloid 25-35 by Carbonate Radical Anion (CO 3•-) and Peroxymonocarbonate (HCO 4-): Role of Sulfur in Radical Reactions and Peptide Aggregation. Molecules 2020; 25:molecules25040961. [PMID: 32093407 PMCID: PMC7070857 DOI: 10.3390/molecules25040961] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/17/2020] [Accepted: 02/19/2020] [Indexed: 01/07/2023] Open
Abstract
The β-amyloid (Aβ) peptide plays a key role in the pathogenesis of Alzheimer’s disease. The methionine (Met) residue at position 35 in Aβ C-terminal domain is critical for neurotoxicity, aggregation, and free radical formation initiated by the peptide. The role of Met in modulating toxicological properties of Aβ most likely involves an oxidative event at the sulfur atom. We therefore investigated the one- or two-electron oxidation of the Met residue of Aβ25-35 fragment and the effect of such oxidation on the behavior of the peptide. Bicarbonate promotes two-electron oxidations mediated by hydrogen peroxide after generation of peroxymonocarbonate (HCO4−, PMC). The bicarbonate/carbon dioxide pair stimulates one-electron oxidations mediated by carbonate radical anion (CO3•−). PMC efficiently oxidizes thioether sulfur of the Met residue to sulfoxide. Interestingly, such oxidation hampers the tendency of Aβ to aggregate. Conversely, CO3•− causes the one-electron oxidation of methionine residue to sulfur radical cation (MetS•+). The formation of this transient reactive intermediate during Aβ oxidation may play an important role in the process underlying amyloid neurotoxicity and free radical generation.
Collapse
|
15
|
Correlation between Antibacterial Activity and Free-Radical Scavenging: In-Vitro Evaluation of Polar/Non-Polar Extracts from 25 Plants. Processes (Basel) 2020. [DOI: 10.3390/pr8010117] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Objectives: The current study aimed to measure the antioxidant and antibacterial activities of 25 wild Palestinian edible plants, which were subjected to extraction by polar and non-polar solvents. Correlations between free radical scavenging activity and antibacterial activity of the extracts were assessed for both polar and non-polar fractions. Materials: Twenty-five wild edible plant species that are frequently consumed by people in Palestine (mainly in a rural area) were examined. Among them, 10 plant species were among those with the highest mean cultural importance values, according to an ethnobotanical survey that was conducted in the West Bank, Palestine, a few years ago. Method: The protocol of the DPPH assay for testing free-radical scavenging was utilized for determining EC50 values, while microdilution tests were conducted to determine the 50% inhibitory concentration (IC50) of the extracts for the microorganism Staphylococcus mutans. Results and Discussion: Eight extracts (non-polar fractions) were found to possess an antibacterial IC50 of less than 20 ppm, such as Foeniculum vulgare, Salvia palaestinafruticose, Micromeria fruticose, Trigonella foenum-graecum, Cichorium pumilum jacq, Salvia hierosolymitana boiss, Ruta chalepensis, and Chrysanthemum coronarium. The polar fractions possess higher antioxidant activity, while non-polar fraction possess higher antibacterial activity. Looking at all the results together can deceive and lead to the conclusion that there is no correlation between antibacterial activity against S. mutans and free radical scavenging (R2 equals 0.0538). However, in-depth analysis revealed that non-polar plant extracts with an EC50 of free radical scavenging ≤100 ppm have a four-fold order of enrichment toward more activity against S. mutans. These findings are of high importance for screening projects. A four-fold order of enrichment could save plenty of time and many in screening projects. The antibacterial active extracts marked by low-medium free radical scavenging might act through a mechanism of action other than that of highly active, free radical scavenging extracts. Conclusion: The screening of antioxidant and antimicrobial activity performed on 25 selected wild plant extracts revealed a satisfactory free radical scavenging and antimicrobial potential that could be of value in the management of oxidative stress. Further studies are recommended to explore novel and highly active natural antibacterial products.
Collapse
|
16
|
Sandoval K, Umbaugh D, House A, Crider A, Witt K. Somatostatin Receptor Subtype-4 Regulates mRNA Expression of Amyloid-Beta Degrading Enzymes and Microglia Mediators of Phagocytosis in Brains of 3xTg-AD Mice. Neurochem Res 2019; 44:2670-2680. [PMID: 31630317 DOI: 10.1007/s11064-019-02890-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 09/06/2019] [Accepted: 10/03/2019] [Indexed: 02/06/2023]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder resulting in memory and cognitive impairment. The use of somatostatin receptor subtype-4 (SSTR4) agonists have been proposed for AD treatment. This study investigated the effects of selective SSTR4 agonist NNC 26-9100 on mRNA expression of key genes associated with AD pathology (microglia mediators of Aβ phagocytosis, amyloid-beta (Aβ)-degrading enzymes, anti-oxidant enzymes and pro-inflammatory cytokines) in 3xTg-AD mice. Mice were administered NNC 26-9100 (0.2 µg, i.c.v.) or vehicle control, with cortical and subcortical brain tissue collected at 6 h and 24 h post-treatment. At 6 h, NNC 26-9100 treatment decreased cortical expression of cluster of differentiation-33 (Cd33) by 25%, while increasing cortical and subcortical macrophage scavenger receptor-1 (Msr1) by 1.8 and 2.0-fold, respectively. The Cd33 downregulation and Msr1 upregulation support a state of microglia associated Aβ phagocytosis. At 24 h, NNC 26-9100 treatment increased the cortical expression of Sstr4 (4.9-fold), Aβ-degrading enzymes neprilysin (9.3-fold) and insulin degrading enzyme (14.8-fold), and the antioxidant catalase (3.6-fold). Similar effects at 24 h were found in subcortical tissue with NNC 26-9100 treatment, but did not reach statistical significance. No changes in pro-inflammatory cytokine expression were found. These data demonstrated NNC 26-9100 facilitates transcriptional changes in brain tissue identified with Aβ phagocytosis and clearance, further supporting SSTR4 as a treatment target for AD.
Collapse
Affiliation(s)
- Karin Sandoval
- Department of Pharmaceutical Sciences Pharmaceutical Sciences, School of Pharmacy, Southern Illinois University Edwardsville, 200 University Park Drive., Building 220, Edwardsville, IL, 62025, USA
| | - David Umbaugh
- Department of Pharmaceutical Sciences Pharmaceutical Sciences, School of Pharmacy, Southern Illinois University Edwardsville, 200 University Park Drive., Building 220, Edwardsville, IL, 62025, USA
| | - Austin House
- Department of Pharmaceutical Sciences Pharmaceutical Sciences, School of Pharmacy, Southern Illinois University Edwardsville, 200 University Park Drive., Building 220, Edwardsville, IL, 62025, USA
| | - Albert Crider
- Department of Pharmaceutical Sciences Pharmaceutical Sciences, School of Pharmacy, Southern Illinois University Edwardsville, 200 University Park Drive., Building 220, Edwardsville, IL, 62025, USA
| | - Ken Witt
- Department of Pharmaceutical Sciences Pharmaceutical Sciences, School of Pharmacy, Southern Illinois University Edwardsville, 200 University Park Drive., Building 220, Edwardsville, IL, 62025, USA.
| |
Collapse
|
17
|
Griñán-Ferré C, Corpas R, Puigoriol-Illamola D, Palomera-Ávalos V, Sanfeliu C, Pallàs M. Understanding Epigenetics in the Neurodegeneration of Alzheimer's Disease: SAMP8 Mouse Model. J Alzheimers Dis 2019; 62:943-963. [PMID: 29562529 PMCID: PMC5870033 DOI: 10.3233/jad-170664] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Epigenetics is emerging as the missing link among genetic inheritance, environmental influences, and body and brain health status. In the brain, specific changes in nucleic acids or their associated proteins in neurons and glial cells might imprint differential patterns of gene activation that will favor either cognitive enhancement or cognitive loss for more than one generation. Furthermore, derangement of age-related epigenetic signaling is appearing as a significant risk factor for illnesses of aging, including neurodegeneration and Alzheimer’s disease (AD). In addition, better knowledge of epigenetic mechanisms might provide hints and clues in the triggering and progression of AD. Intense research in experimental models suggests that molecular interventions for modulating epigenetic mechanisms might have therapeutic applications to promote cognitive maintenance through an advanced age. The SAMP8 mouse is a senescence model with AD traits in which the study of epigenetic alterations may unveil epigenetic therapies against the AD.
Collapse
Affiliation(s)
- Christian Griñán-Ferré
- Department of Pharmacology, Toxicology and Therapeutic Chemistry (Pharmacology Section) and Institute of Neuroscience, University of Barcelona and CIBERNED, Barcelona, Spain
| | - Rubén Corpas
- Institut d'Investigacions Biomèdiques de Barcelona (IIBB), CSIC, IDIBAPS and CIBERESP, Barcelona, Spain
| | - Dolors Puigoriol-Illamola
- Department of Pharmacology, Toxicology and Therapeutic Chemistry (Pharmacology Section) and Institute of Neuroscience, University of Barcelona and CIBERNED, Barcelona, Spain
| | - Verónica Palomera-Ávalos
- Department of Pharmacology, Toxicology and Therapeutic Chemistry (Pharmacology Section) and Institute of Neuroscience, University of Barcelona and CIBERNED, Barcelona, Spain
| | - Coral Sanfeliu
- Institut d'Investigacions Biomèdiques de Barcelona (IIBB), CSIC, IDIBAPS and CIBERESP, Barcelona, Spain
| | - Mercè Pallàs
- Department of Pharmacology, Toxicology and Therapeutic Chemistry (Pharmacology Section) and Institute of Neuroscience, University of Barcelona and CIBERNED, Barcelona, Spain
| |
Collapse
|
18
|
Ovais M, Zia N, Ahmad I, Khalil AT, Raza A, Ayaz M, Sadiq A, Ullah F, Shinwari ZK. Phyto-Therapeutic and Nanomedicinal Approaches to Cure Alzheimer's Disease: Present Status and Future Opportunities. Front Aging Neurosci 2018; 10:284. [PMID: 30405389 PMCID: PMC6205985 DOI: 10.3389/fnagi.2018.00284] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 08/30/2018] [Indexed: 12/22/2022] Open
Abstract
Alzheimer's disease (AD) is characterized by cognitive inability manifested due to the accumulation of β-amyloid, formation of hyper phosphorylated neurofibrillary tangles, and a malfunctioned cholinergic system. The degeneration integrity of the neuronal network can appear long after the onset of the disease. Nanotechnology-based interventions have opened an exciting area via theranostics of AD in terms of tailored nanomedicine, which are able to target and deliver drugs across the blood-brain barrier (BBB). The exciting interface existing between medicinal plants and nanotechnology is an emerging marvel in medicine, which has delivered promising results in the treatment of AD. In order to assess the potential applications of the medicinal plants, their derived components, and various nanomedicinal approaches, a review of literature was deemed as necessary. In the present review, numerous phytochemicals and various feats in nanomedicine for the treatment of AD have been discussed mechanistically for the first time. Furthermore, recent trends in nanotechnology such as green synthesis of metal nanoparticles with reference to the treatment of AD have been elaborated. Foreseeing the recent progress, we hope that the interface of medicinal plants and nanotechnology will lead to highly effective theranostic strategies for the treatment of AD in the near future.
Collapse
Affiliation(s)
- Muhammad Ovais
- Department of Biotechnology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
- National Institute of Lasers and Optronics, Pakistan Atomic Energy Commission, Islamabad, Pakistan
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China
| | - Nashmia Zia
- National Institute of Lasers and Optronics, Pakistan Atomic Energy Commission, Islamabad, Pakistan
- Department of Pharmacy, University of Peshawar, Peshawar, Pakistan
| | - Irshad Ahmad
- Department of Life Sciences, King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia
| | - Ali Talha Khalil
- Department of Eastern Medicine and Surgery, Qarshi University, Lahore, Pakistan
| | - Abida Raza
- National Institute of Lasers and Optronics, Pakistan Atomic Energy Commission, Islamabad, Pakistan
| | - Muhammad Ayaz
- Department of Pharmacy, University of Malakand, Chakdara, Pakistan
| | - Abdul Sadiq
- Department of Pharmacy, University of Malakand, Chakdara, Pakistan
- Department of Life Sciences and Chemistry, Faculty of Health, Jacobs University Bremen, Bremen, Germany
| | - Farhat Ullah
- Department of Pharmacy, University of Malakand, Chakdara, Pakistan
| | - Zabta Khan Shinwari
- Department of Biotechnology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
- Department of Eastern Medicine and Surgery, Qarshi University, Lahore, Pakistan
- Pakistan Academy of Sciences, Islamabad, Pakistan
| |
Collapse
|
19
|
Ghobadi R, Divsalar A, Harifi-Mood AR, Saboury AA, Eslami-Moghadam M. How a promising anti-cancer derivative of palladium consisting phen-imidazole ligand affects bovine liver catalase functionality. J Photochem Photobiol A Chem 2018. [DOI: 10.1016/j.jphotochem.2018.05.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
20
|
Martinez-Oliveira P, de Oliveira MF, Alves N, Coelho RP, Pilar BC, Güllich AA, Ströher DJ, Boligon A, da Costa Escobar Piccoli J, Mello-Carpes PB, Manfredini V. Yacon leaf extract supplementation demonstrates neuroprotective effect against memory deficit related to β-amyloid-induced neurotoxicity. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.08.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
|
21
|
Eleutherio E, Brasil ADA, França MB, de Almeida DSG, Rona GB, Magalhães RSS. Oxidative stress and aging: Learning from yeast lessons. Fungal Biol 2018; 122:514-525. [DOI: 10.1016/j.funbio.2017.12.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 12/04/2017] [Accepted: 12/05/2017] [Indexed: 02/06/2023]
|
22
|
Nitric Oxide and Mitochondrial Function in Neurological Diseases. Neuroscience 2018; 376:48-71. [DOI: 10.1016/j.neuroscience.2018.02.017] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 01/20/2018] [Accepted: 02/09/2018] [Indexed: 12/17/2022]
|
23
|
Zang CX, Bao XQ, Li L, Yang HY, Wang L, Yu Y, Wang XL, Yao XS, Zhang D. The Protective Effects of Gardenia jasminoides (Fructus Gardenia) on Amyloid-β-Induced Mouse Cognitive Impairment and Neurotoxicity. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2018; 46:389-405. [DOI: 10.1142/s0192415x18500192] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Alzheimer’s disease (AD) is the most common neurodegenerative disease in the world. Although the exact causes of AD have not yet been fully elucidated, cholinergic dysfunction, mitochondrial damage, oxidative stress and neuroinflammation have been recognized as influential factors. Current drugs that are designed to address only a single target are unable to mitigate or prevent the progression of this complicated disease, so new disease-modifying drugs are urgently needed. Chinese herbs with thousand years of effective usage might be a good source for potential drugs. Gardenia jasminoides J. Ellis (Fructus Gardenia) is a common traditional Chinese medicine with tranquilizing effects, which is an important component of widely-used traditional Chinese medicine for dementia. GJ-4 is crocin richments extracted from Gardenia jasminoides J. Ellis. In our study, we attempted to observe the effects of GJ-4 on learning and memory injury induced by amyloid-[Formula: see text] 25-35 (A[Formula: see text] injection in mice. Treatment with GJ-4 dose-dependently enhanced the memory and cognition ability of A[Formula: see text]-injected mice. Preliminary mechanistic studies revealed the protective effect of GJ-4 was related to its protection of neurons and cholinergic dysfunction. The mechanistic results also indicated that GJ-4 could enhance antioxidant capacity and attenuate neuroinflammation. Our results implied that GJ-4 might be a promising drug to improve cognitive and memory impairment, with multiple targets.
Collapse
Affiliation(s)
- Cai-Xia Zang
- Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, P. R. China
| | - Xiu-Qi Bao
- Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, P. R. China
| | - Lin Li
- Institute of TCM & Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, P. R. China
| | - Han-Yu Yang
- Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, P. R. China
| | - Lu Wang
- Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, P. R. China
| | - Yang Yu
- Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, P. R. China
| | - Xiao-Liang Wang
- Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, P. R. China
| | - Xin-Sheng Yao
- Institute of TCM & Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, P. R. China
| | - Dan Zhang
- Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, P. R. China
| |
Collapse
|
24
|
Benseny-Cases N, Álvarez-Marimon E, Castillo-Michel H, Cotte M, Falcon C, Cladera J. Synchrotron-Based Fourier Transform Infrared Microspectroscopy (μFTIR) Study on the Effect of Alzheimer’s Aβ Amorphous and Fibrillar Aggregates on PC12 Cells. Anal Chem 2018; 90:2772-2779. [DOI: 10.1021/acs.analchem.7b04818] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Núria Benseny-Cases
- ALBA Synchrotron Light Source, Carrer de la Llum 2−26, 08290 Cerdanyola del Vallès, Catalonia, Spain
| | - Elena Álvarez-Marimon
- Unitat
de Biofísica, Departament de Bioquímica i de Biologia Molecular, Facultat
de Medicina, Universitat Autònoma de Barcelona, 08193 Bellaterra, Catalonia, Spain
| | - Hiram Castillo-Michel
- ID21, European Synchrotron Radiation Facility (ESRF), 71 Avenue des Martyrs, 38043 Grenoble, France
| | - Marine Cotte
- ID21, European Synchrotron Radiation Facility (ESRF), 71 Avenue des Martyrs, 38043 Grenoble, France
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, UMR 8220, Laboratoire d’Archéologie Moléculaire et Structurale (LAMS), 4 place Jussieu, 75005 Paris, France
| | - Carlos Falcon
- ALBA Synchrotron Light Source, Carrer de la Llum 2−26, 08290 Cerdanyola del Vallès, Catalonia, Spain
| | - Josep Cladera
- Unitat
de Biofísica, Departament de Bioquímica i de Biologia Molecular, Facultat
de Medicina, Universitat Autònoma de Barcelona, 08193 Bellaterra, Catalonia, Spain
| |
Collapse
|
25
|
Kumar A, Tiwari A, Sharma A. Changing Paradigm from one Target one Ligand Towards Multi-target Directed Ligand Design for Key Drug Targets of Alzheimer Disease: An Important Role of In Silico Methods in Multi-target Directed Ligands Design. Curr Neuropharmacol 2018; 16:726-739. [PMID: 29542413 PMCID: PMC6080096 DOI: 10.2174/1570159x16666180315141643] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 04/01/2017] [Accepted: 05/01/2017] [Indexed: 12/14/2022] Open
Abstract
Alzheimer disease (AD) is now considered as a multifactorial neurodegenerative disorder and rapidly increasing to an alarming situation and causing higher death rate. One target one ligand hypothesis does not provide complete solution of AD due to multifactorial nature of the disease and one target one drug fails to provide better treatment against AD. Moreover, currently available treatments are limited and most of the upcoming treatments under clinical trials are based on modulating single target. So, the current AD drug discovery research is shifting towards a new approach for a better solution that simultaneously modulates more than one targets in the neurodegenerative cascade. This can be achieved by network pharmacology, multi-modal therapies, multifaceted, and/or the more recently proposed term "multi-targeted designed drugs". Drug discovery project is a tedious, costly and long-term project. Moreover, multi-target AD drug discovery added extra challenges such as the good binding affinity of ligands for multiple targets, optimal ADME/T properties, no/less off-target side effect and crossing of the blood-brain barrier. These hurdles may be addressed by insilico methods for an efficient solution in less time and cost as computational methods successfully applied to single target drug discovery project. Here, we are summarizing some of the most prominent and computationally explored single targets against AD and further, we discussed a successful example of dual or multiple inhibitors for same targets. Moreover, we focused on ligand and structure-based computational approach to design MTDL against AD. However, it is not an easy task to balance dual activity in a single molecule but computational approach such as virtual screening docking, QSAR, simulation and free energy is useful in future MTDLs drug discovery alone or in combination with a fragment-based method. However, rational and logical implementations of computational drug designing methods are capable of assisting AD drug discovery and play an important role in optimizing multi-target drug discovery.
Collapse
Affiliation(s)
- Akhil Kumar
- Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants, P.O. CIMAP, Lucknow-226015, (U.P.), India
| | - Ashish Tiwari
- Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants, P.O. CIMAP, Lucknow-226015, (U.P.), India
| | - Ashok Sharma
- Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants, P.O. CIMAP, Lucknow-226015, (U.P.), India
| |
Collapse
|
26
|
Alder-Rangel A, Bailão AM, da Cunha AF, Soares CMA, Wang C, Bonatto D, Dadachova E, Hakalehto E, Eleutherio ECA, Fernandes ÉKK, Gadd GM, Braus GH, Braga GUL, Goldman GH, Malavazi I, Hallsworth JE, Takemoto JY, Fuller KK, Selbmann L, Corrochano LM, von Zeska Kress MR, Bertolini MC, Schmoll M, Pedrini N, Loera O, Finlay RD, Peralta RM, Rangel DEN. The second International Symposium on Fungal Stress: ISFUS. Fungal Biol 2017; 122:386-399. [PMID: 29801782 DOI: 10.1016/j.funbio.2017.10.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 10/24/2017] [Indexed: 12/23/2022]
Abstract
The topic of 'fungal stress' is central to many important disciplines, including medical mycology, chronobiology, plant and insect pathology, industrial microbiology, material sciences, and astrobiology. The International Symposium on Fungal Stress (ISFUS) brought together researchers, who study fungal stress in a variety of fields. The second ISFUS was held in May 8-11 2017 in Goiania, Goiás, Brazil and hosted by the Instituto de Patologia Tropical e Saúde Pública at the Universidade Federal de Goiás. It was supported by grants from CAPES and FAPEG. Twenty-seven speakers from 15 countries presented their research related to fungal stress biology. The Symposium was divided into seven topics: 1. Fungal biology in extreme environments; 2. Stress mechanisms and responses in fungi: molecular biology, biochemistry, biophysics, and cellular biology; 3. Fungal photobiology in the context of stress; 4. Role of stress in fungal pathogenesis; 5. Fungal stress and bioremediation; 6. Fungal stress in agriculture and forestry; and 7. Fungal stress in industrial applications. This article provides an overview of the science presented and discussed at ISFUS-2017.
Collapse
Affiliation(s)
| | - Alexandre M Bailão
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, 74690-900, GO, Brazil
| | - Anderson F da Cunha
- Laboratório de Bioquímica e Genética Aplicada, Departamento de Genética e Evolução, Centro de Ciências Biológicas e da Saúde, Universidade Federal de São Carlos, 90040-060, SP, Brazil
| | - Célia M A Soares
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, 74690-900, GO, Brazil
| | - Chengshu Wang
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Diego Bonatto
- Center for Biotechnology, Department of Molecular Biology and Biotechnology, Federal University of Rio Grande do Sul, Porto Alegre, 13565-905, RS, Brazil
| | - Ekaterina Dadachova
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5E5, Canada
| | - Elias Hakalehto
- Department of Agricultural Sciences, P.O.B. 27, FI-00014, University of Helsinki, Finland
| | - Elis C A Eleutherio
- Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-901, RJ, Brazil
| | - Éverton K K Fernandes
- Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, GO 74605-050, Brazil
| | - Geoffrey M Gadd
- Geomicrobiology Group, School of Life Sciences, University of Dundee, Dundee, DD15EH, Scotland, UK
| | - Gerhard H Braus
- Department of Molecular Microbiology and Genetics, Institute for Microbiology and Genetics and Göttingen Center for Molecular Biosciences, University of Göttingen, Göttingen, D-37077, Germany
| | - Gilberto U L Braga
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, 14040-903, SP, Brazil
| | - Gustavo H Goldman
- Departamento de Ciências Farmacêuticas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, 14040-903, SP, Brazil
| | - Iran Malavazi
- Centro de Ciências Biológicas e da Saúde, Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, 13565-905, SP, Brazil
| | - John E Hallsworth
- Institute for Global Food Security, School of Biological Sciences, MBC, Queen's University Belfast, Belfast, BT9 7BL, Northern Ireland, UK
| | - Jon Y Takemoto
- Department of Biology, Utah State University, Logan, UT 84322, USA
| | - Kevin K Fuller
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Laura Selbmann
- Department of Ecological and Biological Sciences (DEB), University of Tuscia, Largo dell'Università snc, 01100 Viterbo, Italy
| | - Luis M Corrochano
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, 41012 Sevilla, Spain
| | - Marcia R von Zeska Kress
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, 14040-903, SP, Brazil
| | - Maria Célia Bertolini
- Departamento de Bioquímica e Tecnologia Química, Instituto de Química, Universidade Estadual Paulista, 14800-060, Araraquara, SP, Brazil
| | - Monika Schmoll
- AIT Austrian Institute of Technology GmbH, Center for Health and Bioresources, Konrad-Lorenz Straße 24, 3430 Tulln, Austria
| | - Nicolás Pedrini
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), CCT La Plata Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Universidad Nacional de La Plata (UNLP), calles 60 y 120, 1900 La Plata, Argentina
| | - Octavio Loera
- Department of Biotechnology, Universidad Autónoma Metropolitana-Iztapalapa, C.P. 09340, Mexico City, Mexico
| | - Roger D Finlay
- Uppsala Biocenter, Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Box 7026, 750 07 Uppsala, Sweden
| | - Rosane M Peralta
- Department of Biochemistry, Universidade Estadual de Maringá, 87020-900, Maringá, PR, Brazil
| | - Drauzio E N Rangel
- Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, GO 74605-050, Brazil.
| |
Collapse
|
27
|
Cavallaro RA, Nicolia V, Fiorenza MT, Scarpa S, Fuso A. S-Adenosylmethionine and Superoxide Dismutase 1 Synergistically Counteract Alzheimer's Disease Features Progression in TgCRND8 Mice. Antioxidants (Basel) 2017; 6:antiox6040076. [PMID: 28973985 PMCID: PMC5745486 DOI: 10.3390/antiox6040076] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 09/26/2017] [Accepted: 09/27/2017] [Indexed: 01/30/2023] Open
Abstract
Recent evidence emphasizes the role of dysregulated one-carbon metabolism in Alzheimer’s Disease (AD). Exploiting a nutritional B-vitamin deficiency paradigm, we have previously shown that PSEN1 and BACE1 activity is modulated by one-carbon metabolism, leading to increased amyloid production. We have also demonstrated that S-adenosylmethionine (SAM) supplementation contrasted the AD-like features, induced by B-vitamin deficiency. In the present study, we expanded these observations by investigating the effects of SAM and SOD (Superoxide dismutase) association. TgCRND8 AD mice were fed either with a control or B-vitamin deficient diet, with or without oral supplementation of SAM + SOD. We measured oxidative stress by lipid peroxidation assay, PSEN1 and BACE1 expression by Real-Time Polymerase Chain Reaction (PCR), amyloid deposition by ELISA assays and immunohistochemistry. We found that SAM + SOD supplementation prevents the exacerbation of AD-like features induced by B vitamin deficiency, showing synergistic effects compared to either SAM or SOD alone. SAM + SOD supplementation also contrasts the amyloid deposition typically observed in TgCRND8 mice. Although the mechanisms underlying the beneficial effect of exogenous SOD remain to be elucidated, our findings identify that the combination of SAM + SOD could be carefully considered as co-adjuvant of current AD therapies.
Collapse
Affiliation(s)
- Rosaria A Cavallaro
- Department of Surgery "P. Valdoni", Sapienza University of Rome, Via A. Scarpa 14, 00161 Rome, Italy.
| | - Vincenzina Nicolia
- Department of Surgery "P. Valdoni", Sapienza University of Rome, Via A. Scarpa 14, 00161 Rome, Italy.
| | - Maria Teresa Fiorenza
- Division of Neuroscience, Department of Psychology, Sapienza University of Rome, Via dei Marsi 78, 00183 Rome, Italy.
- IRCCS Santa Lucia Foundation, Via del Fosso di Fiorano 64-65, 00143 Rome, Italy.
| | - Sigfrido Scarpa
- Department of Surgery "P. Valdoni", Sapienza University of Rome, Via A. Scarpa 14, 00161 Rome, Italy.
| | - Andrea Fuso
- Department of Surgery "P. Valdoni", Sapienza University of Rome, Via A. Scarpa 14, 00161 Rome, Italy.
- Division of Neuroscience, Department of Psychology, Sapienza University of Rome, Via dei Marsi 78, 00183 Rome, Italy.
| |
Collapse
|
28
|
Kim EJ, Yang SJ. Nicotinamide Reduces Amyloid Precursor Protein and Presenilin 1 in Brain Tissues of Amyloid Beta-Tail Vein Injected Mice. Clin Nutr Res 2017; 6:130-135. [PMID: 28503509 PMCID: PMC5426212 DOI: 10.7762/cnr.2017.6.2.130] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 04/20/2017] [Accepted: 04/23/2017] [Indexed: 02/07/2023] Open
Abstract
The purpose of this study is to investigate whether nicotinic acid (NA) and nicotinamide (NAM) reduce the Alzheimer disease (AD)-related gene expression in brain tissues of amyloid beta (Aβ)-injected mice. Male Crj:CD1 (ICR) mice were divided into 6 treatment groups; 1) control, 2) Aβ control, 3) Aβ + NA 20 mg/kg/day (NA20), 4) Aβ + NA40, 5) Aβ + NAM 200 mg/kg/day (NAM200), and 6) Aβ + NAM400. After 1-week acclimation period, the mice orally received NA or NAM once a day for a total of 7 successive days. On day 7, biotinylated Aβ42 was injected into mouse tail vein. At 5 hours after the injection, blood and tissues were collected. Aβ42 injection was confirmed by Western blot analysis of Aβ42 protein in brain tissue. NAM400 pre-treatment significantly reduced the gene expression of amyloid precursor protein and presenilin 1 in brain tissues. And, NAM200 and NAM400 pre-treatments significantly increased sirtuin 1 expression in brain tissues, which is accompanied by the decreased brain expression of nuclear factor kappa B by 2 doses of NAM. Increased expression of AD-related genes was attenuated by the NAM treatment, which suggests that NAM supplementation may be a potential preventive strategy against AD-related deleterious changes.
Collapse
Affiliation(s)
- Eun Jin Kim
- Department of Food and Nutrition, Chonnam National University, Gwangju 61186, Korea
| | - Soo Jin Yang
- Department of Food and Nutrition, Seoul Women's University, Seoul 01797, Korea
| |
Collapse
|